

FINAL REMEDIAL INVESTIGATION REPORT SITE 41, NAS PENSACOLA WETLANDS NAVAL AIR STATION PENSACOLA, FLORIDA

SOUTHNAVFACENGCOM CONTRACT NUMBER: N62467-89-D-0318

CTO-036

Volume II of III Sections 10 to 13

Prepared for:

Comprehensive Long-Term Environmental Action Navy Naval Air Station Pensacola, Florida

Prepared by:

EnSafe Inc. 5724 Summer Trees Drive Memphis, Tennessee 38134 (901) 372-7962 FINAL REMEDIAL INVESTIGATION REPORT SITE 41, NAS PENSACOLA WETLANDS NAVAL AIR STATION PENSACOLA, FLORIDA

SOUTHNAVFACENGCOM CONTRACT NUMBER: N62467-89-D-0318

CTO-036

Volume II of III Sections 10 to 13

Prepared for:

Comprehensive Long-Term Environmental Action Navy Naval Air Station Pensacola, Florida

Prepared by:

EnSafe Inc. 5724 Summer Trees Drive Memphis, Tennessee 38134 (901) 372-7962

10.0 SITE-SPECIFIC EVALUATIONS

This section presents wetland-specific evaluations for nature and extent, fate and transport, and ecological and human health risk assessments. Methods used to perform the analysis are presented in Sections 5, 6, 7, 8, and 9. Conclusions and recommendations are presented in Section 11.

10.1 WETLAND 64

10.1.1 Site Description

The Wetland 64 complex is an approximately 41 acre area located south of the boat docks on the western shore of the NAS Pensacola Yacht Basin. For the Site 41 RI, the Wetland 64 investigation incorporated several areas surrounding the NAS Pensacola Yacht Basin, to include Wetland 64 on the southeast shore of the Yacht Basin, the open water area of the Yacht Basin, and Wetlands 7 and 8. Wetland 7 encompasses the downstream end of the tile-lined storm water conduit (Wetland 6) that drains into the Yacht Basin. Wetland 8 includes the western shore of Magazine Point. Site 11 is adjacent the area of investigation to the southwest. Sites 12 and 26 are nearby, also to the southwest. Sites 32, 33, and 35 (Operable Unit [OU] 10) are southeast, on Magazine Point. The western shore of the Yacht Basin is also home to the NAS Pensacola Yacht Club. A concrete seawall exists along this portion of the shoreline, from which several docks extend into the Yacht Basin. Numerous boats are docked in this area. The western shore of the Yacht Basin also contains buildings, a paved parking area, a fenced area for boat storage, and road access. The eastern bank of the Yacht Basin remains relatively undisturbed.

The open water portion of the Wetland 64 complex is approximately 20 acres in size ranges from about 2 to 15 feet in depth, and 600 to 900 feet wide. Sediment in this area is highly organic, with TOC levels detected up to 20%. The dominant foliage of wetland areas along the banks of this complex is black needlerush (*Juncus roemerianus*). Wetland 6 drains storm water runoff from the

former Chevalier Field area, where the Naval Air Technical Training Center (NATTC) is currently located, along with the area surrounding the NAS Chapel.

Wetland 64 is of concern because it is close to Sites 11, 12, and 26, and the drainage pathway of Wetland 6 passes several other IR sites before reaching Wetland 64.

IR sites potentially affecting Wetland 64 include Sites 11, 12, 26, 32, 33, and 35. From the late 1930s until the early 1950s industrial waste was disposed of and burned at Site 11 (North Chevalier Disposal Site). Site 12 (Scrap Bins) was active from the early 1930s through the 1940s, as an area where wet garbage was deposited in receptacles. Site 26 (Supply Department Outside Storage) was a storage area for industrial chemicals from before 1956 until 1964 (NEESA, 1983). Sites 32, 33, and 35 (OU 10) include the former industrial waste sludge drying beds, the wastewater treatment plant ponds, and various solid waste management units of the former Industrial Wastewater Treatment Plant (IWTP) (NEESA, 1983). Metals, volatile organic compounds, and base/neutral and acid extractable compounds have been detected at OU 10. Because of the closure of industrial operations at NAS Pensacola during BRAC, the wastewater treatment plant changed from industrial to domestic operations in 1998.

10.1.2 Nature and Extent

The methods for evaluating nature and extent are presented in Section 6. Figure 10-1-1 denotes the Phase IIA Wetland 64 sampling locations.

Sediment

Twenty-three metals were detected in Wetland 64 sediment samples. Nine of these — arsenic, cadmium, chromium, copper, lead, mercury, nickel, silver, and zinc — exceeded sediment benchmark levels. Seven arsenic exceedances ranged from 9.8 ppm to 17 ppm. Fourteen cadmium exceedances ranged from 1.6 ppm to 38.6 ppm. Twelve chromium exceedances ranged from 78.2 ppm to 1,610 ppm. Eleven copper exceedances ranged from 29.4 ppm to 255 ppm. Fourteen lead exceedances ranged from 31.9 ppm to 634 ppm.

Twelve mercury exceedances ranged from 0.15 ppm to 0.88 ppm. Three nickel exceedances ranged from 18.6 ppm to 27.1 ppm. One silver exceedance occurred at sample location 6403 (5.1 ppm). Nine zinc exceedances ranged from 145 ppm to 481 ppm. Fourteen pesticides were detected in Wetland 64 sediment samples, including DDT and its metabolites, aldrin, dieldrin, endosulfan I/II, endrin/endrin aldehyde, heptachlor, alpha/gamma-BHC, and alpha/gammachlordane. Only one 4,4'-DDD sample (140 ppb at location 6402), and two 4,4'-DDE samples (72 ppb and 78 ppb at locations 6402 and 6403) exceeded basewide levels for these parameters. Other pesticides exceeding appropriate sediment benchmark criteria included dieldrin, endrin, gamma-BHC and alpha/gamma-chlordane. At locations 6402 and 6403, alpha-chlordane (7.1 ppb and 10 ppb) and gamma-chlordane (3.7 ppb and 8.5 ppb) exceeded benchmark levels. Five dieldrin exceedances ranged from 0.79 ppb to 3.3 ppb. Three endrin exceedances ranged from 3.8 ppb to 8.0 ppb. A single gamma-BHC concentration at location 6404 (1.6 ppb) exceeded its benchmark level. Two PCBs were detected in Wetland 64 sediment samples, including Aroclors 1254 and 1260. Five Aroclor 1254 exceedances ranged from 29 ppb to 370 ppb, while four Aroclor 1260 exceedances ranged from 23 ppb to 50 ppb. Twenty-seven SVOCs were detected, many of which were high- and low-molecular weight PAHs. Twelve PAHs exceeded sediment benchmark levels: acenaphthene, acenaphthylene, anthracene, benzo(a)anthracene, benzo(a)pyrene, chrysene, dibenz(a,h)anthracene, fluoranthene, fluorene. naphthalene, phenanthrene, and pyrene.

At locations 6401 and 6405, acenaphtnene (120 ppb and 230 ppb) and anthracene (230 ppb and 330 ppb) exceeded sediment benchmark levels. Acenaphthylene also exceeded its benchmark level at location 6405 (90 ppb). Nine benzo(a)anthracene exceedances ranged from 120 ppb to 1,400 ppb. Nine benzo(a)pyrene exceedances ranged from 120 ppb to 910 ppb. Nine chrysene exceedances ranged from 130 ppb to 1,500 ppb. A single dibenz(a,h)anthracene exceedance occurred at location 6401 (25 ppb). Thirteen fluoranthene exceedances ranged from 120 ppb to 5,700 ppb. At locations 6401 and 6405, fluorene (160 ppb and 210 ppb) and naphthalene

(56 ppb and 71 ppb) exceeded benchmark levels. Nine phenanthrene exceedances ranged from 100 ppb to 2,800 ppb. Eleven pyrene exceedances ranged from 190 ppb to 4,600 ppb. The phthalate ester bis(2-ethylhexyl)phthalate was also detected above its benchmark level at location 6408 (220 ppb). The VOCs detected were acetone, carbon disulfide, chlorobenzene, and methylene chloride. Acetone and methylene chloride are common laboratory contaminants.

Table 10-1-1 shows the Wetland 64 Phase IIA sediment sample results including the frequency of detection, range of detected concentrations, and average detected concentration. Table 10-1-2 compares detected concentrations at each sample location to sediment benchmark levels, and lists calculated HQs for each parameter. An explanation of the HQ calculation is provided in Section 7. Only the detected parameters with benchmark levels are presented in Table 10-1-2. The HQs will be further discussed in the ecological risk section.

Table 10-1-1
Phase IIA Detected Concentrations in Wetland 64 Sediments

Parameter	Frequency of Detection	Range of Detected Concentrations	Average Detected Concentration
Inorganics (mg/kg)			
Aluminum (Al)	24/24	28.9 - 26800	6455.18
Antimony (Sb)	4/10	0.19 - 10.8	3.07
Arsenic (As)	19/24	0.16 - 18.7	6. 99
Barium (Ba)	22/24	0.35 - 1280	66.40
Beryllium (Be)	10/24	0.11 - 1.3	0.77
Cadmium (Cd)	22/24	0.19 - 38.6	9.46
Calcium (Ca)	22/24	64.4 - 6630	1996.31
Chromium (Cr)	24/24	0.55 - 1800	402.05
Cobalt (Co)	15/24	0.13 - 9.4	2.34
Copper (Cu)	22/24	0.74 - 255	41.25
Iron (Fe)	24/24	26 - 38200	10953.76
Lead (Pb)	· 23/24	₹0,65 - 634	137,38
Magnesium (Mg)	24/24	47.1 - 9390	2771.49
Manganese (Min)	24/24	0,12 - 203	59.69
Mercury (Hg)	14/23	0.1 - 0.88	0.37

Table 10-1-1
Phase IIA Detected Concentrations in Wetland 64 Sediments

Parameter	Frequency of Detection	Range of Detected Concentrations	Average Detected Concentration
Nickel (Ni)	17/23	0.79 - 27.1	9.04
Potassium (K)	24/24	19.9 - 4520	940.13
Selenium (Se)	11/24	0.34 - 3.1	1.48
Silver (Ag)	4/22	0.37 - 5.1	1.65
Sodium (Na)	23/24	43.8 - 30200	8748.51
Thallium (Ti)	2/22	0.65 - 1.2	0.93
Vanadium (V)	22/24	0.42 - 60.7	14.47
Zinc (Zn)	23/24	2.2 - 481	127.91
Pesticides and PCBs (μg/kg)			
4,41-DDD	14/24	0.2 - 140	20.71
4,4'-DDE	14/24	0.35 - 78	16.12
4,4'-DDT	6/24	0.6 - 14	5.23
Aldrin	6/24	0.17 - 4	1.59
Aroclor-1254	8/24	1.3 - 370	80.45
Aroclor-1260	12/24	1.3 - 5 0	18
Dieldrin	5/24	0.79 - 3.3	1.74
Endosulfan I	1/24	0.76	0.76
Endosulfan II	1/24	1.7 _{01.2}	1.7 ·
Endrin	5/24	0.46 - 8	3.81
Endrin aldehyde	1/24	0,29	0,29
Heptachlor	1/24	0.12	0.12
alpha-BHC	9/24	0.12 - 0.94	0.43
alpha-Chlordane	4/24	0.28 - 10	4.47
gamma-BHC (Lindane)	5/24	0.13 - 1.6	0.49
gamma-Chlordane	5/24	0.65 - 8.5	2.95
SVOCs (µg/kg)			
1,2-Dichlorobenzene	1/24	190	190
1,4-Dichlorobenzene	2/24	70 - 260	165
2-Methylnaphithalene	1/24	30.	30
Acenaphthene	2/24	120 - 230	175
Acenaphthylene	1/24	90	90.
Anthracene	2/24	230 - 330	280
Betizo(a)anithracene.	12/24		358

Table 10-1-1
Phase IIA Detected Concentrations in Wetland 64 Sediments

Parameter	Frequency of Detection	Range of Detected Concentrations	Average Detected Concentration
Benzo(a)pyrene	13/24	25 - 910	259.31
Benzo(b)fluoranthene	16/24	21 - 2600	531.94
Benzo(g,h,i)perylene	9/24	29 - 590	207:33
Benzo(k)fluoranthene	7/24	35 - 250	176.43
Butylbenzylphthalate	8/24	28 - 280	142.13
Carbazoie	2/24	230 - 400	315
Chrysene	13/24	23~1500	368.08
Di-n-butylphthalate	9/24	28 - 430	156.22
Dibenz(a,h)anthracene	1/24	25	25
Dibenzofuran	2/24	72 - 85	78.5
Diethylphthalate	3/ 24	80 - 2000	996.67
Dimethyl phthalate	1/24	510	510
Fluoranthene	19/24	24 - 5700	782.16
Fluorene	2/24	160 - 210	185
Indeno(1,2,3-cd)pyrene	8/24	39 - 600	232.38
Naphthalene	2/24	56 - 71	63.5
Phenanthrene	12/24	42 - 2800	539.83
Phenol	1/24	220	220
Pyrene	19/24	22 - 4600	667.95
bis(2-Ethylhexyl)phthalate (BEHP)	3/24	33 - 530	261
VOCs (μg/kg)			
Acetone	10/24	9 - 420	152.3
Carbon disulfide	1/24	11	11
Chlorobenzene	1/24	48	48
Methylene chloride	5/24	64 - 400	183.2

The total number of samples has been reduced by the number of rejected samples. However, note that no positive results were rejected. All results are in micrograms per kilogram (μ g/kg) or parts per billion, except for metals which are in milligrams per kilogram (μ g/kg) or parts per million.

Table 10-1-2(1) Wetland 64 Phase IIA Sediment Concentrations Compared to Benchmark Levels

Sample Location	Parameter	Delected Concentration	Sediment Benchmark Value (SBV)	110	SBV - HQ Reference
HIMMEN	400	90.76		100	
-	CARL LANCE		THE 15	(M)	marca.
AAMED IN	date.			DAK	71.61
CARROLL STREET, THE PARTY NAMED IN	-	p-na	1 25	245.0	- 10
SH MINOR	- L			DAKE	
-	(Miles	NU NEW AND	1408	DAME:	. 91
- Tollers	Mag. III	10.7394.00	1776	785	
THE R. LEWIS CO., LANSING, MICH.	594 OU	THE RESERVE	475	3 O'M.	- 0
-	40 W T	1117.00	24.10	0.00	210
		100 100	200	200	2.0
0	-	1000	200	SUA SE	marco o
Daniel or		THE RES	-	HOLES	
30000	-	THE RESERVE		DOM: N	- 11
Other Lab	-	III II MEU		1000	
1000		246		0.0	
Desiration			11 B. V.	(Agen)	- 161
(See 200)		A A SHARE	1360.64	200	
	840	100	-	Property.	_
1	900' JF	- M	792	200	-
-		100 100	ALC: YES THE	200	
SHOW WHEN	KER TOTAL	W1106.10	AVE.	-	19.5
1000	man .		1996		-16
1000	44	9.4	1000.00	1000	1.46
-	Section 1		1 1 1 1 1 1 1	1480	- 41
Time 100		TOTAL RECORD	THE RESERVE OF	246	- 9
200		100,000	ALC: YES	1.74	- 40
041 M640201					
4 4" DDD (U	G/KG)	1.40	1.22	114.75	b
4 A-DDE IU		72	2.07	34.78	b
the state of the s	ane (UG/KG)	7.1	1.7	4 18	n
Antimony (N		0.33	12	0.03	a
Aroclor-1254		370	21.6	17 14	ь
Atsenic (MG		5.8	7:24	1.35	au
	rracene (UG/KG)	1400	74.8	18 72	ta
Cadmium (A	or many could be a series of the series of	16.9	0.68	27.79	b
Chromium (i		1600	52.3	30.59	ati
Chrysene (L		1500	105	13,89	b
Copper (MG		39.8	18.7	2.13	ab
Dieldrin (UG		3.3	0.72	4.58	b
Endrin (UGA		3.0	3.3	1.15	а
Court fact that I have been			113	50.44	
Fluoranthane	(UG/KG)	5700	1.161	30.44	n

Notes.

⁽a) USEPA Screening Concentration for Sediment - EPA SSVs
(b) FDEP Sediment Quality Assessment Guidelines - FDEP SQAGs
Scrie of the numbers in the table may vary because of rounding:

Table 10-1-2 (2) Wetland 64 Phase IIA Sediment Concentrations Compared to Benchmark Levels

Sample Location Parameter	Detected Concentration	Sediment Benchmark Value (SBV)	на	SBV : HQ Reference
Lead (MG/KG)	346	30,2	11.46	a b
Mercury (MG/KG)	D. 17	0.13	1,51	a b
Nickel (MG/KG)	4.6	15,9	0.29	a b
Phenanthrene (UG/KG)	2800	86.7	32,30	- b
Pyrene (UG/ILG)	4600	153	30.07	- fb
Silver (MG/KG)	0.42	0.73	0.59	b.
Zinc (MG/KG)	145	124	1/17	ab
HAMPE TO SERVICE STREET				
About Others		186	Diam'r.	16
Address Street,	10076	Sec. 200 7 7 10	22,667	- 6
COLUMN STATE OF THE PARTY OF TH	100	100	11196	10 mm
Marketon April 1	1000	20	3.44	100
Andrews Street Street			100	
Name and Police	244	14000	160	100
Name and Add at 1997		-	- 100	
Secretary Section 1		- 22	- 611	
THE REAL PROPERTY AND ADDRESS OF THE PARTY AND	144	-	TOTAL ST	100
- Global Robert		-	1000	100
Characterist Co.	11.00	100	-416	
Core Market	and the second	1000	11165	46
Number 1		100	100	
According with the	1941	346	1.340	1,443
rest Miller	100	-	1940-	(3447)
Marco Maleiro	24	440	1499/1	1240
Not MOST -	11/24	44.00	196	1460
Market Street	75 M 17	46	346	17.75
TRUE ACCOUNTS	100.00		475-	100
No exists	F 100 Mar-1	DOM: UK	470	- 20
PATRICK!	13(4)	and the	10	100
041M640401				
4,4'-DDD (UG/KG)	IR	1.22	13/11	A.
4.4'-DDE (UG/KG)	19	2.07	8.70	ь
Antimony (MG/KG)	10.8	12	0.90	8
Aroclor-1260 (UG/KG)	23	21.6	1 06	ь
Arsenic (MG/KG)	3	7.24	0.41	ab
Cadmium (MG/KG)	ZB	0.68	4.12	ь
Chromium (MG/KG)	1610	52.3	30.78	ab
Copper (MG/KG)	23 8	18.7	1.27	ab
Endrin (UG/KG)	5.5	3.3	1.67	a
Fluoranthene (UG/KG)	230	113	2.04	h
gamma-BHC (Lindane) (UG/KG)	1.6	D 32	5,00	b

⁽a) USEPA Screening Concentration for Sediment - EPA SSVs
(b) FDEP Sediment Quality Assessment Guidelines - FDEP SQAGs
Some of the numbers in the table may vary because of rounding

Table 10-1-2(3) Wetland 64 Phase IIA Sediment Concentrations Compared to Benchmark Levels

Sample Location Parameter	Detected Concentration	Sediment Benchmark Value (SBV)	HQ	SBV - HQ Reference
Lead (MG/KG)	146	30.2	4.83	at
Mercury (MG/KG)	0.43	0.13	3.31	e û
Nickel (MG/RG)	5.3	15.9	0.33	80
Pyrene (UG/KG)	500	153	4 31	ь
Zinc (MG/KG)	318	124	0.26	AB
Marine .				
- AND GLASSIC		100	1000	
- ARBEITSON	100 100 100 100	200		
LABOT LABOUR	1994	ED+2	100	
Andrews Street	140	200	200	-
The second second	7.0	100	76.3	-
(Contraction)		100	1000	
Married Voters			-	
Same Day Street.		245	-	1961
Name Address:		100	-	1000
Charles and the Control of the Contr		1000	1951	
The second second	100	THE RESERVE		
1	100	1000	1000	
Contract of the Contract of th		100	100	100
	1000		200	
Could Mileson I	100		200	2000
Constitution .	1100 25 10	100	200	
Contract of the Contract of th	100		100	
Property Lawrence		1000		and the same
Name and Address of the Owner, when the Owner, which the	1000	100		
CONTRACTOR OF THE PARTY OF THE				-
CONTRACTOR II		100		
2000		100		100
The same of the sa		1000	200	-
The second second	100	11/20/10	-	
Management of the last			12.00	200
The state of the s			-	775
De Marie		71.5	100	- 40
D41M640601				
The Control of the Co	700	A const	24 50	16
4,4-DDD (UG/KG)	30	1.22	24.59	- by
4.4' DDE (UG/KG)	16	207	7.73	p
4,4'-DDT (UG/KG)	1.4	1 19	1.18	h
Aroşlor-1264 (UG/KG)	56	21,6	2.58	b
Atsenic (MG/KG)	1.6	7.24	0.22	ab
Cadmium (MG/KG)	8.8	0.68	12.94	ı İn
Chromium (MG/KG)	324	52 3	5.20	ab

⁽a) USEPA Screening Concentration for Sediment - EPA SSVs
(b) FDEP Sediment Quality Assessment Guidelines - FDEP SQAGs
Some of the numbers in the table may vary because of rounding.

Table 10-1-2 (4) Wetland 64 Phase IIA Sediment Concentrations Compared to Benchmark Levels

Sample Location Parameter	Detected Concentration	Sediment Benchmark Value (SBV)	на	SBV - HQ Reference
Capper (MG/KG)	29.4	18 /	1.67	ab
Fluoranthene (UG/KG)	1700	113	15/04	b.
gamma-Chlordane (UG/KG)	0.81	1.7	0.48	
Lead (MG/KG)	156	39.2	5 17	a tr
Mercury (MG/KG)	0,12	0.40	0.92	ati
Nickel (MG/KG)	3	15.0	0.19	a ti
Pyrene (UG/KG)	1500	153	9.80	ь
Silver (MG/KG)	0.37	C 7.0	0.51	-ti-
Zinc (MG/KG)	105	154	0.85	ab
Dellara Till			B	
Ad life passey			144	
STATE AND STATES	T-BANKS	26	Glass.	1 Con
Autor Discolaria		74	CAMP III	
Ann. Mark	1981		444	n 0
Manufacturate Address		200	0.440	W 1
Management (Cont.)		1946	0.00	
SAME MANAGEMENT	1000	1000	44	100
State word 187 L	100	200	100	100
CORPORATION AND ADDRESS OF THE PARTY NAMED IN COLUMN TWO I	-	14		1.41
The Ballion		140	214	1.160
Principles (1999)	100	- 100	* ***	1000
Treat MONEY	14.5		1.M	EAR
Territoria (Control of Control of	100		104	SUDAN.
Nacional Contract of the Contr	1500	13940	340	1000
There have been been been been been been been be	10.00	144	Sub.	4.
Appen (State)	1 800	11000	16.06	THE REAL PROPERTY.
Jan and Control	1,460		94	255
041M640801				
4,4' DDD (UG/kG)	2,2	1.22	1.80	6
4.4'-UDE (UG(KG)	24	2 07	1.15	h
4,4-DDT (UG/KG)	0.66	1 19	0.55	h
alpha-Chlordane (UG/KG)	0,28	1.7	0.16	a
Arodor-1260 (LIG/KG)	ddi	21.8	0.51	ù
Arsenic (MG/KG)	0,59	7.24	0.08	ab
Benzo(a)anthracene (UG/KG)	51	74.8	0.68	b
Benzo(a)pyrene (UG/KG)	51	58.6	0,57	6
bis(2-Ethylhexyl)phthalate (BEHP) (LIG/KG)	220	182	1.21	6
Cadmium (MG/KG)	12	0.68	1 76	6
Chromium (MG/KG)	32,3	52,3	0,62	9.0
Chrysene (UG/KG)	61	108	0,56	0.0
Copper (MG/KG)	6.9	18 7	0.37	ab

⁽a) USEPA Screening Concentration for Sediment - EPA SSVs (b) FDEP Sediment Quality Assessment Guidelines - FDEP SDAGs Some of the numbers in the table may vary because of rounding.

Table 10-1-2 (5) Wetland 64 Phase I/A Sediment Concentrations Compared to Benchmark Levels

Sample Location	Parainstai	Detected Concentration	Sediment Benchmark Value (SEV)	на	ŠBV - HQ Relerence
Endrin (UG/	(KG)	0.46	33	0.14	а
Endrin aldet	lyde (UG/KG)	0.29	3,3	0.09	a
Fluorantheni	(UG/KG)	120	113	1 05	6
Lead (MG/k	(G)	17.6	30.2	0.58	e b
Nickel (MG/	KG)	8 79	15.9	0.05	a 6
Phenanthrer		59	86.7	0.68	ь
Pyrene (UG	/KG)	120	153	0.78	to .
Zind (MG/H)	G)	2111	124	0.17	a h
HIMMOO					
ARREST DA	- B		CO COLUMN	No.	100
A P STREET,	the contract of	100.00	196	240	1000
DAMAGE		U 0100.70		100	
100				13400	-
march 1		100	-200	1742	- 20
1000.00	EC 27.73		200	11000	(B) - 2
(PROPERTY)	Sec. 294.71	11 7 5 6 1	100	-	
Trad decoil		11106 101		-	THE REAL PROPERTY.
James .		V 2004 III	(1)	196	Time!
D41MG41001					
4,4-000 (L		22	146	3.46	6
200			1 22	1 80	5
A ALDDE (U		2.5	2.07	1.21	n
Arador-1260		.44	21.6	1/11	D.
Arsenic (MC	the things of the second	16.2	7,24	224	ati
A 10	hracene (UG/KG)	246	74.8	3,21	b
The second secon	one (UG/KG)	290	88.8	3.27	
Cadmium (N		23.2	98.0	34.12	н
Chromium (806	52.3	15.41	a ti
Chrysene (L	2 1 9 1 1 7 1	320	108	2,95	b
Comper (MC		140	18.7	7.49	all
Dialdrin (UG		1.5	0.72	2,08	b
Fluoranthene		720	113	17/37	b
	rdane (UG/KG)	0.66	17	0.38	ā
Lead (MG/K		324	30.2	10.73	自知
Marcury (Mo		0,5	0.13	3,65	ab
Nickel (MG/		20.1	15.9	1.56	āb
Phenanthier	State of the state	300	86.7	3.46	
Pyrene (UG		590	153	3.86	b
Zinc (MG/K)	3)	377	124	3.04	ab

941M641101

⁽a) USEPA Screening Concentration for Sediment - EPA SSVs
(b) FDEP Sediment Quality Assessment Guidelines - FDEP SQAGs
Some of the numbers in the table may vary because of rounding.

Table 10-1-2 (6) Wetland 64 Phase IIA Sediment Concentrations Compared to Benchmark Levels

Sample Location Parameter	Detected Concentration	Sediment Benchmark Value (SBV)	но	SBV - HQ Reference
V/300 00HG	1000	- 18	10	- P.
COURT NOVE	110.200	261	IN PROCESS	
SNOTH HOUSE	7 TO 100	1076	19-3	
Annual Street, or other Parket.	COMMAND.	100	28-3	94
District Column 1988	1.710	799	1740	
Minister States		20.00	1,000	100
Territory (Contract)	THE .	1.00	PLASE .	193
Charge Service	1,000	194	THOSE	84
(Shope burkly)		146	TAME	100
Charles Months, (1)	1000	197	348	4.6
THE STORY	1400.11	119	146	
Printegues SARRIS		and the same	140	100
Sed Minne	(12)	265		1 3754
THE MAIL	I Po	314		125
MINISTRAL (I)	134	The state of the s	40%	150
ARREST TOTAL		10000	1000	
their patricks		79.00	200	
Co. Miles	ALC: UNK	200	199	
041M641201				
4,44DDD (UG/KG)	0.26	1.22	0.21	6
Araclar-1254 (UG/KG)	1.7	21.6	0.08	b
Cadmium (MG/KG)	0.27	0.58	5.40	b
Chromium (MG/KG)	7.2	52 3	0.14	25
Copper (MG/KG)	1.9	18.7	0.10	a b
gamma-BHC (Lindane) (UG/kG)	0.28	0.32	D.88	b
Lead (MG/KG)	3.6	30.2	0.12	ab
Zinc (MG/KG)	4.2	124	0.03	ав
64188A7301				200
all-lots arrain.	C 100 100	100	104	
William Street, V. C.	100	-	1987	-
Manager and passed in	h		UN -	
Name (MASS)	94.5	100	1.00	46
Reposarribeal bourtil		14.0	AM	- "
Newspaper Aliente	(Cwc.)	14.6		18-
DANGE MORE	79.6	100	14440	100
Short bridge Short bridge	100		Masan.	44
Hillandy Drowns	- 4	1 1 1 1	144	-
Married Married	100	146	100	-91
PROPERTY.	100	1.62	79.00	
Properties a collection	SPINITE:	STRAMARCO	Hittiff	********
Day words		1000	r'ww.	2.0

⁽a) USEPA Screening Concentration for Sediment - EPA SSVs
(b) FDEP Sediment Quality Assessment Guidelines - FDEP SQAGs
Some of the numbers in the table may vary because of rounding

Table 10-1-2 (7) Wetland 64 Phase IIA Sediment Concentrations Compared to Benchmark Levels

Sample Location Parameter	Detected Concentration	Sediment Benchmark Value (SBV)	но	SBV - HQ Reference
Annual Prints	16.0	36	3.66	- 460
Marinette, and in	10.0	44	PW.	
Programs (MPC)			2.46	100
Proper States		AF	146	
Chi protein	10.00	100	1001	100
D41M641401				
Arador-1260 (UG/KG)	16	21,6	0.74	Б
Arsenic (MG/KG)	16.1	7.24	2.22	a b
Benzo(a)pyrene (UG/KG)	120	85.8	1.35	15
Cadmium (MG/KG)	17.2	0.68	25,29	ь
Chramium (MG/KG)	531	52.3	12.07	ah
Chrysene (UG/KG)	130	+08	1.20	ь
Copper (MG/KG)	83.9	18.7	4.49	a b
Fluoranthene (UG/KG)	250	113:	2,21	b
Lead (MG/KG)	205	30.2	6.79	a b
Mercury (MG/KG)	0.41	0.13	3.15	ah
Nickel (MG/KG)	15.1	15.9	0.95	a h
Pyrene (UG/KG)	190	153	1 24	Б
Zina (MG/KG)	250	724	2.10	an
OTHER DESIGNATION OF THE PERSON OF THE PERSO				
LAA PER SERVICE	- 4	1000	4/5/	199
AND SHOP	TAM.		146	100
APARELING.	14		ME	-
married to the same of the sam		100	208	
hart, provide	100	Mary 1	THE	100
Testing Marrie	200		PMI II	0.00
Charles Martin	34	BANK I	0.495	- 00
THE PERSON NAMED IN	71	DATE: U	10×	100
Continue (State)		2000	400	
Los many		84	400	10
From Street		0.0	AMO	
Principal Principal		No. of Contract of	-44	144
041 M641601				
Aradlor-1260 (UG/KG)	16	21.6	0.74	b
Arsenic (MG/KG)	16 7	7,24	2,58	ab
Benzo(a)entiracene (UG/KG)	120	74.8	1,60	Ħ
Berizo(a)pyrene /UG/KG)	140	88.88	1.58	b
Cadmium (MG/KG)	19	0.68	27.94	b
Chromium (MG/KG)	756	52.3	14,46	a b

Notes.

⁽a) USEPA Screening Concentration for Sediment - EPA SSVs
(b) FDEP Sediment Quality Assessment Quidelines - FDEP SQAGs
Some of the numbers in the table may vary because of rounding.

Table 10-1-2 (8) Wetland 64 Phase IIA Sediment Concentrations Compared to Benchmark Levels

Sample Location Parameter	Detected Concentration	Sediment Benchmark Value (SBV)	на	SBV - Ho Reference
Chrysene (UG/KG)	160	108	1.48	b
Copper (MG/KG)	119	18.7	6.30	ab
Fluoranthene (UG/KG)	330	113	2.92	bz
Lead (MG/KG)	249	30.2	8.25	a b
Mercury (MG/KG)	0.49	0.13	3.77	a b
Nickel (MG/KG)	1.5.5	15.9	1.47	a b
Phenanthrene (UG/KG)	740	86.7	1.61	ti
Pyrene (UG/KG)	250	163	1 63	ь
Zinc (MG/KG)	300	134	2.42	a b
and the state of t				DOM: N
house had belong	48	194.1	140	1 10.1
water, projects.	20	1960	het I	196
Assessment Debets	THE R	- 240	144	-
Confluence Addresses	16	1940	1000	100
Council Militar	24	1987	244	400
Constitution 2	81	100	140	4.0
Contraction account	-41	10	250	7
and themes	-400	100	-	9.4
Mod money	140	-0.0	10.00	1000
Permitted		-	100	4.5
Security Sec	1964	100	90	Out
041M641801				
Arodor 1280 (UG/KG)	1:3	2) 6	0.06	- 6
Arsenic (MG/KG)	0 19	7.24	0.03	a b
bis(2-Ethylnexyl)phthalate (BEHP) (UG/KG)	93	182	0.03	b
Cadmium (MG/KG)	0.19	0,68	0.28	6
Chromium (MG/KG)	5.2	52.3	0.10	ab
gamma-BHC (Lindane) (UG/KG)	0.18	0.32	0.56	ь
Lead (MG/KG)	2.6	30.2	0.09	ab
Zinc (MG/kG)	28	124	0.02	вb
essential Commence				
Andrea Clareco	100	0.00	140	100
LASTIN COMMITTEE	14	1941	Test 1	110
Acceptable Salation	-	Cod	har-	
Annual address.	17 100	100	total I	-
Name and Address.	100	747.1	-14	
Parameter States	100	1000	100	
the street of the same of the same	1000	500.00	100	
Committee of the Commit	200	100	Series.	

Milles

⁽a) USEPA Screening Concentration for Sediment - EPA SSVs
(b) FDEP Sediment Quality Assessment Guidelines - FDEP SQAGs
Some of the numbers in the table may vary because of rounding

Table 10-1-2 (9) Wetland 64 Phase IIA Sediment Concentrations Compared to Benchmark Levels

Sample Location Parameter	Détected Concentration	Sediment Benchmark Value (SBV)	на	SBV - HQ Reference
None and		W1 1	-58	28.
Meson botto.	P. DEWIN	4.70	246	100
Street MONEY TO SELECT		III. TANCES	13463	244
Personal Library	1.00000		794.6	
THE PROPERTY NAMED IN	100	The second second	THE	183
Miller Market	100	COLUMN TO SERVICE	III. AND III	100
What Hollick	1000	A TOMA TO	100	1000
Parlament (Service)	10000	0.786.00	2.85	
Personal Control of the Control of t	THE RESERVE		10,000	
Del Mineral	112543	108 III	100	144.
941M642001				
Atodor-1260 (UG/KG)	1.9	21.6	0.09	6
Arsenic (MG/KG)	0.8	7.24	0.03	a b
Cadmium (MG/KG)	0,56	168	D.82	В
Chromium (MG/KG)	13.8	52.3	0.26	ab
Gopper (MG/KG)	4.3	18.7	0.23	ab
Fluoranthene (LIG/KG)	24	113	0.21	b
Lead (MG/KG)	7.5	30.2	0.25	ab
Pyrene (UG/KG)	22	153	0.23	В
Zinc (MG/KG)	15.8	124	D. 13	ab
ianaments .				
Acres Science	490		146.00	100
Comment of the Commen	147	1991	Let 1	100
Name Address:	4.94		II NA III	
and Market 1	100		The I	-
D. MING	1111 5 711	3.1	14	per-
D41M642201				
	200	5.00	0.01	6
Benzo(a)shthracene (UG/KG)	38	.74.8	0.51	15
Benzo(a)pyrene (UG/KG)	25	88,8	0.28	n
Cadmium (MG/KG)	16	0.68	2.35	0
Chromium (MG/KG)	21.3	52.3		ab
Chrysene (UG/KG)	35	108	0.32	b.
Copper (MG/KG)	7.2	18.7	0.39	ab
Fluoranthene (UG/KG)	92	113	0.81	Ħ
Lead (MG/KG)	36.3	30.2	1.20	建 斯
Mercury (MG/KG)	0.15	0.13	1 15	ab
Nickel (MG/KG)	3,9	16.9	0,25	eb
Phenanthrene (UG/KG)	57	7,68	0.66	ь
Pyrene (UG/KG)	68	153	0.44	ь

No(es.

(a) USEPA Screening Concentration for Sediment | EPA SSVs

(b) FDEP Sediment Quality Assessment Guidelines = FDEP SQAGs

Some of the numbers in the table may vary because of rounding.

Table 10-1-2 (10) Wetland 64 Phase IIA Sediment Concentrations Compared to Benchmark Levels

Sample Location	Parameter	Detected Concentration	Sediment Benchmark Value (SBV)	на	SBV - HQ Reference
Silver (MG/	KG)	Q 72	0.73	0.99	ь
Zinc (MG/K	(G)	21.3	124	0 17	á b
Married Woman					
CORN. NO.	MG (1)	100		1444	445
(Contract to	940	1.04		11446	100
Springs 8		1046	1946	-446	1.00
Diam'r.	6 St 10 A	187		-0.0	1.00
-	Design of the last	100 000	760	100	
I FREE PARTIES		0.00	- 0	1 1111	1.0
100			1987	1000	1100
1 Firest 189		126		****	100
10-10-	6021494		-081	39	100
041M64240	1				
Chromium		0.55	52.3	0.01	a ti
Mercury (M		0.3	0.13	2.31	a fa

Notes.

⁽a) USEPA Screening Concentration for Sediment - EPA SSVs
(b) FDEP Sediment Quality Assessment Guidelines - FDEP SQAGs
Some of the numbers in the table may vary because of founding

10.1.3 Fate and Transport

Pathways evaluated for wetland-specific fate and transport correlate with those identified in the conceptual model presented in Section 9: surface water/sediment transport into the wetland; groundwater discharge into the wetland; sediment/surface water transport within the wetland; sediment leaching to surface water within the wetland; and surface water/sediment transport from the wetland. Because sediment transport and storm water runoff data are lacking, the evaluation is qualitative in nature. The method of evaluating leaching from sediment to surface water was presented in Section 9. Table 10-1-3 presents those contaminants present in sediment above their benchmark levels and their calculated SSLs.

Table 10-1-3
Calculated Sediment Screening Values for Wetland 64

Parameter	USEPA or FDEP Surface Water Standard	Kd	SSL DF = 100	Maximum Concentration Detected	Leaching Potential DF = 100
Inorganics	(ppb)		(ppm)	(ppm)	
Arsenic	50 b	29	146	18.7	NO
Cadmium	0.774 * b	75	5.82	38.6	YES
Chromium	11. a. b	19	21	1,800	YES
Copper	7.8 a. b	430	336	255	NO
Lead	1.71 4.6	900	154	634	YES
Mercury	0.012 a, b	52	0.0626	0.66	YES
Nickel	104 ^{s, b}	65	677	27.1	NO
Zinc	70.2 a, b	62	436	481	YES
Organics	(ppb)		(ppb)	(pph)	
4,4 DDE	10.5 *	188000	1.97E+08	78 :	NO
4,4 DDD	0.0064 *	42000	2.69E+04	140	NO
4,4 DDT	0.001 *. 8	110460	11,046	14	NO.
Dieldrin	0.0019 *. 6	898.8	170.77	3.3	NO
Endrin	0.0023 ^{a. b}	516.6	118,81	8	NO ∳ ≟
Gamma ВНС	0.08 a, b	44.94	361	1.6	NO

Table 10-1-3 Calculated Sediment Screening Values for Wetland 64

Parameter	USEPA or FDEP Surface Water Standard	Kd	SSL DF = 100	Maximum Concentration Detected	Leaching Potential DF = 100
2-methylnaphthalene	NA	315	NA	30	NA
Anthracene	110,000 b	1239	1.36e+10	330	NO
Acenaphthylene	0.031 b	130.2	4.04e+02	90	NO
Total PCBs*	0.014 a.b	12978	1.82e + 04	50	NO
Acenapthene	17.	297,36	5.06e+05	230	NO
Benzo(a)anthracene	0.031 b	16716	5.18e+04	1,400	NO
Вепло(а)ругеле	0.031 b	42840	1.33e+05	910	NO
Chrysene	0.031 b	16716	5.18e + 04	1,500	NO
Dibenz(a)anthracene	0.031 b	159600	4.95e+05	25	ŇO
Fluoranthene	39.8	4490	1.79e+07	5,700	NO
Napthalene	62 •	84	5.21e+05	71	NO
Phenanthrene	0.031 b	1260	3.91e+03	2,800	NO
Pyrene	11,000 b	4410	4.85e+09	4,600	NO
Bis(2-ethylhexyl)phthalate	0.3 a	634000	1.90e+07	530	NO

Kd for organics calculated using foc of 0.042 (numerical average of all sediment samples).

Kds are from: USEPA, 1996b (first preference); Superfund Chemical Data Matrix (USEPA, 1996c) (second preference); Texas Risk Reduction Program Concept Document 2, Volume 1, Appendix VII, 1996 (third preference); TERRA Model, Oak Ridge National Laboratory, 1984 (fourth preference - primary reference for inorganics).

Kd = normalized partitioning coefficient SSL = sediment screening level DF = dilution factor

= USEPA Freshwater Surface Water Chronic Screening Criteria (1995a).

= FDEP Class III Water Quuality Criteria(1996).

Transport Into The Wetland

Surface Water/Sediment Pathway

Based on landform and watershed analysis, the following sources can contribute contamination to Wetland 64 through this pathway:

⁼ based on Aroclor-1260

- Storm water runoff and sediment entrainment from Sites 11, 32, 33, 35, 12, and 26, and the northern portions of Chevalier Field.
- Direct surface water drainage and sediment transport from Wetland 6 (which receives runoff from Sites 9, 29, and 34 and numerous storm water outfalls along Chevalier Field) and, during tidal fluctuations and storm surge from the Bayou Grande.
- Indirect surface water drainage from Wetland 5, which receives runoff from Sites 30, 25,
 27, 10 and numerous storm water outfalls.

Sediment contamination above benchmark levels (see Table 10-1-3) validates the sediment transport pathway, and by inference, the surface water pathway. No surface water data are available to further validate this pathway.

Groundwater Discharge Pathway

Based on a potentiometric analysis, the following sources can contribute contamination to Wetland 64 through groundwater discharge:

• Discharge from Sites 12, 26, and 11 to the west and Sites 32, 33, 35 to the east. Wetland 64 is at the lower end and groundwater discharges to it. Contamination found in both areas validates this pathway.

Transport Within the Wetland

Surface Water/Sediment Migration Pathway

Contamination within the wetland can be expected to migrate toward the Bayou, except during tidal fluctuations and storm surge which can create a temporary landward direction.

Sediment Leaching to Surface Water Pathway

Eight inorganics and 20 organics exceeded their respective SSVs, but only five inorganics exceeded their calculated SSLs (see Table 10-1-3). This accumulation of contaminants reflects the basin's role as a major estuarine depositonal element for the NAS Pensacola peninsula. It is difficult to attribute individual contaminant groups to a particular source due to the myriad of sources and because influx from these sources has not been hydrologically or chemically defined. Cadmium, chromium, lead and zinc exceedances tended to occur on the western side of the wetland, and mercury exceedances were widespread. Although no surface water data are available, the presence of these inorganics above SSLs suggests the pathway is valid.

Transport From the Wetland

Surface water and sediment likely occurs from the wetland into Bayou Grande, thus the contaminated sediment is expected to be mobile.

10.1.4 Ecological Risk Assessment

HQs for Wetland 64 sediment samples are presented in Table 10-1-2. Wetland 64 was classified in Group A (see Section 7) and sampled in Phase IIB/III based on the Phase IIA data. The methods and rationale for the ecological risk assessment are presented in Section 7.

Phase IIA

Phase IIA sediment sample results compared to the appropriate sediment benchmark levels revealed HQs above 1 for several metals. Seven arsenic detections had HQs above 1 ranging from 1.35 to 2.35. Fourteen cadmium detections with HQs greater than 1 ranged from 2.35 to 56.76. Twelve chromium detections had HQs above 1 ranging from 1.5 to 30.78. Eleven copper detections with HQs greater than 1 ranged from 1.57 to 13.64. Fourteen lead detections had HQs above 1 ranging from 1.06 to 20.99. Twelve mercury detections had HQs above 1 ranging from 1.17 to 1.70.

10-1-22

One silver detection had a HO of 6.99 at sample location 6403. Nine zinc detections had HOs greater than 1 ranging from 1.17 to 3.88. Nine 4,4'-DDD detections had HOs above 1 ranging from 1.80 to 114.75. Eight 4,4'-DDE detections had HQs above 1 ranging from 1.21 to 37.68. Three 4.4'-DDT detections had HQs above 1 ranging from 1.18 to 11.76. At locations 6402 and 6403, alpha-chlordane (4.18 and 5.88) and gamma-chlordane (2.18 and 5.0) had HQs above 1. Five dieldrin detections had HQs greater than 1 ranging from 1.10 to 4.58. Three endrin detections had HOs above 1 ranging from 1.15 to 2.42. A single gamma-BHC concentration at location 6404 had a HQ above 1(5.0). Five Aroclor 1254 detections had HQs above 1 ranging from 1.34 to 17.13, while four Aroclor 1260 detections had HQs ranging from 1.06 to 2.31. At locations 6401 and 6405, acenaphthene (17.88 and 34.28) and anthracene (4.90 and 7.04) had HQs Acenaphthylene also had a HQ above 1 at location 6405 (15.33). greater than 1. Nine benzo(a)anthracene detections had HQs above 1 ranging from 1.60 to 18.72. Nine benzo(a)pyrene detections had HQs greater than 1 ranging from 1.35 to 10.25. Nine chrysene detections had HQs above 1 ranging from 1.20 to 13.89. dibenz(a,h)anthracene detection had a HQ greater than 1 at location 6401 (4.02). Thirteen fluoranthene detections had HQs above 1 ranging from 1.06 to 50.44. At locations 6401 and 6405, fluorene (7.55 and 9.91) and naphthalene (1.62 and 2.05) had HOs above 1. Nine phenanthrene detections had HQs greater than 1 ranging from 1.15 to 32.30. Eleven pyrene detections had HQs above 1 ranging from 1.24 to 30.07. The phthalate ester bis(2-ethylhexyl)phthalate also had a HQ above 1 at location 6408 (1.21). HQs greater than one indicate a potential for excess risk.

Phase IIB/III

Based on Phase IIA sampling results, wetlands were further subdivided into groups to facilitate further analysis: Wetland 64 was classified as the only Group A wetland because it is unique in that it receives runoff from a large area of the base and has high concentrations of several metals, PAHs, and pesticides. Color-codes, groupings and rationale for classification are described in

Section 7. The sediment in this wetland has high TOC values (up to 20%). Benthic macroinvertebrates are suspected to be prominent in this wetland, unlike most wetlands on base that have intermittent surface water levels.

Conceptual Model

Conceptual models demonstrate contaminant interaction throughout the food chain and help in selecting receptor species, referred to as measurement and assessment endpoint species. Measurement endpoints, defined in Section 7.9, are used to quantify direct impacts on the species chosen in the conceptual model. Assessment endpoints, also defined in Section 7.9, predict impacts on similar species not directly measured in the model. The conceptual model developed for Wetland 64 is shown in Figure 10-1-2.

Sampling Location Rationale

Phase IIB/III samples for sediment toxicity analysis, sediment chemistry, TOC, grain size, and benthic diversity were collected from Phase IIA sample locations 4, 5, and 6. These locations were selected because they represented a contaminant gradient in the upper reaches of the Yacht Basin. The remainder of the Yacht Basin was originally addressed under the Site 40 RI, but is now included in Site 41. The three composite grab samples for benthic diversity were collected within 10 feet of each sample location to account for spatial variability. For tissue residue analysis, fish were collected from sample locations 4 and 5 (composite sample location 1) and 6. Two discrete surface water samples were also collected for chemical analysis, one between locations 1 and 2 and the other between locations 2 and 5. Sampling locations and their associated Shannon-Weiner Diversity Indices are shown on Figure 10-1-3. The number of fish in each sample and the range of the fish lengths is provided in Table 10-1-4.

Remedial Investigation NAS Pensacola Site 41 Section 10: Site-Specific Evaluations August 31, 2000

This page intentionally left blank.

Table 10-1-4
Fish Collected at Wetland 64 and Reference Wetland 33

San	nple Location	Species	Number Collected	Length Range (millimeters)	
	64-01	Pinfish (Lagodon rhomboides)	32	64-82	
	64-06	Pinfish (Lagodon rhomboides	20	64-80	
	33-01	Pinfish (Lagodon rhomboides	* 7	55-71	
	33-02	Pinfish (Lagodon rhomboides	25	54-85	

Ecological Risk Evaluation

Risk in Wetland 64 was evaluated with respect to three assessment endpoints: 1) piscivorous bird health and reproduction, 2) survival and growth of macroinvertebrates associated with the benthic environment, and 3) protection of fish viability. Based on the ecological risk evaluation performed at Wetland 64, sediment and surface water results can be scored via the decision making triad, and the overall condition of the wetland for sediment and surface water can be determined.

Piscivorous Bird Health and Reproduction:

As shown in Table 10-1-5, an HQ of 1.57 is estimated for heron's exposure to total DDT levels reported in fish tissues collected from sample 64-06 using an SFF of 1 (i.e., assuming that the heron spends 100% of its time feeding in Wetland 64). HQs estimated for the remaining contaminant-receptor combinations are all below 1.

An HQ of 0.43 is calculated based on an SFF value of 0.28, which represents a more realistic estimate of risk potentially associated with the heron's exposure to residual concentrations of total DDT in fish tissues.

Table 10-1-5 Great Blue Heron HQ Calculations Wetland 64

	SFF Value	Location	Parameter	Tissue Concentration ¹ (mg/kg)	Sediment Concentration ² (mg/kg)	PDE ³ (mg/kg-day)	NOAEL ⁴ (mg/kg-day)	LOAEL (mg/kg-day)	HQ ⁵
777	1	64-01	total DDT	0.0173	0.196	0.0031	0.003	0.028	1.03
	0.28	64-01	total DDT	0.0173	0.196	0.0009 - 0.0031	0.003	0.028	0.3
	1	64-06	total DDT	0.026	0.116	0.0047	0.003	0.028	1.57
	0.28	64-06	total DDT	0.026	0.116	0.0013 - 0.0047	0.003	0.028	0.43
	1.45	64-01	total PCB	0.36	0.30	0.065	0.18	1.8	0.36
	0.28	64-01	total PCB	0.36	0.30	0.018 - 0.065	0.18	1.8	0.1
1,5	1	64-06	total PCB	0.041	0.18	0.0074	0.18	1.8	0.04
_	0.28	64-06	total PCB	0.041	0.18	0.0021 - 0.0074	0.18	1.8	0.12

- 1 = Whole body killifish or pinfish (wet weight)
- 2 = Samples from top 5 cm of sediment (wet weight)
- 3 = Potential Dietary Exposure: revised from model in SAP (E/A&H, 1997)
- 4 = Effects Levels in Sample et al., 1996

 5 Hogged Operation (RDE): (NOAEL)
- 5 = Hazard Quotient = $(PDE) \div (NOAEL)$
- ND = Not detected
- NOAEL = No-observed-adverse-effects-level LOAEL = Lowest-observed-adverse-effects-level

Survival and Growth of Macroinvertebrates Associated with the Benthic Environment:

As discussed in Section 7, this assessment endpoint was evaluated using the sediment quality triad approach.

Sediment Chemistry

Table 10-1-6 compares detected Phase IIB/III sediment concentrations to benchmark levels, and lists calculated HQs for each parameter. DDT and its metabolites are also compared to basewide levels (see Section 6). Only the detected parameters with benchmark levels or water quality criteria are presented in Table 10-1-6. Phase IIB/III sediment analytical results for Wetland 64 showed HQs above 1 for pesticides, PAHs, phthalate esters, PCBs, and metals. Application of these sediment chemistry results to the decision making triad revealed a matrix score of "+" for sediment chemistry.

Table 10-1-6 (1) Wetland 64 Phase IIB/III Sediment Concentrations Compared to Benchmark Levels

Sample Location Pag	ameter	Detected Concentration	Sedinient Benchmark Value (SBV)	на	SBV - HC Referenc
d Comment		20 20	10 100 10		WELL E
All day almost		100		-	200
Challe Street,		200	10.00	1000	
TAXABLE HARRIST			200	**	
-	2 11 11		1000	100	100
annual to		1.01	10-11	140	-
-			40.7	Charles III	
American States		W > 100	100	24	
REN WATER		M K N	U XXP P		- 240
Militaria	- T	DE PACIFIC	240	Exc.	200
Police St.	-		W100	58.1	
	THE PERSON			-	mon.
THE PARTY		340	420	46	
THE AM		1766	1000		1000
100			1000		
20075		10 MO-1	CONTRACTOR OF	STATE OF	- 48
→0000				mes.	
SACRETION					
State Species				340	-
and the same of		DE MORE	par and	7.5	-
The second second		4.64		100	85
-		-	YORK BE		85
-		-		100	-
-		-21		201	-
200		-		1000	199
No.			22.0	-	
DOM:		8231	115,000	0.229	800
041M640501					
4,4'-DDD (UG/KG)		30	1.22	24.59	b)
4,4 DDE (UG/NG)		33	2 07	15,94	b
Acamaphthene (UG	(KG)	310	6.71	46,20	- 6
alpha-Chlordane (L	(G/KG)	2.9	17	1.71	ā
Anthracene (UG/KC		340	46 9	7 25	H
Anilmony (MG/KG)		2.5	1,2	0.21	a
Arodior-1260 (LIG/K	(G)	280	21.5	12.96	10
Arsenic (MG/KG)	COOMS	6.9	7.24	0.95	a þ
Benzo(a)anthracene		1300	74.6	17.38	16-
Berizo(a)pyrene (U		1200	88.8	13:51	18
	halate (BEHP) (UG/KG)	2000	182	10.99	0.
Cadmium (MG/KG)		17.7	0.68	26,03	W.
Chromium (MG/KG		592	52.3	11.32	ab
Chrysans (UG/KG)		1300	108	12 04	Đ.

⁽a) USEPA Screening Concentration for Sediment - EPA SSVs
(b) FDEP Sediment Quality Assessment Guidelines - FDEP SQAGs
Some of the numbers in the table may vary because of rounding.

Table 10-1-6 (2) Wetland 64 Phase IIB/III Sediment Concentrations Compared to Benchmark Levels

Sample Location	Parameter	Detected Dencentration	Sediment Benchmark Value (SSV)	нΩ	SBV- HQ Reference
Copper (MG)	(KG)	146	18:7	7/81	ab
Dieldrin (UG	(KG)	17	0.72	23.61	b
Fluoranthene	(UG/KG)	2800	413	24.78	b
Fluorene (UC	G/KG)	290	21,2	13.68	b
Lead (MG/K)	3)	330	30,2	10.93	a b
Mercury (MG	(KG)	9.26	0.13	200	álu
Naphthalane	(UG/KG)	110	34.6	3,13	Ď.
Nickel (MG/H	(G)	12.3	15.9	0.77	a b
Phenanthrens	(UG/KG)	2000	86.7	23.07	6
Pyrene (UG/	KG)	000e	163	19.61	16
Silver (MG/K	G)	3	0.73	4.11	ь
Zinc (MG/KG	5)	308	126	2.47	0.10

⁽a) USEPA Screening Concentration for Sediment - EPA SSVs (b) FDEP Sediment Quality Assessment Guidelines - FDEP SQACs Some of the numbers in the table may vary because of counding

Sediment Toxicity

Survival results in the *Leptocheirus plumulosus* test were 74% and above, and 88% and above for *Neanthes arenacoedentata* test, as presented in Table 10-1-7. Application of these results to the decision making triad revealed a triad matrix score of "+" for *Leptocheirus* at locations 64-04 and 64-06; "—" for *Leptocheirus* at locations 64-05; and "—" for *Neanthes* at all locations. The laboratory noted a petroleum odor from the samples collected at 64-04 and 64-06.

Table 10-1-7
Amphipod and Polychaete Chronic Bioassay Results
Wetland 64 Sediment

		Leptocheirus	Neanthes			
	Site	% Survival	Triad Matrix Scoring	% Survival	Weight (mg)	Triad Matrix Scoring
1,00	Control (negative)			100	8.5	TO THE STATE OF TH
	Wetland 64 (64-04)	78	+	100	8.0	
8	Wetland 64 (64-05)	96 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		96	7.2	
	Wetland 64 (64-06)	74	+	88	8.5	panents.

Benthic Diversity in Sediment

Sediment samples were also sorted for benthic diversity. Location 64-04 exhibited a lower diversity (1.69), when compared to other estuarine wetlands. A total of 37 organisms were collected and sorted into five dominant species. Representation was fairly even between nematodes, gastropods, polychaetes, and isopods. Between seven and 15 representatives from the "pollution tolerant" polychaete species were found, which would be expected in a highly organic environment that has experienced an impact. Cumacean representatives found at Sites 64-05 and 64-06 indicate a healthy environment, and their appearance in this area may indicate overall improvement. Blue crabs (Callinectes sapidus) and other decapods were sampled in this area, as were isopods and copepods. These crustaceans and zooplankton are a major part of the food web. Benthic diversity results and application to the triad matrix are presented in Table 10-1-8. Application of these results to the decision making triad discussed Section 7.14 revealed a triad matrix score of "—" for the benthic diversity test.

Table 10-1-8
Benthic Diversity Results and Application to the Toxicity Test Results
Wetland 64 Sediment

Site	Shannon	-Weiner Diversity	Pielou's Evenness	Margalef's Richness	Triad Matrix Scoring
Wetland 64 (64-04)		2.42	1.01	10.76	
Wetland 64 (64-05)		3.30	1.22	14.76	***
Wetland 64 (64-06)	6.25	2.64	1.14	9.79	e de la companya de l

Table 10-1-9 presents the interpretation of the triad analysis for the Wetland 64 Phase IIB/III sediment samples. Based on the results of the chemistry and toxicity data, conditions number 2 and 6 exists. This can now be applied to the Simplified Decision Flow Chart for Sediments, as discussed in Figure 7-2.

Table 10-1-9 Triad Analysis Interpretation Wetland 64 Sediment

Location	Sediment Chemistry	Toxicity Test	Benthic Assessment	Interpretation
Wetland 64 (64-04)	¥ 188	*		Toxic chemicals are probably stressing the system.
Wetland 64 (64-05)	-			Strong evidence for the absence of pollution induced degradation .
Wetland 64 (64-06)	्रा संदर्भ (क्रिके	*	atige of Syli es in right	Toxic chemicals are probably stressing the system.

Based on the results of the chemistry and toxicity data, condition number 2 for sediment exists for Wetland 64 location 64-05. Condition number 6 exists for locations 64-04 and 64-06. Sediment samples from 64-04 and 64-06 were noted to have strong petroleum odors, which may account for the toxicity and chemistry for these locations.

Protection of Fish Viability

Protection of fish viability was evaluated using three lines of evidence. The first line of evidence, a direct comparison of Level 3 fish tissue residue concentrations to toxic effects thresholds, does not suggest a potential risk to Level 3 fish. These HQ values are shown on Table 10-1-10.

Table 10-1-10

Contaminant HQ Calculations from Fish Tissue Samples

Wetland 64

	Level 3 Fish Tissue Conc	Screening Ecotoxicity	
Constituent	(mg/kg)	Value (mg/kg)	HQ
Aldrin	0.00038	0.157 ¹	0.0024
Aroclor-1260	0.041	0.98^{2}	0.042
Aroclor-1016	0.334	0.982	0.34
Alpha-ChlordaneC	0.0012	1.663	0.00072
Gamma-chlordane	0.0019	1,66	0.0011
Dieldrin	0.00066	12.84	0.00005
4,4'-DDT	0.0081	0.10	0.08
4,4'-DDE	0.013	0.105	0.13
4,4'-DDD	0.0049	0.10 ³	.05
Endosulfan I	0.0012	0.195 ⁶	0.006
Heptachlor epoxide	0.0004	3.27	0.000125
Lindane	0.00061	0.54 ⁸	0.001

- 1 = 0.157 mg/kg NOED for mortality in the mosquito fish, from Metcalf, R.L (1974).
- 2 = 0.98 mg/kg NOED for mortality in the pinfish, from Duke, T.W., Lowe, J.I., and A.J. Wilson, Jr (1970).
- 3 = 16.6 mg/kg LOED for mortality in the pinfish, from Parrish, P.R., Schimmel, Hanson, D.J., S.C. Patrick, J.M., and J. Forester (1976).
- 4 = 12.8 mg/kg NOED for mortality in the sheephead minnow from Parrish P.R., J.A. Couch, J. Forester, J.M. Patrick.and G.H. Cook (1974).
- 5 = 0.10 mg/kg NOED for spiny dogfish, from Guarino, A.M, and S.T. Arnold (1979).
- 6 = 0.195 mg/kg NOED for mortality in the pinfish, from Schimmel, S.C., Patrick, J.M., and A.J. Wilson, Jr. (1977).
- 7 = 3.2 mg/kg NOED for mortality in the pinfish, Schimmel, S.C., Patrick, J.M., and J. Forester (1976).
- 8 = 0.537 mg/kg NOED for mortality in the fathead minnow from Macek, K.J., K.S. Buxton, S.K. Derr, J.W. Dean and S. Sauter (1976).

For the second line of evidence, risk to Level 4 fish were also evaluated. Risks were not predicted to level 4 fish from exposure to any chlorinated compound using an SFF of 0.043. An HQ greater than 1 (2.26) was calculated only for Aroclor-1016 and mercury using an SFF of 1. These results are shown on Table 10-1-11.

Table 10-1-11 Contaminant HQ Calculations for Level 4 Fish Wetland 64

Constituent	Maximum Level 3 Fish Tissue Conc (mg/kg)	FCM	Maximum Level 4 Tissue Conc. (SFF=1) (mg/kg)	Maximum Level 4 Tissue Conc. (SFF =0.043) (mg/kg)	Screening Ecotoxicity Value (mg/kg)	HQ (Based on SFF=1)	HQ (Based on SFF=0.043)
Aldrin	0.00038	1.006	0.00038	0.000016	0,010¹	0.038	0,0016
Aroclor-1260	0.041	3.733	0.153	0.0066	0.32^{2}	0.48	0.021
Aroclor-1016	0.334	2.162	0.722	0.031	0.322	2.26	0.097
Alpha-Chlordane	0.0012	1.999	0.0024	0.0001	0.015	0.24	0.01
Gamma-chlordane	0.0019	1.999	0.0038	0.00016	0.01 ⁵	0.38	0,016
4,4'-DDT	0.0081	3.254	0.026	0.0011	3.06	0.0087	0.00037
4,4'-DDE	0.013	3.602	0.047	0.002	3.06	0.016	0. 00067
4,4'-DDD	0.0049	3.254	0.016	0.00069	3.06	0.0053	0.00023
Dieldrin	0.00066	1.063	0.0007	0.00003	1.003	0.0007	0:00003*
Endosulfan I	0.0012	1.021	0.0012	0.000052	0.0075⁴	0.16	0.00033
eptachlor epoxide	0.0004	1.185	0.0047	0.0002	0.01	0.47	0.02
Lindane	0.00061	1.021	0.00062	0.000027	1.77	0.00036	0.000016
Mercury	120 N		2.26	0.097	0.1410	16.1	0:69

Notes:

Available: http://www.wes.army.mil/el/t2dbase.html

- 1 = 0.10 mg/kg LOED for morphological effects in the Atlantic Salmon from Addison, R.F., M.E. Zinck and J.R. Leahy (1976)
- 2 = 0.32 mg/kg NOED for physiological effects in the mummichog, from Gallagher, K., Van Veld, P.A., Hale, R.C., and J.J. Stegeman (1995).
- 3 = 1.0 mg/kg NOED for mortality in the spiny dogfish from Guarino, A.M. and S.T. Arnold (1979).
- 4 = 0.075 mg/kg LOED for physiological effects in the rainbow trout, from Jensen, E.G., J.U. Skaare, E. Egaas and A. Goksoyr (1991).
- 5 = 0.01mg/kg NOED for mortality in the spot, from Schimmel, S.C., Patrick, J.M., and J. Forester (1976).
- 6 = 3 mg/kg NOED for morphological effects in the Atlantic Salmon, from Addison, R.F., M.E. Zinck and J.R. Leahy (1976).
- 7 = 1.7 mg/kg NOED for mortality in the Atlantic Salmon from Carlburg, G.E., et al. (1986).
- 8 = 0.01 mg/kg NOED for mortality in the spot, Schimmel, S.C., Patrick, J.M., and J. Forester (1976).
- 9 = The mercury concentration was calculated using the model presented in Appendix G.
- 10 = 0.14 mg/kg NOED for mortality in the rainbow trout, Boudou, A. and F. Ribeyre (1985).

The third line of evidence, comparison of surface water contaminants to water quality criteria, is shown on Table 10-1-12. Comparing the detected concentrations to water quality criteria results in an HQ greater than 1 for copper, iron, lead, and mercury.

Conclusion

Because there are surface water HQ exceedances for metals, there is a potential risk to Level 3 fish species in Wetland 64 from directly toxic effects. In evaluating risk in Level 4 fish using the SFF of 0.043, there are no contaminants with an HQ greater than or equal to 1, which suggests no potential excess risk.

10.1.5 Human Health Risk Assessment

10.1.5.1 Samples Included

Tissue

041J640101, 041J640601

Sediment

041M640101, 041M640201, 041M640301, 041M640401, 041M640501, 041M640601

Surface Water

None collected.

10.1.5.2 Current and Future Land Use

This site is used as a recreational fishing area, and no known plans exist to change the land use in the distant future. Navy and civilian recreational users (boating and fishing) could be exposed, probably to surface water only.

Table 10-1-12 (1) Wetland 64 Phase IIB/III Surface Water Concentrations Compared to Water Quality Criteria

Sample Location	Parameter	uom	Detected Concentration	Water Quality Criteria	HQ	Criteria Reference
CHIMPACHINE	50+001	C1-60	79.00			1-750
OF REAL PROPERTY.		100	0.00	pile.	PARK	100
Name of		THE REAL PROPERTY.	146	Address:	1446	MICAO
Table 1		24	TANK I	DISTANCE TO	(Ala)	
All Reports			THE RESERVE	Mad.	406	100
1000		100000	100	1240	146	200
The second		100	4530	39.6	1.04	24.0
		1000	10.00	NA.	714	
April 1		1000	1991	84	100	1000
10m		200	ALC: NO SEC.	100	*10	1000
100000	aller miller	100	COLUMN TWO IS NOT	THE REAL PROPERTY.	1,100	1000
Det 1	100	TOW TO	100	100	1.00	m
041W640501	Sältwater				-	
Aluminum		L/G/L	298.00	1500.00	5.20	Ö.
Chromium		UG/L	12,50	50.00	0.25	ab
Copper		UG/L	4 20	2.90	1 45	ab
Iron		UG/L	702.00	300.00	2,34	b
Lead		UG/L	8.60	5.60	1.54	b
Mercury		UG/L	0.08	0.03	2.40	ati
Silver		UG/L	0.04	0.73	0.17	ab
Toluene		UG/L	0.36	37 Da	DDI	a
Zinc		UG/L	10.10	86.60	0.12	ab

Notes:
(a) USEPA Water Quality Criteria (1995)
(b) FDEP Class III Water Quality Criteria (1996)
Some of the numbers in the table may vary because of rounding.

10.1.5.3 Sediment COPCs

As shown in Table 10-1-13, the following sediment COPCs were identified:

- Arsenic
- Chromium
- Lead

10.1.5.4 Fish Tissue COPCs

As shown in Table 10-1-14, the following fish tissue COPCs were identified:

- 4,4'-DDD
- 4,4'-DDE
- 4,4'-DDT
- Aldrin
- Heptachlor epoxide
- Aroclor-1016

In addition, mercury was selected as a COPC, because it was detected in 15 of 26 sediment samples and it has the potential to bioaccumulate. Due to the lack of tissue data, concentration of mercury in Level 4 fish was estimated using a model described in Appendix G.

10.1.5.5 Surface Water COPCs

No surface water data were available for this wetland, and thus no COPCs were identified.

TABLE 10:1-13 OCCURRENCE, DISTRIBUTION, AND SELECTION OF CHEMICALS OF POTENTIAL CONCERN NAS PENSACOLA SITE 41

Timeframe: Current and Future Medium: Sediment Exposure Medium: Sediment Exposure Point: Wetland 64 Sediment

Chemical	Meanum Consectation	Mornum Qualifer	Maxemum Cencentration	Maximum Quaifier	Unds	Lacation of Maximum Concordation	Detaction Fraquency	Range of Swigstren Lands	Maşs	Concentration Used for Screening	Backgraund Value	Advisecent Tempessar PRG	Residential Soil RBC	Potential ARAR/TBC Source	coec fing	Radio Conta (Veloc Soli
1,2-Chahlarabenzene	190	J	190	J	UGAKG	041M640401	1 / 24	410 00 - 27000 00	196	190	N/A	28000000	700 N	N/A	NO.	E
1, 4-Dichlorobenzene	70	J	260	٦.	UGKG	841 M540501	2 / 24	410 00 - 27000.00	165	260	N/A.	920005	27 C	N/A	NO.	E
																В
																6
													1800 0	N/A		6
Acenaphthylene	90	1 5	ee.	j j	UGMG	041 MG40501	1 / 24	410.00 - 27000.00	90	90	N/A	19000000	230000 N		NO	8
Acetone	9	1	429	Ĵ	UDMO	041 MG41901	10 / 24	410.00 - 27000.00	152	420	N/A	32000000	780000 N	N/A	NO.	6
Akhn	0.17	j j	4		UGAKIS	041M540501	6 / 24	410.80 - 27000.90	2	4	NKA	1300	39 C	N/A	NC	6
		J	D 94				9 / 24		0.43	0.94					NO.	6
		J	10	2			4 / 24		4	10					NO	8
																8
								410 00 - 27000 00								8
																B
																6
Arsenic (As)	0.16		18.7	ľ	MGAKIS				7							Ä
Banum (Ba)	0.35		1290	j	MOKG				65	1280		22000		N/A		8
Genzo(a)anthracene	27	J	1400	J	UGKS	041MG41101	12 / 24	410.00 - 27000.00	358	1400	NAT.	30000	880 C	N/A	NO	В:
Senzo(a)pyrene	25	J	910	J	UGWO	041M640101	13 / 24	410 00 - 27000.00	258	910	N/A	2000	89 C	N/A	NO	91
Senza(b)fluoranthene	21	1 1	2600	1	UGKG	04136540701	16 / 24	410 00 - 27000.00	507	2600	NYA	06686	880 C	N/A	NO.	8
		ا د		-			9 / 24		207						NO	6
				1 4												В
																В
																B
				1 5												8
Caldium (Ca)	64.4	j j		1 5	MG/KG		26 / 26	NAV	1836	5830	N/A	N/A	N/A	N/A	NO.	
Carbezole	230	J	400	j	UGAKG	041M642491	2 / 24	410.00 - 27000.00	315	400	N/A	1100000	32000 C		NO	8
Carbon disulfide	11	ا د ا	11	J	UGWG	041M541601	1 / 24	410.00 - 27000.00	11	11	N/A	32000000	7900000 N	N/A	NO	В
Chlorobenzene	48	1 1	46	J	UGKG	941M641901	1 / 24	410 00 - 27000 00	4 B	49	N/A	5300000			NO	6
									432		N/A	1600	23 N		YES	A!
																8:
																B-
Capper (Cu)								410 00 - 27000.00		255	NKA					8
																8:
																55
	PO.															9: 9:
				1 1												9
		1 5 1		1 5	UGAKG		0 / 24	419 09 - 27000 00	155	430	N/A	32000000	780000 N	N/A	NO.	8
Endosulfan I	0.76	1 1	0.76	J	UGAKG	041)4542401	1 / 24	410.00 - 27000.00	0.78	0.76	N/A	1900000	47000 N	N/A	NO.	8
Enricsultan II	17	ا د ا	17	J	UGMG	04134542401	1 / 24	410 00 - 27000 00	17	1.7	N/A	1900000	47000 N		NO	B#
				3						9					NO.	8
																68
																Ð
				1 1												D5
				1												B5
				1 1												8:
Indens(1,2,3-od)pyrane	39	j j	600	1 1	UGKG	041M641301			222	800	IVA					61
tron (Fe)	25	ر	38200	j j	MG/KG	04114541201	26 / 26	NAV	11377	36200	N/A	N/A	N/A	N/A	NO	E
Lead (Pb)	0 65	J .	534	J	MGAKG	041M640501	25 / 26	410.00 - 27000.00	134	634	NA	400	400	OSWER	YES	A.
Magnessum (Mg)		, , i	9356		MGKG	041 ME40601	26 / 26	NAV	2579	9390	N/A	N/A	N/A	N/A	NO	Е
		٦ ا		4	MGAKG		26 / 28	NAY	50	203	N/A	15000	1100 N		NO	e
				1 4									23 N	N/A		65
		1		1 -										N/A		E:
		1 ; 1														1 B:
Phenanthrene	42	1 1	2900	1	UGAKG	041M540101	12 / 24	410.00 - 27000.00	540	2800	N/A	9500000	230000 N	NA		B:
Phenol	229	Ĵ.	220	j	UGAKO	04188540401	1 / 24	410.00 - 27000.00	220		N/A	190000000			NO I	8:
Potassium (K)	199	Ĵ	4520	j j	MGMG	041M542001	25 / 26	410 00 - 27000 00	1083	4520	N/A	N/A	N/A	N/A	NO.	ε
Pyrene	22	J	4500	J	USAKO	04114340201	19 / 24	416 00 - 27000.00	968	4500	N/A	P500000	230000 N	N/A	NO	8
Selemunt (Se)	0.34	Ų	3.10		MGKG	041 M841001	11 / 25	410.00 - 27000.00	1 48	3.1	N/A	1500	38 N	N/A	NO I	E
Siver (Ag)	0 37	ال	5 10	J.	MGKG	041 M640301	4 / 26	416.66 - 27000.00	1 85	5.1	N/A	1600	30 N		CN	9
	43.B 0.65	1 4 1	30200 1.2	J.	MGAKG	041MS40901 041MS40401	26 / 25 2 / 26	410 00 - 27000.00 410 00 - 27000.00	9211	30200	N/A	N/A	NA	N/A N/A	NO	E
Sedium (Na)		ا د ا	7.2	L.		U41 ME14U401			0.9	12	N/A	72	0.55 N		NO I	8:
Sadum (Na) Thallom (Tl) Variadium (V)	142	1 . 1	50.7		MGMG	04114640401	24 / 26	410.00 - 27000.00	15.8	69.7	N/A	2200	55 N	N/A	NO	В:
	2 Methylwiscramiene 4.4 DECC 4.4 DECC 4.4 DECC 4.4 DECC 4.4 DECC 4.5 DECC 4	72 Abelinykarchalene 44 CPUSC	2 Abelinykarchalene 4 CPUSC	2 Abelinykspranialne	72 Methylwardhalene	2 Abelinykarchariene	2 Abelinykspranialne	72 Alethylwyscraniene 90 J 50 J 10 J 10 J 14 J 74 A	2 Abelinykarchariene 30	2. Aberhykigermakene 30	2 Methylystermakene 30	2 Methylagermane 30	7 Alterhylander 9 0	2 mm 1 mm	2	2 Authorsements 30

TABLE 10-1-14 OCCURRENCE, DISTRIBUTION, AND SELECTION OF CHEMICALS OF POTENTIAL CONCERN NAS PENSACOLA SITE 41

Timeframe: Future Medium: Fish

Exposure Medium: Fish

Exposure Point: Wetland 64 Fish

		(1)		(1)	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						(2)	(3)	(4)		(5)
CAS Number	Chemical	Minimum Concentration	M inimum Qualifier	Maximum Concentration	Maximum Qualifier	Units	Location of Maximum Concentration	Detection Frequency	Range of Detection Limits	MEAN	Concentration Used for Screening	Background Value	Fish Tissue RBC	Potential ARAR/TBC Source	COPC Flag	Selection
72548	4,4'-DDD	4.8	J	4.9		UG/KG	041J640101	2 / 2	NAV	4.85	15.9	N/A	13.1	N/A	YES	ASL
72559	4,4'-DDE	9.6		13		UG/KG	041J640601	2 / 2	NAV	11.3	46.8	N/A	9.3 (N/A	YES	ASL
50293	4,4'-DDT	2.8	J	8.1		UG/KG	041J640601	2 / 2	NAV	5.45	28.6	N/A	9.3	N/A	YES	ASL
309002	Aldrin	0.38	J	0.38	j	UG/KG	041J640101	1 / 2	3.4 - 3.4	0.38	0.4	N/A	0.2	N/A	YES	ASL
12674112	Arodor-1016	334		334		UG/KG	041J640101	1 / 2	66 - 66	334	780.6	N/A	406	N/A	YES	ASL
11096825	Arodor-1260	26	J	41	J	UG/KG	041J640601	2 1 2	NAV	33.5	153.1	N/A	406 (N/A	NO	BSL
60571	Dieldrin	0.66	J	0.66	J	UG/KG	041J640101	1 / 2	0.8 - 0.8	0,66	0.7	N/A	2.4	N/A	NO	BSL
959988	Endosulfan i	0.19	J	1.2	J	UG/KG	041J640601	2 / 2	NAV	0.695	1.2	N/A	9.0	N/A	NO	BSL
1024573	Heptachlur spoxide	0.40	J	0.40	J	UG/KG	041J640601	1 / 2	1.7 - 1.7	0.4	0.5	N/A	0.35	N/A	YES	ASL
7439921	Lead (Pb)	1.9		2.5		MG/KG	041J640601	2 / 2	NAV	2.2	112.5	N/A	N/A	N/A	YES	COM, NTX
5103719	alpha-Chlordane	1.2	J	1.2	J	UG/KG	041J640601	1 / 2	0.39 - 0.39	1.2	2.4	N/A	9 (N/A	NO	BSL
58899	gamma-BHC (Lindane)	0.44	J	0.61	J	UG/KG	041J640601	2 / 2	NAV	0.525	0.6	N/A	2.4	N/A	NO	BSL
5103742	gamma-Chlordane	1.9	J	1.9	J	UG/KG	041J640601	1 / 2	0.67 - 0.67	1.9	3.8	N/A	9 (N/A	NO	BSL

(1) Minimum/maximum detected concentration

(2) The screenieng value was calculated ussing the following equation:

The screening value=(maximum concentration)*(trophic transfer coefficient)

(3) This chemical was not detected at background sampling locations.

(4) RBCS for site trespasser scenario. Calculated based on toxicidity values presented in USEPA Region III Risk-Based Concentration Tables, 1998.

(5) Retionale Codes

Selection Reason: Above Screening Levels (ASL)

Deletion Reason. Below Screening Levels (8SL)

Background Levels (BKG)

No Toxicity Information (NTX) COPC in Other Media (COM)

Definitions: N/A = Not Applicable

COPC = Chemical of Potential Concern

ARAR/TBC = Applicable or Releveant and Appropriate Requirement/ To Be Considered

J = Estimated Value

C = Carcinogenic

10.1.5.6 Risk Characterization

Sediment

As shown in Table 10-1-15, arsenic is the only contributor to cancer risk estimates for Wetland 64's sediment pathway. The cumulative risk estimated for this wetland is 1.5E-6. The HI shown in Table 10-1-16 was estimated to be 0.25. Arsenic was identified as a COC in surface water based on its contribution to the cumulative risk estimate for this wetland. Table 10-1-17 summarizes cancer risk and noncancer hazard estimates for this wetland. Although exposure would likely be acute or subchronic, these hazard estimates were developed for completeness, and RGOs were developed.

Lead

A conservative exposure scenario was developed to assess the significance of lead concentrations reported in sediment and fish tissue samples collected at Wetland 64. This scenario involves a child (age 6 to 7) who accompanies an older sibling to the wetland one day a week for a year. It is assumed that they visit Wetland 64 to catch fish. These exposures were considered additional to those typically encountered at the child's home. This additional exposure was presented as an "alternate" source within the constructs of the Lead Model. The standard default assumptions in the Lead Model were retained to simulate background exposure to conservatively estimate daily intake from sources unrelated to Wetland 64.

The assumption was made that this child would incidentally ingest 100 milligrams of sediment and 54 grams of fish tissue once a week throughout the year, represented in the Lead Model as an alternate source. The bioavailability of lead ingested from the alternate source (Wetland 64 sediment and fish tissue) was equal to that of house dust lead ingested from the standard residential default source. Assuming incidental ingestion of 100 milligrams of sediment and 54 grams of fish tissue once per week for one year, with maximum lead concentrations of 643 mg/kg in sediment and 2.5 mg/kg in bait fish tissue, the annual alternate source exposure was

TABLE 10-1-15 CALCULATION OF CANCER RISKS REASONABLE MAXIMUM EXPOSURE NAS PENSACOLA SITE 41

Timeframe: Current and Future

Medium: Sediment

Exposure Medium: Sediment Exposure Point: Wetland 64

Exposure Route	Chemical of Potential Concern	Medium EPC Value	Medium EPC Units	EPC Selected for Hazard Calculation	Intake (Cancer)	Intake (Cancer) Units	Cancer Slope Factor	Slope Factor Units	Cancer Risk
Ingestion	Arsenic	18.70	MG/KG	М	8.5E-07	mg/kg-day	1.5	(mg/kg-day) ⁻¹	1E-06
Dermal	Arsenic	18.70	MG/KG	М	3.5E-08	mg/kg-day	7.5	(mg/kg-day) ⁻¹	3E-07

Total Risk All Exposure Routes/Pathways 2E-06

EPC = Exposure Point Concentration MG/KG = Milligram per Kilogram

M = Medium-specific EPC selected for risk calculation.

TABLE 10-1-16 RME CALCULATION OF NON-CANCER HAZARDS REASONABLE MAXIMUM EXPOSURE NAS PENSACOLA SITE 41

Timeframe: Current and Future

Medium: Sediment

Exposure Medium: Sediment
Exposure Point: Wetland 64

Receptor Population: Trespasser

Receptor Age: Adolescent

				EPC Selected		Intake			
Exposure	Chemical of Potential	Medium	Medium	for Hazard	Intake	(Non-Cancer)	Reference	Reference	Hazard
Route	Concern	EPC Value	EPC Units	Calculation	(Non-Cancer)	Units	Dose	Dose Units	Quotient
Ingestion	Arsenic	18.70	MG/KG	М	5.92E-06	mg/kg-day	3.00E-04	mg/kg-day	2E-02
	Chromium	1800	MG/KG	M	5.70E-04	mg/kg-day	3.00E-03	mg/kg-day	2E-01
Dermal	Arsenic	18.70	MG/KG	M	2.43E-07	mg/kg-day	6.00E-05	mg/kg-day	4E-03
	Chromium	1800	MG/KG	M	2.30E-05	mg/kg-day	6.00E-04	mg/kg-day	4E-02
				Tot	al Hazard Index	k Across All Exp	oosure Route	es/Pathways	3E-01

EPC = Exposure Point Concentration

MG/KG = Milligram per Kilogram

M = Medium-specific EPC selected for risk calculation.

TABLE 10-1-17 SUMMARY OF RISK SEDIMENT NAS PENSACOLA SITE 41

Timeframe: Current and Future

Receptor Population: Site Trespasser

Receptor Age: Adolescent

Medium	Exposure Medium	Exposure Point	Chemical	Ca	Carcinogenic Risk		Chemical	Chemical Non-carcinogenic Hazard Quotient			
	Medium	Point		Ingestion	Dermal	Total		Primary Target Organ	Ingestion	Dermal	Total
Sediment	Sediment	Wetland 64	Arsenic	1.28E-06	2.63E-07	2E-06	Arsenic	skin	0.02	0.004	2E-02
							Chromium	None reported	0.19	0.04	2E-01
			(Total)	1.28E-06	2.63E-07	2E-06	(Total)		0.21	0.042	3E-01
		Total F	Risk Across All Expo	sure Rout	es/Pathways	2E-06	Total Haza	ard Index Across All Expos	sure Routes	/Pathways	3E-01

estimated to be 0.009 mg lead/day. Table 10-1-18 presents the lead model output for a child 6

to 7 years old under these exposure conditions.

Figure 10-1-4 shows the probability percentage of blood lead levels for the hypothetical child

receptor. Based on this model output, the geometric mean blood level is estimated to be

3.1 μ g/dL, and the probability of blood lead levels in excess of 10 μ g/dL is 0.65%. USEPA

generally considers media concentrations that result in probability percentage estimates of 5%

or less sufficiently protective of potential child receptors. As a result, sediment and fish tissue

lead concentrations at Wetland 64 would not require specific action under the hypothetical

exposure scenario.

Fish Tissue Ingestion

Recreational Fishermen

For carcinogenic risks (Table 10-1-19), cumulative risk using the modified 95th percentile fish

ingestion rates (4.3 g/day) is below the 1E-06 threshold level. For noncarcinogenic risks

(Table 10-1-20), the calculated hazard index is below the threshold level of 1.

Hypothetical Subsistence Fishermen

For carcinogenic risks (Table 10-1-21), the cumulative risk for hypothetical subsistence fishermen

based on the modified 95% percentile fish ingestion rate (19.5 g/day) is below the 1E-06

threshold level. For the noncarcinogenic risk (Table 10-1-22), the hazard index for hypothetical

subsistence fishermen is below 1.

A summary of the risk estimates for both of the fishermen populations evaluated is presented in

Table 10-1-23.

10-1-46

Figure 10-1-4 Probability Percentage of Blood Lead Levels, Hypothetical Child Receptor

This page intentionally left blank.

Table 10-1-18 Lead Model (Version 0.99d) Inputs and Results NAS Pensacola, Wetland 64 Pensacola, Florida

AIR CONCENTRATION: 0.100 ug Pb/m3 DEFAULT

Indoor AIR Pb Conc: 30.0 percent of outdoor.

Other AIR Parameters:

Age	Time Outdoors (hr)	Vent.	Rate (m3/day)	Lung Abs. (%)
0-1	1.0	2.0	32.0	-
1-2	2.0	3.0	32.0	
2-3	3.0	5.0	32.0	
3-4	4.0	5.0	32.0	
4-5	4.0	5.0	32.0	
5-6	4.0	7.0	32.0	
6-7	4.0	7.0	32.0	

DIET: DEFAULT

DRINKING WATER Conc: 4.00 ug Pb/L DEFAULT

WATER Consumption: DEFAULT

SOIL & DUST:

Soil: constant conc.
Dust: constant conc.

Age	Soil (ug Pb/g)	House Dust (ug Pb/g)
0-1	200.0	200.0
1-2	200.0	200.0
2-3	200.0	200.0
3-4	200.0	200.0
4-5	200.0	200.0
5-6	200.0	200.0
6-7	200.0	200.0

Additional Dust Sources: None DEFAULT

Alternative Source Intake: Wetland 64 sediment and fish tissue

6-7: 9.19 ug Pb/day

MATERNAL CONTRIBUTION: Infant Model Maternal Blood Conc: 2.50 ug Pb/dL

CALCULATED BLOOD Pb and Pb UPTAKES:

YEAR	Blood Level (ug/dL)	Total Uptake (ug/day)	Soil+Dust Uptake (ug/day)	Diet Uptake (ug/day)	Water Uptake (ug/day)	Alt. Source Uptake (ug/day)	Air Uptake (ug/day)
0.5-1:	4.1	7.60	4.68	2.54	0.37	0.00	0.02
1-2:	4.5	10.93	7.36	2.63	0.91	0.00	0.03
2-3:	4.2	11.44	7.44	2.98	0.96	0.00	0.06
3-4:	4.0	11.48	7.53	2.90	0.99	0.00	0.07
4-5:	3.4	9.65	5.69	2.85	1.04	0.00	0.07
5-6:	3.0	9.39	5.16	3.03	1.11	0.00	0.09
6-7:	3.1	11.98	4.84	3.32	1.12	2.61	0.09

TABLE 10-1-19 CARCINOGENIC RISK TO RECREATIONAL FISHERMEN NAS PENSACOLA SITE 41

Timeframe: Current and Future

Medium: Fish tissue

Exposure Route : Ingestion
Exposure Point: Wetland 64

Receptor Population: Recreational Fishermen

Chemical of Potential Concern	Medium EPC Value ¹	Medium EPC Units	Intake (Cancer)	Intake (Cancer) Units	Oral Slope Factor	Slope Factor Units	Cancer Risk
4,4'-DDD	4.9E-03	mg/kg	1.7E-08	mg/kg-day	2.4E-01	(mg/kg-day) ⁻¹	4E-09
4,4'-DDE	1.3E-02	mg/kg	5.0E-08	mg/kg-day	3.4E-01	(mg/kg-day) ⁻¹	2E-08
4,4'-DDT	8.1E-03	mg/kg	3.1E-08	mg/kg-day	3.4E-01	(mg/kg-day) ⁻¹	1E-08
Aldrin	3.8E-04	mg/kg	4.1E-10	mg/kg-day	1.7E+01	(mg/kg-day) ⁻¹	7E-09
Aroclor-1016	3.3E-01	mg/kg	8.3E-07	mg/kg-day	7.0E-02	(mg/kg-day) ⁻¹	6E-08
Heptachlor epoxide	4.0E-04	mg/kg	5.7E-10	mg/kg-day	9.1E+00	(mg/kg-day) ⁻¹	1E-08
Mercury ²	2.3E+00	mg/kg	NA	mg/kg-day	NA	(mg/kg-day) ⁻¹	NA
					Tota	I Pathway Risk	1E-07

¹ Exceept for mercury, the EPC was derived by multiplying the maximum detected concentration (in bait fish) by the TTC. For mercury, the EPC was calculate dusing the mercury model presented in appendix G.

² No risk can be calculated because slope factor does not exist and chemical is not considered carcinogenic.

TABLE 10-1-20 NONCARCINOGENIC RISK TO RECREATIONAL FISHERMEN NAS PENSACOLA SITE 41

Timeframe: Current and Future

Medium: Fish tissue

Exposure Route : Ingestion Exposure Point: Wetland 64

Receptor Population: Recreational Fishermen

Chemical of Potential Concern	Medium EPC Value ¹	Medium EPC Units	intake	Intake Units	Oral RfD	RfD Units	Hazard Quotient
4,4'-DDD ²	4.9E-03	mg/kg	4.0E-08	mg/kg-day	NA	mg/kg-day	NA
4,4'-DDE ²	1.3E-02	mg/kg	1.2E-07	mg/kg-day	NA	mg/kg-day	NA
4,4'-DDT	8.1E-03	mg/kg	7.1E-08	mg/kg-day	5.0E-04	mg/kg-day	1E-04
Aldrin	3.8E-04	mg/kg	9.5E-10	mg/kg-day	3.0E-05	mg/kg-day	3E-05
Aroclor-1016	3.3E-01	mg/kg	1.9E-06	mg/kg-day	7.0E-05	mg/kg-day	3E-02
Heptachlor epoxide	4.0E-04	mg/kg	1.3E-09	mg/kg-day	1.3E-05	mg/kg-day	1E-04
Mercury	2.3E+00	mg/kg	5.6E-06	mg/kg-day	1.00E-04	mg/kg-day	6E-02
		······································			T	otal Pathway HI	8E-02

¹ For fish tissue intake calculations, the maximum detected concentration was used as the EPC.

² Noncarcinogenic effects can not be determined due to the lack of an oral RfD.

TABLE 10-1-21 CARCINOGENIC RISK TO HYPOTHETICAL SUBSISTENCE FISHERMEN NAS PENSACOLA SITE 41

Timeframe: Current and Future

Medium: Fish tissue
Exposure Route: Ingestion
Exposure Point: Wetland 64

Receptor Population: Hypothetical Subsistence Fishermen

Chemical of Potential Concern	Medium EPC Value ¹	Medium EPC Units	Intake	Intake Units	Oral Slope Factor	Slope Factor Units	Cancer Risk
4,4'-DDD	4.9E-03	mg/kg	7.8E-08	mg/kg-day	2.4E-01	(mg/kg-day) ⁻¹	2E-08
4,4'-DDE	1.3E-02	mg/kg	2.3E-07	mg/kg-day	3.4E-01	(mg/kg-day) ⁻¹	8E-08
4,4'-DDT	8.1E-03	mg/kg	1.4E-07	mg/kg-day	3.4E-01	(mg/kg-day) ⁻¹	5E-08
Aldrin	3.8E-04	mg/kg	1.9E-09	mg/kg-day	1.7E+01	(mg/kg-day) ⁻¹	3E-08
Aroclor-1016	3.3E-01	mg/kg	3.8E-06	mg/kg-day	7.0E-02	(mg/kg-day) ⁻¹	3E-07
Heptachlor epoxide	4.0E-04	mg/kg	9.7E-09	mg/kg-day	9.1E+00	(mg/kg-day) ⁻¹	5E-08
Mercury ²	2.3E+00	mg/kg	NA	mg/kg-day	NA	(mg/kg-day) ⁻¹	NA
		······································			Tota	l Pathway Risk	5E-07

¹ For fish tissue intake calculations, the maximum detected concentration was used as the EPC.

² No risk can be calculated because slope factor does not exist and chemical is not considered carcinogenic.

TABLÉ 10-1-22 NONCARCINOGENIC RISK TO HYPOTHETICAL SUBSISTENCE FISHERMEN NAS PENSACOLA SITE 41

Timeframe: Current and Future

Medium: Fish tissue

Exposure Route : Ingestion
Exposure Point: Wetland 64

Receptor Population: Hypothetical Subsistence Fishermen

Chemical of Potential Concern	Medium EPC Value ¹	Medium EPC Units	Intake	Intake Units	Oral RfD	RfD Units	Hazard Quotient
4,4'-DDD ²	4.9E-03	mg/kg	1.8E-07	mg/kg-day	NA	mg/kg-day	NA
4,4'-DDE ²	1.3E-02	mg/kg	5.4E-07	mg/kg-day	NA	mg/kg-day	NA
4,4'-DDT	8.1E-03	mg/kg	3.3E-07	mg/kg-day	5.0E-04	mg/kg-day	7E-04
Aldrin	3.8E-04	mg/kg	4.4E-09	mg/kg-day	3.0E-05	mg/kg-day	1E-04
Aroclor-1016	3.3E-01	mg/kg	9.0E-06	mg/kg-day	7.0E-05	mg/kg-day	1E-01
Heptachlor epoxide	4.0E-04	mg/kg	1.4E-08	mg/kg-day	1.3E-05	mg/kg-day	2E-06
Mercury	2.3E+00	mg/kg	2.6E-05	mg/kg-day	1.00E-04	mg/kg-day	3E-01
			- Herekali		T	otal Pathway Hi	4E-01

¹ For fish tissue intake calculations, the maximum detected concentration was used as the EPC.

² Noncarcinogenic effects can not be determined due to the lack of an oral RfD.

TABLE 10-1-23 SUMMARY OF RISK FISH INGESTION NAS PENSACOLA SITE 41

Timeframe: Current and Future

Medium: Fish tissue

Exposure Route : Ingestion Exposure Point: Wetland 64

-			Recreation	nal Fishermen	Subsistence Fishermen		
Chemical of Potential Concern	Medium EPC Value ¹	Medium EPC Units	Hazard Quotient	Carcinogenic Risk	Hazard Quotient	Carcinogenic Risk	
4,4'-DDD	4.9E-03	mg/kg	NA	4E-09	NA	2E-08	
4,4'-DDE	1.3E-02	mg/kg	NA	2E-08	NA	8E-08	
4,4'-DDT	8.1E-03	mg/kg	1.43E-04	1E-08	6.58E-04	5E-08	
Aldrin	3.8E-04	mg/kg	3.17E-05	7E-09	1.46E-04	3E-08	
Aroclor-1016	3.3E-01	mg/kg	2.78E-02	6E-08	1.28E-01	3E-07	
Heptachlor epoxide	4.0E-04	mg/kg	1.03E-04	1E-08	2.33E-06	5E-08	
Mercury	2.3E+00	mg/kg	5.62E-02	NA	2.60E-01	NA	
Cu	Cumulative HI / Cancer Risk			1.08E-07	3.90E-01	5E-07	

N/A - Not applicable (value cannot be determined due to lack of toxicological reference information)

¹ For fish tissue intake calculations, the maximum detected concentration was used as the EPC.

10.1.5.7 Remedial Goal Options

RGOs were developed in accordance with USEPA Region IV Supplemental Guidance to RAGS Bulletin 5, Remedial Options (USEPA, 1995). Arsenic was identified as a COC at this wetland based on its contribution to cancer risk estimates for the sediment pathway. Because arsenic was identified as a COC based on cancer risk and not hazard index estimates, only risk-based RGOs were developed. As shown in Table 10-1-15, the sediment exposure point concentration of 18.7 mg/kg-day resulted in a risk estimate of 1.5E-6 for arsenic. RGOs for arsenic in sediment for the adolescent trespasser are 12.24 mg/kg, 122.4 mg/kg, and 1,224 mg/kg for target risk levels of 1E-6, 1E-5, and 1E-4, respectively.

10.1.5.7 Remedial Goal Options

RGOs were developed in accordance with USEPA Region IV Supplemental Guidance to RAGS Bulletin 5, Remedial Options (USEPA, 1996a). Arsenic was identified as a COC at this wetland based on its contribution to cancer risk estimates for the sediment pathway. Because arsenic was identified as a COC based on cancer risk and not hazard index estimates, only risk-based RGOs were developed. As shown in Table 10-1-16, the sediment exposure point concentration of 18.7 mg/kg-day resulted in a risk estimate of 1.5E-6 for arsenic. RGOs for arsenic in sediment for the adolescent trespasser are 12.24 mg/kg, 122.4 mg/kg, and 1,224 mg/kg for target risk levels of 1E-6, 1E-5, and 1E-4, respectively.

10.1.6 Conclusions and Recommendations

The Wetland 64 complex includes the NAS Pensacola Yacht Basin and those wetland areas immediately upstream (Wetlands 7, 8, 64, and the downstream end of Wetland 6). The ecological risk assessment for Wetland 64 measured assessment endpoints for piscivorous bird health and reproduction, benthic macroinvertebrate community toxicity and diversity, and for protection of fish viability. Using a SFF of 1, the HQ for DDT exposure for the heron was above 1 at only

one Phase IIB/III sample location at Wetland 64. Assessments for benthic diversity and toxicity showed acute effects at two sample locations for the marine amphipod *Leptocheirus plumulosus*. No acute or toxic effects were noted for the marine polychaete *Neanthes arenacoedentata* at any of the sample locations. Species diversity was noted to be fairly even between nematodes, gastropods, polychaetes, and isopods, and included between seven and 15 representatives from the pollution tolerant polychaet species. Based on the results of the chemistry and toxicity data, condition number 2 for sediment exists for Wetland 64 location 64-05. Condition number 6 exists for locations 64-04 and 64-06. Sediment samples from 64-04 and 64-06 were noted to have strong petroleum odors, which may account for the survival effects noted for these locations. Because there are surface water HQ exceedances for metals, there is a potential risk to Level 3 fish species in Wetland 64 from directly toxic effects. In evaluating risk in Level 4 fish using the SFF of 0.043, there are no contaminants with an HQ greater than or equal to 1, which suggests no potential risk.

The HHRA identified several pesticide and PCB constituents as fish tissue COPCs. Three metals were identified as sediment COPCs. No surface water COPCs were noted. The cumulative risk estimated for arsenic in sediment at this wetland is 1.5E-6. A sediment EPC for arsenic of 18.7 mg/kg-day resulted in a risk estimate of 1.5E-6. RGOs for arsenic in sediment for the adolescent trespasser are 12.24 mg/kg, 122.4 mg/kg, and 1,224 mg/kg for target risk levels of 1E-6, 1E-5, and 1E-4, respectively. Using USEPA guidelines, sediment and fish tissue lead concentrations at Wetland 64 would not require specific action under the hypothetical exposure scenario. Fish tissue COPCs (adjusted for trophic transfer coefficients) were compared to fish ingestion RBCs, and equated to a risk of 1E-06. Linear ratio analyses reveal cancer target risks ranging from 1.3E-6 for alpha-chlordane to 1.5E-3 for Aroclor 1016. Noncancer hazards for fish tissue COPCs ranged from 0.18 for alpha-chlordane to 14.6 for Aroclor 1016.

The NAS Pensacola Yacht Basin is used to launch and dock sailboats. The area of the Yacht Basin contained within the investigative area for Wetland 64 is not conducive to other water sports or recreational activities. A small beach on the northwest side of the clubhouse (on Bayou Grande, outside of the area of investigation) is the designated swimming area for this facility, and the area for launching and beaching smaller boats. On the Yacht Basin side, a concrete seawall meets the water's edge, limiting swimming and wading. The Site 40 RI (EnSafe, 1999) identified that fishing and crabbing activities are allowed in Bayou Grande, an area that includes the NAS Pensacola yacht Basin. However, the Site 40 RI revealed that Bayou Grande does not support sufficient game for subsistence fishing. Recreational fishing generally occurs during the warmer months of the year, and commercial fishing is restricted because of the Florida net-ban. Therefore, the overall impact from consuming fish originating in Bayou Grande, and the Yacht Basin is considered to be insignificant.

Based on the findings of petroleum contaminants in the Wetland 64 sediments at locations of toxicity, this wetland is recommended for transfer to the State of Florida petroleum program.

This page intentionally left blank.

10.2 Wetland **5A/5B**

10.2.1 Site Description

Wetland 5 is located in a wooded area within the developed portion of NAS Pensacola. It is flanked to the west by the A.C. Read Golf Course, to the north by the former NADEP Dynamic Components Division and other buildings formerly used by NADEP, and to the south by Taylor Road. Parsons and Pruitt (USEPA, 1991) divided this wetland into two parts, 5A and 5B. They described Wetland 5A as a palustrine forested system, and Wetland 5B as a palustrine emergent system.

Wetland 5A (roughly 1.3 acres in size) is connected to Wetland 5B (1.2 acres) by a culvert which runs under Murray Road. Wetland 5A is bordered by Murray Road to the east, the golf course to the west, and buildings to the north and south. A 200-300 foot vegetative buffer surrounding this area likely offers habitat to various species. The open water portion of the wetland ranges from 0 to 3 feet in depth, and varies from 80-150 feet in width. Sediments collected at this site detected up to 40% TOC.

Little history is available concerning the origins of Wetland 5A, which is several decades old and likely began as a man made feature (a borrow pit). It served as a drainage pathway as early as the 1940s, and reportedly contained a saw mill during that time. In recent years, beaver dams constructed at the downstream end raised the water level in the basin which contains this wetland, facilitating sedimentation and the emergence of a marsh there. Since 1994, the water level in Wetland 5A has somewhat receded, after a faulty valve in a nearby potable water storage tank was repaired. Previously, several thousand gallons of potable water per day accidentally discharged from this tank into Wetland 5A via an overflow pipeline. Wetland 5A continues to serve as a storm water conduit, and drains via Wetland 5B into Wetland 6, which as mentioned earlier, empties into the NAS Pensacola Yacht Basin (Wetland 64). Typical vegetation found in Wetland 5A consists of hardwoods, such as oaks and sweet bay magnolias.

Wetland 5B resembles and functions like a drainage ditch. It receives storm water from

Wetland 5A and drains eastward into Wetland 6. Vegetation in Wetland 5B includes cattails

(Typha latifolia), and other emergent plants.

IR sites potentially affecting Wetland 5 include Sites 25, 27 and 30. Site 25 (Radium Spill Site)

was the location of a radium spill which occurred in 1978. Site 27 (Radium Dial Shop

Sanitary Sewer) was associated with the Radium Dial Shop located in Building 709 from 1940 to

1976. Site 30 (Buildings 648, 649 and 755) was active from the 1940s through the 1970s as the

NADEP Dynamic Components Division (NEESA, 1983).

In 1994, an interim removal action (IRA) removed a contaminated former oil-water separator

which was deeply buried in the sediments of Wetland 5A below Site 30. No history is available

on this structure, which was discovered by USEPA investigators in 1992, and labeled a "waste

receiving structure." During the IRA, the former oil-water separator and surrounding sediments

were removed and disposed of, and confirmatory samples were collected from the removal area.

10.2.2 Nature and Extent

The methods for evaluating nature and extent are presented in Section 6. Figure 10-2-1 denotes

the Phase IIA Wetland 5A &5B sampling locations.

Wetland 5A Sediment

Twenty-two metals were detected in Wetland 5A sediment samples. Eight metals, including

cadmium (11.2 ppm, 7.6 ppm, 7.7 ppm, 4.2 ppm, and 10.1 ppm at locations 5A01, 5A02, 5A03,

5A04, and 5A05), chromium (81.1 ppm, 69.3 ppm, and 115 ppm at locations 5A01, 5A03, and

5A05), copper (156 ppm, 28.5 ppm, 68.9 ppm, and 317 ppm at locations 5A01, 5A03, 5A04, and

5A05), lead (427 ppm, 64.6, ppm, 111 ppm, 169 ppm, 383 ppm, and 48.6 ppm at locations 5A01,

5A02, 5A03, 5A04, 5A05, and 5A06), mercury (1.0 ppm, 0.37 ppm, 0.54 ppm, 0.84 ppm, and

10-2-2

0.25 ppm at locations 5A01, 5A03, 5A04, 5A05, and 5A06), nickel (23.5 ppm, 16 ppm, and 25.2 ppm at locations 5A01, 5A03, and 5A05), silver (1.1 ppm at location 5A02), and zinc (2,290 ppm and 591 ppm at locations 5A01 and 5A05), exceeded sediment benchmark levels at Wetland 5A. Eleven pesticides were detected in Wetland 5A sediment samples, including 4,4'-DDT and its metabolites, dieldrin, endosulfan II, endrin/endrin aldehyde/endrin ketone, alpha-BHC, and alpha/gamma-chlordane. Dieldrin (2.5 ppb and 0.85 ppb at locations 5A01 and 5A06) was detected above the sediment benchmark level (0.72 ppb) at Wetland 5A.

One 4,4'-DDE concentration (120 ppb) at location 5A05 exceeded its basewide level. The PCBs Aroclor-1254/1260 were detected in Wetland 5A sediment samples, with a single Aroclor-1260 concentration (100 ppb at location 5A05) exceeding applicable screening levels (21.6 ppb). Nineteen SVOCs were detected in Wetland 5/A sediment samples, many of which were high and low molecular weight PAHs. Four different phthalate esters, 4-methylphenol, and bis(2-chloroxy)methane were also detected. Seven PAHs exceeded sediment benchmark levels, including acenaphthylene (120 ppb at location 5A05). All other PAH exceedances occurred at sample locations 5A01, 5A05, and 5A07: benzo(a)anthracene (120 ppb, 320 ppb, and 240ppb), benzo(a)pyrene (140 ppb, 240 ppb, and 240 ppb), chrysene (180 ppb, 510 ppb, and 390 ppb), fluoranthene (280 ppb, 1,100 ppb, and 750 ppb), phenanthrene (110 ppb, 240 ppb, and 230), and pyrene (220 ppb, 730 ppb, and 620 ppb). The phthalate ester bis(2-ethylhexyl)phthalate (1,500 ppb, 690 ppb, and 1,300 ppb at locations 5A05, 5A06, and 5A07) was also detected above the appropriate screening level. Three VOCs were detected at Wetland 5A, including acetone, methylene chloride, and toluene. Acetone and methylene chloride are common laboratory contaminants. Table 10-2-1 shows the Wetland 5A Phase IIA sediment sample results (frequency of detection, range of detected concentrations, and average detected concentration). Table 10-2-2 compares detected concentrations at each sample location to sediment benchmark levels, and lists calculated HQs for each parameter. Only the parameters with benchmark levels are presented in Table 10-2-2. The HQs will be discussed further in the ecological risk section.

Table 10-2-1
Phase IIA Detected Concentrations in Wetland 5A Sediments

Parameter	Frequency of Detection	Range of Detected Concentrations	Average Detected Concentration
Inorganics (mg/kg)			
Aluminum (Al)		699 - 18700	8119.86
Antimony (Sb)	5/7	0.28 - 10	3.68
Arsenic (As)	6/7 · 4 · 1	0.78 - 3.2	2.13
Barium (Ba)	7/7	4.1 - 150	40.1
Beryllium (Be)	3/7	· 0.27 - 0.83	0,52
Cadmium (Cd)	7 /7	0.27 - 11.2	6.0
Calcium (Ca)		351 - 71000	11046.28
Chromium (Cr)	7 /7	2.8 - 115	51.63
Cobalt (Co)	6/7 /	0.3 - 13.4	4.92
Copper (Cu)	7/7	13.1 - 317	87.54
Iron (Fe)	7/7	616 - 9830	4682.23
Lead (Pb)	7/7	11.5 - 427	173.53
Magnesium (Mg)	7/7	27.1 - 5960	1111.83
Manganese (Mn)	7/7	11.8 - 205	58.69
Mercury (Hg)	5/7	0.25 - 1	0.60
Nickel (Ni)	6/7	1.3 - 25.2	12.3
Potassium (K)	7/7	30.3 - 413	185.27
Selenium (Se)	5/7	1.5 - 2.6	1.84
Silver (Ag)	2/7	0.42 - 1.1	0.76
Thallium (Tl)	1/7	1.4	1.4
Vanadium (V)	6 <i>1</i> 7	2.2 - 24	13.6
Zinc (Zn)	<i>7/</i> 7	39.3 - 2290	459.27
Pesticides and PCBs (µg/kg)			
4,4'-DDD	5/7	0.23 - 2.3	1.10
4,4'-DDE	5/7	0.87 - 120	25.038
4,4'-DDT	3/7	0.78 - 5	2.36
Aroclor-1254	1/7	14	14
Aroclor-1260	3/7	2.6 - 100	39.53
Dieldrin	2/7	0.85 - 2.5	1.68
Endosulfan II	1/7	1.7 - 1.7	1.7
Endrin	1/7	1.1	1.1
Endrin aldehyde	1/7	0.72	0.72
Endrin ketone	1/7	0.26	0.26
alpha-BHC	2/7	0.34 - 0.64	0.49
alpha-Chlordane	2/7	0.33 - 1.6	0.97
gamma-Chlordane	2/7	0.23 - 1.3	0.77

Table 10-2-1
Phase IIA Detected Concentrations in Wetland 5A Sediments

Parameter	Frequency of Detection	Range of Detected Concentrations	Average Detected Concentration
SVOCs (µg/kg)			
4-Methylphenol (p-Cresol)	3/7	100 - 200	150
Acenaphthylene	1/7	120	120
Anthracene	1/7	10 4 4 7 11 1	44
Benzo(a)anthracene	3/7	120 - 320	226.67
Benzo(a)pyrene	4/7	37 - 240	164.25
Benzo(b)fluoranthene	3/7	57 - 360	212.33
Benzo(g,h,i)perylene	3/7	120 - 280	196.67
Benzo(k)fluoranthene	3/7	73 - 170	110.33
Butylbenzylphthalate	1/7	200	200
Carbazole	2/7	48 - 96	72
Chrysene	3/7	180 - 510	360
Di-n-butylphthalate	1/7	100	100
Di-n-octyl phthalate	1/7	22	22
Fluoranthene	5/7	71 - 1100	457.80
Indeno(1,2,3-cd)pyrene	3/7	110 - 310	203.33
Phenanthrene	3/7	110 - 240	193.33
Pyrene	5/7	71 - 730	344.8
bis(2-Chloroethoxy)methane	1/7	110	110
bis(2-Ethylhexyl)phthalate (BEHP)	3/7	690 - 1500	1163,33
VOCs (μg/kg)			
Acetone	5/7	66 - 5200	2538
Methylene chloride	1/7	250	250
Toluene	3/7	5 - 280	131.67

All results are in micrograms per kilogram (μ g/kg) or parts per billion (ppb), except for metals which are in milligrams per kilogram (mg/kg) or parts per million (ppm).

Wetland 5B Sediment

Twenty metals were detected at Wetland 5B sediment samples. The same eight metals that exceeded appropriate sediment benchmark levels in Wetland 5A — cadmium (220 ppm), chromium (416 ppm), copper (268 ppm), lead (481 ppm), mercury (0.68 ppm), nickel (93.9 ppm), silver (5.2 ppm), and zinc (1,160 ppm) — exceeded benchmark levels at location 5B02 in Wetland 5B. Six pesticides were detected in Wetland 5B sediment samples: 4,4-DDD/DDE, dieldrin, alpha-BHC, and alpha/gamma-chlordane. Dieldrin (7.1 ppb) was detected above its

Table 10-2-2 (1) Wetland 5A Phase IIA Sediment Concentrations Compared to Benchmark Levels

On make	D-444	Sediment Benchmark Value		SBV - HQ
Sample Location Parameter	Detected Concentration	(SBV)	HQ	Reference
41 M 5A0101				
4,4'-DDD (UG/KG)	0.64	1.22	0.52	b
4,4'-DDE (UG/KG)	0.87	2.07	0.42	b
4,4'-DDT (UG/KG)	0.78	1.19	0.66	b
alpha-Chlordane (UG/KG)	0.33	1.7	0.19	а
Antimony (MG/KG)	10	12	0.83	a
Aroclor-1260 (UG/KG)	16	21.6	0.74	b
Arsenic (MG/KG)	2.5	7.24	0.35	a b
	120	74.8	1.60	b
Benzo(a)anthracene (UG/KG)	140	74.8 88.8	1.58	b
Benzo(a)pyrene (UG/KG)	11.2		16.47	b
Cadmium (MG/KG)	81.1	0.68	1.55	
Chromium (MG/KG)		52.3		a b
Chrysene (UG/KG)	180	108	1.67	b - h
Copper (MG/KG)	156	18.7	8.34	a b
Dieldrin (UG/KG)	2.5	0.72	3.47	b
Fluoranthene (UG/KG)	280	113	2.48	b
Lead (MG/KG)	42 7	30.2	14.14	a b
Mercury (MG/KG)	1	0.13	7.69	a b
Nickel (MG/KG)	23.5	15.9	1.48	a b
Phenanthrene (UG/KG)	110	86.7	1.27	b
Pyrene (UG/KG)	220	153	1.44	b
Zinc (MG/KG)	2290	124	18.47	a b
41M5A0201				
4,4'-DDD (UG/KG)	1.5	1.22	1.23	b
4,4'-DDE (UG/KG)	1.4	2.07	0.68	b
Antimony (MG/KG)	2.5	12	0.21	а
Arsenic (MG/KG)	2.5	7.24	0.35	ab
Benzo(a)pyrene (UG/KG)	37	88.8	0.42	b
Cadmium (MG/KG)	7.6	0.68	11.18	b
Chromium (MG/KG)	38.9	52.3	0.74	ab
Copper (MG/KG)	13.1	18.7	0.70	ab
Fluoranthene (UG/KG)	71	113	0.63	b
Lead (MG/KG)	64.6	30.2	2.14	a b
Nickel (MG/KG)	5.8	15.9	0.36	ab
Pyrene (UG/KG)	71	153	0.46	52 b
Silver (MG/KG)	1,1	0.73	1.51	b
Zinc (MG/KG)	39.3	124	0.32	a b
	5. West, 47%	The second second	Signal Con-	27.6
41M5A0301				and the second s
4,4'-DDD (U G /KG)	0.84	1.22	0.69	b
Arsenic (MG/KG)	2 .6	7. 24	0.36	аb

⁽a) USEPA Screening Concentration for Sediment - EPA SSVs
(b) FDEP Sediment Quality Assessment Guidelines - FDEP SQAGs
Some of the numbers in the table may vary because of rounding.

Table 10-2-2 (2) Wetland 5A Phase IIA Sediment Concentrations Compared to Benchmark Levels

Cadmium (MG/KG) Chromium (MG/KG) Copper (MG/KG) Lead (MG/KG) Mercury (MG/KG) Nickel (MG/KG) Zinc (MG/KG)	· · · · · · · · · · · · · · · · · · ·	7.7 69.3	0.68	11.32	
Copper (MG/KG) Lead (MG/KG) Mercury (MG/KG) Nickel (MG/KG) Zinc (MG/KG)					b
Lead (MG/KG) Mercury (MG/KG) Nickel (MG/KG) Zinc (MG/KG)		or =	52.3	1.33	аb
Mercury (MG/KG) Nickel (MG/KG) Zinc (MG/KG)		28.5	18.7	1.52	аb
Nickel (MG/KG) Zinc (MG/KG)		111	30.2	3.68	аb
Zinc (MG/KG)		0.37	0.13	2.85	аb
		16	15.9	1.01	аb
041M5A0401		96.9	124	0.78	аb
		Parties (Property Control of Cont			The second secon
4,4'-DDD (UG/KG)		2.3	1.22	1,89	b
4,4'-DDE (UG/KG)	546	1.7	2.07	0.82	- b та
4,4'-DDT (UG/KG)	77.45.5 187.65.5	1.3	1.19	1.09	b
Arsenic (MG/KG)		1.2	7.24	0.17	ab
Cadmium (MG/KG)		4.2	0.68	6.18	ъ.
Chromium (MG/KG)	Control of the Contro	33.7	52.3	0.64	ab sab
Copper (MG/KG)		68.9	18.7	3,68	ab
Fluoranthene (UG/KG	1	88	113	0.78	b
Lead (MG/KG)		169	30.2	5.60	ab
Mercury (MG/KG)		0.54	0.13	4.15	a b
Pyrene (UG/KG)		83	153	0.54	b
Zinc (MG/KG)		91.7	124	0.74	аb
041M5A0501					
4,4'-DDE (UG/KG)		120	2.07	57.97	ь
4,4'-DDT (UG/KG)		5	1.19	4.20	ь
Acenaphthylene (UG/I	(G)	120	5.87	20.44	Ь
alpha-Chlordane (UG/	·	1.6	1.7	0.94	a
Antimony (MG/KG)	NO)	4.5	12	0.38	a
Aroclor-1260 (UG/KG)	1	100	21.6	4.63	b
Arsenic (MG/KG)	•	3.2	7.24	0.44	a b
Benzo(a)anthracene (HG/KG)	320	74.8	4.28	ь
Benzo(a)pyrene (UG/)	•	240	88.8	2.70	Ь
bis(2-Ethylhexyl)phthal	*	1500	182	8.24	Ь
Cadmium (MG/KG)	iate (BETT) (OO/NO)	10.1	0.68	14.85	Ь
Chromium (MG/KG)		115	52.3	2.20	a b
Chrysene (UG/KG)		510	108	4.72	b
• • • • • • • • • • • • • • • • • • • •		317			
Copper (MG/KG)		317 1.1	18.7 3.3	16.95 0.33	a b
Endrin (UG/KG)	KC)				а
Endrin aldehyde (UG/I		0.72	3.3	0.22	a
Fluoranthene (UG/KG		1100	113	9.73	b
gamma-Chlordane (U	U/NU)	1.3	1.7	0.76	a _
Lead (MG/KG) Mercury (MG/KG)		383 0.84	30. 2 0.13	12.6 8 6.46	a b a b

 ⁽a) USEPA Screening Concentration for Sediment - EPA SSVs
 (b) FDEP Sediment Quality Assessment Guidelines - FDEP SQAGs

Some of the numbers in the table may vary because of rounding.

Table 10-2-2 (3) Wetland 5A Phase IIA Sediment Concentrations Compared to Benchmark Levels

Sample Location Parameter	Detected Concentration	Sediment Benchmark Value (SBV)	HŒ	SBV - HQ Reference
Nickel (MG/KG)	25,2	15,9	58	at
Phenanihrene (IJG/KG)	240	56,7	277	b.
Pyrene (UG/KG)	730	153	4.77	b
Zinc (MG/RG)	501	1.54	A 77	á ()
Name of the last o				
AATON GOVERN	75	111	Lat.	1
	Add		1 SAR	
March 1997 To 1997	100	704	100	1000
STATE OF THE PARTY NAMED IN			226-	- 100
Company of the Compan	100	34	140	
Charles Market	200	- 41	100	100
mile Mann	100	1.40	100	199
Season Statement	600	617	1.76	
Over Street-	0.0	- 41	199	400
Street Ministry	200	111	1.00	1.40
Street Millering	44	0.1	***	246
tow latinal	244	1/1	119	
the Mater	76.6		100	124
041M5A0701				
4,4'-000 (UG/KG)	0.22	1,22	0.19	6
Anthracene (UG/KG)	44	45 H	0.94	b
Antimony (MG/KG)	1.1	12	0.09	8
Arador-1260 (UG/KG)	28	216	0.12	b
Arsenic (MG/KG)	0.78	7 24	011	an
Benzo(a)anthraceno (UG/KG)	240	74.8	3,21	В
Berizo(a)pyrane (UG/KG)	240	86.8	2.70	6
his(2-Fthylhexyl)nhihaiale (BEHP) (UG/KG)	1300	182	7.04	6
Cadmium (MG/KG)	0.27	0.68	0.40	ь
Chromium (MG/KG)	2.6	523	0,05	ab
Chrysene (UG/KG)	390	BOT	3,61	ь
Copper (MG/KG)	13,1	18.7	0.70	4.0
Endrin ketoner (UG/KG)	0.26	3,3	6.68	a
Fluoranthiane (UGASG)	750	113	6.64	ь
gamma-Chlordane (UG/KG)	0.23	17	9.14	3
Lead (MG/KG)	115	347	0.38	ąь
Nickel (MG/KG)	2	19.9	8.13	∌ 0
Filenanthrene (UG/KG)	230	86.7	2,65	0
Pyrene (UG/KG)	620	153	4,05	6.
Zinc. (MG/KG)	54.7	124	0,44	a N

⁽a) USEPA Screening Concentration for Sediment - EPA SSVs
(b) FDEP Sediment Quality Assussment Guidelines - FDEP SQAGs

Some of the numbers in the table may vary because of rounding

sediment benchmark level (0.72 ppb) at location 5B02. No 4,4'-DDT or its metabolites exceeded basewide levels at Wetland 5B. The PCB Aroclor-1254 (53 ppb) exceeded its benchmark level (21.6 ppb) at location 5B02. Six SVOCs were detected in Wetland 5B sediment samples, including 2/4-methylphenol, benzo(b)fluoranthene, butylbenzylphthalate, fluoranthene, and pyrene. All sediment SVOC detections at Wetland 5B were below benchmark levels. Five VOCs were detected at Wetland 5B, including 1,2-dichloroethene, acetone, chlorobenzene, toluene, and vinyl chloride. Acetone and methylene chloride are common laboratory contaminants.

Table 10-2-3 shows the Wetland 5B Phase IIA sediment sample results (frequency of detection, range of detected concentrations, and average detected concentration). Table 10-2-4 compares detected concentrations at each sample location to sediment benchmark levels, and lists calculated HQs for each parameter. Only the parameters with benchmark levels are presented in Table 10-2-4. The HQs will be discussed further in the ecological risk section.

Wetland 5A Surface Water

Sixteen metals were detected in Wetland 5A surface water samples. Seven metals, including aluminum (259 ppb, 945 ppb, 621 ppb, 206 ppb, and 153 ppb at locations 5A01, 5A02, 5A04, 5A05, and 5A07), cadmium (3.2 ppb at location 5A02), chromium (11.4 ppb at location 5A05), copper (19.6 ppb and 21.3 ppb at locations 5A05 and 5A07), iron (1,350 ppb, 1,150 ppb, 1,170 ppb, and 1,710 ppb at locations 5A01, 5A02, 5A04, and 5A05), lead (13.3 ppb, 10.5 ppb, 20.3 ppb, 10 ppb, and 2.8 ppb at locations 5A01, 5A02, 5A04, 5A05, and 5A07), and zinc (99.4 ppb, 55.8 ppb, 236 ppb, 102 ppb, and 189 ppb at locations 5A01, 5A05, 5A06, and 5A07), exceeded appropriate freshwater surface water quality criteria at Wetland 5A. Endosulfan I, was detected in surface water at Wetland 5A, below its screening criteria. No PCBs were detected in Wetland 5A surface water samples. One SVOC, bis(2-ethylhexyl)phthalate, was detected in Wetland 5A surface water above its screening level at four locations (2 ppb, 5 ppb,

Table 10-2-3
Phase IIA Detected Concentrations in Wetland 5B Sediments

Parameter	Frequency of Detection	Range of Detected Concentrations	Average Detected Concentration
Inorganics (mg/kg)			
Aluminum (Al)	2/2	491, 10500	5495.5
Arsenic (As)	1/2	1.3	1.3
Barium (Ba)	2/2	1.3 - 30.2	15.75
Beryllium (Be)	1/2	0.48	0.48
Cadmium (Cd)	2/2	0.3 - 220	110.15
Calcium (Ca)	2/2	109 - 4400	2254.5
Chromium (Cr)	2/2	7.9 - 416	211.95
Cobalt (Co)	1/2	5.3	5.3
Copper (Cu)	1/2	268	268
Iron (Fe)	2/2	306 - 3290	4682.23
Lead (Pb)	2/2	17.9 - 481	249.45
Magnesium (Mg)	2/2	27.1 - 668	347,55
Manganese (Mn)	2/2	1.4 - 42.7	22.05
Mercury (Hg)	1/2	0.68	0.68
Nickel (Ni)	2/2	2.2 - 93.9	48.05
Potassium (K)	2/2	10.5 - 247	128.75
Selenium (Se)	1/2	3.6	3.6
Silver (Ag)	1/2	5.2	5.2
Vanadium (V)	1/2	18.8	18.8
Zinc (Zn)	2/2	9.8 - 1160	584.9
Pesticides and PCBs (µg/kg)			
4,4'-DDD	1/2	2.2	2.2
4,4'-DDE	2/2	0.32 - 3.9	2.11
Aroclor-1254	2/2	8.7 - 53	30.85
Dieldrin	2/2	0.42 - 0.71	3.76
alpha-BHC	2/2	0.3 - 1.8	1.05
aipha-Chlordane	2/2	0.19 - 1.2	0.70
gamma-Chlordane	1/2	1	<u> </u>
SVOCs (μg/kg)			
2-Methylphenol (o-Cresol)	1/2	200	200
4-Methylphenol (p-Cresol)	1/2	150	150
Benzo(b)fluoranthene	1/2	83	83
Butylbenzylphthalate	2/2	38 - 80	63
Fluoranthene	1/2	110	110
Pyrene	1/2	88	88
VOCs (μg/kg)			
1,2-Dichloroethene (total)		11 m	L. 14 (4.5)
Acetone	2/2	66 - 180	123
Chlorobenzenesta de la companya del companya de la companya del companya de la co	102		
Toluene	1/2	13	13
Vinyl Chloride	1/2	42 \	42

The total number of samples has been reduced by the number of rejected samples. However, note that no positive results rejected. All results are in micrograms per kilogram ($\mu g/kg$) or parts per billion (ppb), except for metals which are in milligrams per kilogram (mg/kg) or parts per million (ppm).

Table 10-2-4 (1) Wetland 5B Phase IIA Sediment Concentrations Compared to Benchmark Levels

Sample Location	Parameter	Detected Concentration	Sediment Benchmark Value (SBV)	на	SBV - HQ Reference
-	y	- TT		79 -	100
TAXING S	See Hill III	CONTRACT OF THE PARTY OF THE PA	T-LHOWING.	1000	100
-	and helpful !	1000	110	9.0	a.
Street, Pro-	() Application ()	200	100	74	
Dillion A	445	100	5.64	246	-
Olimon I	Moves	LA.	101	4.8	277
- N	Au 1.7	10	870	100	1.0
	Q.	200	.045	12.00	81
Create Sec	4	1000	-01	Toronto.	ar.
100	ed migh		-	100	40
041M5B020	1)				
4,4' DDD ()	UG/KG)	2.2	1.22	1.80	b
4,4'-DDE (I	2.71	39	2.07	1 88	b
	dane (UG/KG)	1.2	1.7	0.71	a
Aroclor-125	4 (UG/KG)	53	21.6	2.45	9
Arsenic (M	G/KG)	1.3	7 24	0.18	e tr
Cadmium (MG/KGY	220	9.68	323.53	ti i
Chromium	(MG/KG)	416	52.3	7.95	6.5
Copper (Mi	G/KiS)	268	18.7	14:33	ab
Dieldrin (Us	G/K(G)	71	0.72	9.86	b
Fluoranthen	ie (UG/KG)	110	113	0.97	B
gamma Chi	ordane (UG/KG)	17.	1.7	0.59	a
Lead (MG/I	KG)	461	30.2	15 93	a b
Mercury (M	(G/KG)	0.68	0.13	5.23	ab
Niskel (MG	IRG)	93.9	15,8	5.91	ab
Pyrene (UC	B/KG)	88	153	0.58	ь
Silver (MG)	(KG)	5.2	0.73	7.12	b)
Zinc (MG/K	(G)	1168	124	9,35	a ti

⁽a) USEPA Screening Concentration for Sediment - EPA SSVs
(b) FDEP Sediment Quality Assessment Guidelines - FDEP SQAGs
Some of the numbers in the table may vary because of rounding

3 ppb, and 2 ppb at locations 5A01, 5A04, 5A05, and 5A06). Six VOCs were detected in Wetland 5A surface water, including 1,1-dichloroethane, cis-1,2-dichloroethene, acetone, bromodichloroethane, chloroform, and dibromochloromethane. No VOCs detected in Wetland 5A surface water samples exceeded any surface water quality standard. Acetone is a common laboratory contaminant.

Table 10-2-5 shows the Wetland 5A Phase IIA surface water sample results (frequency of detection, range of detected concentrations, and average detected concentration). Table 10-2-6 compares detected concentrations at each sample location to surface water quality criteria and lists calculated HQs for each parameter. Only the parameters with water quality criteria are presented in Table 10-2-6. The HQs will be further discussed in the ecological risk section.

Wetland 5B Surface Water

Sixteen metals were also detected in Wetland 5B surface water. Eight metals, including aluminum (2,060 ppb), cadmium (19 ppb), chromium (40.8 ppb), copper (52.7 ppb), iron (2,890 ppb), lead (94.1 ppb), mercury (0.14 ppb) and zinc (189 ppb), exceeded freshwater surface water quality criteria at location 5B02. No pesticides or PCBs were detected in Wetland 5B surface water. Five SVOCs, were detected in Wetland 5B surface water, including 2-chlorophenol, 4-chloro-3-methylphenol, n-nitroso-di-n-propylamine, pyrene, and bis(2-ethylhexyl)phthalate. Bis(2-ethylhexyl)phthalate exceeded its surface water screening criteria at location 5B02 (2 ppb). Four VOCs were detected in Wetland 5B surface water, including 1,1-dichloroethane, acetone, trichloroethene, and vinyl chloride. No VOCs detected in Wetland 5B surface water samples exceeded any surface water quality standard. Acetone is a common laboratory contaminant.

Table 10-2-7 shows the Wetland 5B Phase IIA surface water sample results (frequency of detection, range of detected concentrations, and average detected concentration). Table 10-2-8 compares detected concentrations at each sample location to surface water quality criteria, and lists calculated HQs for each parameter. Only the parameters with water quality criteria are presented in Table 10-2-8. The HQs will be further discussed in the ecological risk section.

Table 10-2-5
Phase IIA Detected Concentrations in Wetland 5A Surface Water

Parameter	Frequency of Detection	Range of Detected Concentrations	Average Detected Concentration
Inorganics (μg/L)			
Aluminum (Al)	5/6	153 - 945	436.8
Antimony (Sb)	1/6	3.1	3.1
Barium (Ba)	6/6	13.6 - 41.4	26.62
Cadmium (Cd)	1/6	3.2	3.2
Calcium (Ca)	6/6	5460 - 28600	15643.33
Chromium (Cr)	1/6	11.4	11.4
Cobalt (Co)	1/6	3	
Copper (Cu)	3/6	7.2 - 21.3	16.03
Iron (Fe)	6/6	357 - 1710	1114.5
Lead (Pb)	5/6	2.8 - 20.3	11.38
Magnesium (Mg)	6/6	2090 - 6710	3301.67
Manganese (Mn)	6/6	20.5 - 80	48.57
Potassium (K)	6/6	1050 - 5580	2665
Sodium (Na)	6/6	7710 - 21300	12238.33
Thallium (Tl)	1/6	3.5	3.5
Zinc (Zn)	4/6	55.8 - 236	123.3
Pesticides and PCBs (µg/L)			
Endosulfan I	1/6	0.029	0.029
SVOCs (µg/L)			
bis(2-ethylhexyl)phthalate	4/6	2 - 5	3
VOCs (μg/L)			
1,1-Dichloroethane	1/6	. 1	1
cis-1,2-Dichloroethene	1/6	1	1
Acetone	1/1	9	9
Bromodichloromethane	1/6	2	2
Chloroform	1/6	1	1
Dibromochloromethane	1/6	2	2

Notes:

The total number of samples has been reduced by the number of rejected samples. However, note that no positive results rejected. All results are in micrograms per liter $(\mu g/L)$ or parts per billion (ppb).

Table 10-2-6 (1) Wetland 5A Phase IIA Surface Water Concentrations Compared to Water Quality Criteria

Sample Location Par	rameter	UOM	Detected Concentration	Water Quality Criteria	HQ	Criteria Reference
APRILATES.	Tomacile :	- W		-104		74
Action 1		THE REST OF	100	10.144	44100	100
/Sales	one (PERT)	- 040	- 66-	111	-	X 6
Concession 1		200	100	10 841	COPPE.	100
, City		- W	1,000	1994.6	700-0	TO ARCH
THE		THE REAL PROPERTY.	100.1	m	1000	1.46
-		- 100	49	44.1	4.64	1.160
× 7.		12	-	*1	1100	100
041W5A0201	Freshwater	_				
Aluminum	A THE TANK	UG/L	945.0	87.0	10,86207	a
Cadmuni		UG/L	3.2	0.774	4.13437	ab
Iron		LIG/L	1,150,6	1,000 å	1 15	яb
Lead		NO/F	(D,5	1.71	6,14036	ab
041W5A0401	Freshwater					
Aluminum	Managara.	UG/L	621.0	87.0	7.13793	a
bis{2-Ethylnexyl)phtn	alale (BEHP)	Udrkg	5.0	0.3	16,66667	- a /
Iron		UGIL	1,170.0	1,000.0	1,17	e ti
Lead		UG/L	20,3	171	11.87134	ab
			7/ 9/9			
041W5A0501	Freshwater					
Aluminum		LIG/L	206,0	87.0	2 36/AX	a
Autimony		UO/L	31	160.0	0.01938	a
bis(2-Ethy/hexyl)phth	alate (BEMP)	L1ca/L	10	0.3	100	a
Chromium		UG/L	17 X	11.0	1,03636	à b.
Copper		UG/L	19.6	7.8	2,51282	ab
lton		HG/L	1 700,0	0.000,1	1.71	a b
Lead		UG/L	(0,0	1.71	5 84795	ab
Zina		UG/L	55,8	70,2	0.79487	a b
041W5A0801	Freshwater		1 5	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5-1-2000	38
bis(2-Ethylhoxyl)phth	The state of the s	navr	2.0	0.3	6,66667	a
Chloreform		UG/L	1.0	289.0	0.00346	a
Copper		UG/L	7.2	7.8	0,92308	ab
l/on:		UG/L	357.0	1,000.0	0.357	ab
Zine	Salara Salara	UG/L	236.0 ·	70.2	3 36182	a b
30.00		8.4	Mark Mark Control	Section 2		W. W.

Notes:

(a) USEPA Water Quality Criteria (1995)
(b) FDEP Class III Water Quality Criteria (1996)
Some of the mumbers in the table may yary frecause of rounding

Table 10-2-6 (2) Welland 5A Phase IIA Surface Water Concentrations Compared to Water Quality Criteria

Sample Location	Parameler	UOM	Detected Concentration	Water Quality Criteria	на	Criteria Reference
HIWHHIM	-	1995	-		100.00	
-		1000	10 M	- 60	1,546	71.
-		Alexander .	- M	100	1,000	820
-			807	146	140	**
_			76		400	**
-			701	166	1 84500	1.0
20			-	-	100	

Notes:

Table 10-2-7
Phase IIA Detected Concentrations in Wetland 5B Surface Water

Parameter	Frequency of Detection	Range of Detected Concentrations	Average Detected Concentration
Inorganics (μg/L)			
Aluminum (Al)	1/1	2060	2060
Barium (Ba)	1/1	27.8	27.8
Cadmium (Cd)		19	19 *
Calcium (Ca)	1/1	15600	15600
Chromium (Cr)		40.8	40.8
Cobalt (Co)	1/1	3.9	3.9
Copper (Cu)		52.7	52.7
Iron (Fe)	1/1	2890	2890
Lead (Pb)	1/1	94.1	94.1
Magnesium (Mg)	1/1	3250	3250
Manganese (Mn)	1/1	109	109
Mercury (Hg)	1/1	0.14	0.14
Potassium (K)	1/1	2160	2160
Sodium (Na)	1/1	12600	12600
Vanadium (V)	1/1	5.2	5.2
Zinc (Zn)	1/1	189	189
SVOCs (µg/L)			
2-Chlorophenol	1/1	1	1
4-Chloro-3-methylphenol	1/1	1	1
N-nitroso-di-n-propylamine	1/1	1 .	1
Pyrene	1/1	2	2
Bis(2-ethylhexyl)phthalate	1/1	2	2
VOCs (μg/L)			
1,1-Dichloroethane	1/1	3	3
Acetone	1/1	8	8
Trichloroethene	1/1	10	. 10
Vinyl Chloride	1/1	6	6

Note:

All results are in micrograms per liter (μ g/L) or parts per billion (ppb).

Table 10-2-8 (1) Wetland 5B Phase IIA Surface Water Concentrations Compared to Water Quality Criteria

Sample Location	Parameter	UOM	Detected Concentration	Water Quality Criteria	HQ	Criteria Reference
041W5B0201	l Freshwater					
2-Chloropheno	ol	UG/L	1.0	43.8	0.02283	а
4-Chloro-3-me	thylphenol	U G/L	1.0	50,0	0.02	Ъ
Aluminum		U G/L	2,060.0	87.0	23.67816	a
bis(2-Ethylhex	yl)phthalate (BEHP)	UG/L	2.0	0.3	6.66667	а
Cadmium		UG/L	19.0	0.774	24.5478	a b
Chromium		UG/L	40.8	11.0	3.70909	a b
Copper		UG/L	52.7	7.8	6.75641	аb
Iron		UG/L	2,890.0	1,000.0	2.89	аb
Lead		UG/L	94.1	1.71	55.02924	аb
Mercury		UG/L	0.14	0.012	11.66667	аb
Pyrene		UG/L	2.0	11,000.0	0.00018	b
Trichloroethen	ne	UG/L	10.0	80.7	0.12392	b
Zinc		UG/L	189.0	70.2	2.69231	аъ

Some of the numbers in the table may vary because of rounding.

⁽a) USEPA Water Quality Criteria (1995)
(b) FDEP Class III Water Quality Criteria (1996)

10.2.3 Fate and Transport

Pathways evaluated for wetland-specific fate and transport correlate with those identified in the conceptual model presented in Section 9: surface water/sediment transport into the wetland; groundwater discharge into the wetland; sediment/surface water transport within the wetland; sediment leaching to surface water within the wetland; and surface water/sediment transport from the wetland. Because sediment transport and storm water runoff data are lacking, the evaluation is qualitative in nature. The method of evaluating leaching from sediment to surface water was presented in Section 9. Table 10-2-9 presents those contaminants present in sediment above benchmark levels and their calculated SSLs. Contaminants present in surface water above water quality criteria are presented in Tables 10-2-6 and 10-2-8.

Table 10-2-9
Calculated Sediment Screening Values for Wetland 5

Parameter	USEPA or FDEP Surface Water Standard	Kd	SSL DF = 100	Maximum Concentration Detected	Leaching Potential DF = 100
Inorganic	(ppb)		(ppm)	(ppm)	
Cadmium	0.774 ^{a, b}	7.5E+01	5.82	220	YES
Chromium	11 a, b	1.9E+01	21	416	YES
Copper	7.8 a, b	4.3E+02	33 6	317	NO
Lead	1.71 a, b	9E+02	154	481	YES
Mercury	0.012 a, b	5.2E+01	0.0624	1	YES
Nickel	104 *. b	6.5E+01	677	93.9	NO
Zinc	70.2 a, b	6.2E+01	436	2290	YES
Organics	(ppb)		(ppb)	(ppb)	
4,4 DDE	10.5 °	5.14E+05	5.39E+08	120	NO
4,4 DDD	0.0064 a	1.15E + 05	7.36E+04	2.3	NO
4,4 DDT	0.001 a, b	3.02E + 05	3.02E + 03	5	NO
Dieldrin	0.0019 a.b	2.46E+03	4.68E+02	7.1	NO
Acenapthylene	0.031 b	356.5	1,105	120	NO
Total PCBs*	0.014 ^b	3.55E+04	4.97E+04	153	NO
Benzo(a)anthracene	2003135 W.	45.770 L	141,887. <u>1</u>	*** 320 s	i NO.
Chrysene	0.031 b	45,770	141,887	510	NO
Fluoranthene	39.8	12,305	4.9E+07/5	12 12 17, 100 A	NO.
Phenanthrene	0.031 в	3,540	10,695	. 240	NO

Table 10-2-9
Calculated Sediment Screening Values for Wetland 5

Parameter	USEPA or FDEP Surface Water Standard	Kd	SSL DF = 100	Maximum Concentration Detected	Leaching Potential DF = 100
Pyrene	11,000 b	1.2E+04	1.32E+10	730	NO
Bis(2-ethylhexyl)phthalate	0.3ª	1.74E+06	5.22E+07	1,500	NO

Notes:

* = based on Aroclor-1260.

Kd for organics calculated using foc of 0.115 (numerical average of all sediment samples).

Kds are from: USEPA, 1996b (first preference); Superfund Chemical Data Matrix(USEPA, 1996c) (second preference); Texas Risk Reduction Program Concept Document 2, Volume 1, Appendix VII, 1996 (third preference); TERRA Model, Oak Ridge National Laboratory, 1984 (fourth preference — primary reference for inorganics).

Kd = normalized partitioning coefficient.

SSL = sediment screening level.

DF = dilution factor.

= USEPA Freshwater Surface Water Chronic Screening Criteria (1995a).

b = FDEP Class III Water Quality Criteria (1996).

Transport Within the Wetland

Surface Water/Sediment Migration Pathway

The configuration of the wetland, along with landform analysis, indicates that surface water and sediment movement is towards Wetland 6, and from there to Wetland 64 and the Bayou Grande. Therefore, both sediment and surface water contaminants can remain mobile.

Sediment Leaching to Surface Water Pathway:

Seven inorganics, four pesticides, four SVOCs, three VOCs, and PCBs (see Table 10-2-9) exceeded their SSV, but only five – cadmium, chromium, lead, mercury, and zinc exceeded their SSL. Of these six, all but chromium were present in the corresponding surface water above standards, validating the sediment leaching pathway. Iron was also present in surface water above standards, but it is likely attributable to the surface water/groundwater discharge pathway. The presence of inorganics above screening levels in sediment and surface water indicates a high potential for partitioning from sediment to surface water.

Transport From the Wetland

Surface water and sediment can be expected to move from Wetland 5 into Wetlands 6 and 64, and into Bayou Grande.

10.2.4 Ecological Risk Assessment

HQs for Wetlands 5A and 5B sediment samples are presented in Tables 10-2-2 and 10-2-4. For Wetland 5A, Phase IIA sediment sample results compared to the appropriate sediment benchmark levels revealed HQs above 1 for cadmium (16.47, 11.8, 11.32, 6.18, and 14.85 at locations 5A01, 5A02, 5A03, 5A04, and 5A05), chromium (1.55, 1.33, and 2.20 at locations 5A01, 5A03, and 5A05), copper (8.34, 1.52, 3.68, and 16.95 at locations 5A01, 5A03, 5A04, and 5A05). lead (14.14, 2.14, 3.68, 5.60, 12.68, and 1.61 at locations 5A01, 5A02, 5A03, 5A04, 5A05, and 5A06), mercury (7.69, 2.85, 4.15, 6.46, and 1.92 at locations 5A01, 5A03, 5A04, 5A05, and 5A06), nickel (1.48, 1.01, and 1.58 at locations 5A01, 5A03, and 5A05), silver (1.51at location 5A02), and zinc (18.47 and 4.77 at locations 5A01 and 5A05). Dieldrin also had a HQ above 1(3.47 and 1.18 at locations 5A01 and 5A06). 4,4'- DDD had HQs greater than 1 at sample locations 5A02 (1.23) and 5A04 (1.89). 4,4'-DDE had a HQ above 1 (57.97) at location 5A05. 4,4'-DDT had HQs above 1 at locations 5A04 (1.09) and 5A05 (4.20). Most concentrations of 4,4'-DDT and its metabolites were below basewide levels. The PCB Aroclor-1260 had a HO above 1 at location 5A05(4.63). Acenaphthylene had a HQ above 1 (20.44) at location 5A05. Other PAHs with HQs above 1 occurred at sample locations 5A01, 5A05, and 5A07; benzo(a)anthracene (1.60, 4.28, and 3.21), benzo(a)pyrene (1.58, 2.70, and 2.70), chrysene (1.67, 4.72, and 3.61), fluoranthene (2.48, 9.73, and 6.64), phenanthrene (1.27, 2.77, and 2.65). and pyrene (1.44, 4.77, and 4.05). The phthalate ester bis(2-ethylhexyl)phthalate also had a HQ greater than 1(8.24, 3.79, and 7.14 at locations 5A05, 5A06, and 5A07). For Wetland 5B, Phase IIA sediment comparisons revealed HQs above 1 for cadmium (323.53), chromium (7.95), copper (14.33), lead (15.93), mercury (5.23), nickel (5.91), silver (7.12), and zinc (9.35). 4,4'- DDD and 4,4'-DDE had HQs greater than 1 at sample location 5B02 (1.80 and 1.88). Dieldrin also had a HQ above 1 (9.86) at location 5B02, as did the PCB Aroclor-1254 (2.45). Wetland 5A Phase IIA surface water results revealed HQs greater than 1 for aluminum(2.98, 10.86, 7.14, 2.37, and 1.76 at locations 5A01, 5A02, 5A04, 5A05, and 5A07). cadmium (4.13 at location 5A02), chromium (1.04 at location 5A05), copper (2.51 and 2.73 at

locations 5A05 and 5A07), iron (1.35, 1.15, 1.17, and 1.71 at locations 5A01, 5A02, 5A04, and 5A05), lead (7.78, 6.14, 11.87, 5.85, and 1.64 at locations 5A01, 5A02, 5A04, 5A05, and 5A07), and zinc (1.42, 0.79, 3.36, 1.45, and 2.69 at locations 5A01, 5A05, 5A06, and 5A07), exceeded appropriate freshwater surface water quality criteria at Wetland 5A. Only one pesticide, endosulfan I, was detected in surface water at Wetland 5A, below the screening criteria. No PCBs were detected in Wetland 5A surface water samples. One SVOC, bis(2-ethylhexyl)phthalate, was detected in Wetland 5A surface water above its screening level at four locations (6.67, 16.67, 10, and 6.67 at locations 5A01, 5A04, 5A05, and 5A06). Wetland 5B Phase IIA surface water results revealed HQs greater than 1 for aluminum (23.68), cadmium (24.55), chromium (3.71), copper (6.76), iron (2.89), lead (55.03), mercury (11.67) and zinc (2.69) at location 5B02. Bis(2-ethylhexyl)phthalate also had a HQ greater than 1 at location 5B02 (6.67). HQs greater than 1 indicate the potential for excess risk.

Phase IIB/III

Wetland 5A was classified in Group B and sampled during Phase IIB/III. Wetland 5B was classified with Group D. The Group D wetlands appear as man-made drainage ditches and are in developed areas of the base. Due to their channelized features and proximity to developed areas, they have limited ecological receptors. The Group D wetlands were eliminated for further risk characterization and were therefore not sampled during Phase IIB/III. Color-codes, groupings and rationale for classification are described in Section 7.

Conceptual Model

Conceptual models demonstrate contaminant interaction throughout the food chain and help in selecting receptor species. Selected receptor species are referred to as measurement and assessment endpoint species. Measurement endpoints, defined in Section 7.5, are used to quantify direct impacts to those species chosen in the conceptual model. Assessment endpoints, also defined in Section 7.5, are used to predict impacts to other species in the conceptual model not directly measured. The conceptual model developed for Group B: Wetland 5A is shown in Figure 10-2-2.

Freshwater Wetland 5A is fed by surface water and groundwater sources at its western side and is bordered by Site 30. There is a 200- to 300-foot vegetative buffer surrounding the wetland which can provide habitat and cover for many species. The open water portion of this wetland ranges from 0 to 3 feet in depth, and varies from 80-150 feet in width. Great blue herons have been seen in this wetland. Small fish and benthic macroinvertebrates have also been seen in this wetland, but this habitat is considered highly variable because of regular changes in water levels due to precipitation and other physical factors. The primary functional uses of this wetland are as habitat for a fisheries and benthic macroinvertebrates. However, this wetland is not considered large enough to support higher trophic level fish species. No higher trophic level fish species have been seen in Wetland 5A. A wide range of contaminants have been detected in this wetland, including metals, PAHs, pesticides, and PCBs. However, the most prevalent contaminants from the Phase IIA analysis were metals, which are primarily a concern from a direct toxicity perspective. Therefore, the conceptual model in Figure 10-2-2 focuses on benthic macroinvertebrates and fish exposed to metal-contaminated sediment.

Sampling Location Rationale

Phase IIB/III samples for sediment and surface water samples toxicity analysis, sediment chemistry, TOC, and grain size were collected from Phase IIA locations 4, 5, and 6. These locations were selected to represent a concentration gradient across the wetland. Phase IIB/III sample locations are shown on Figure 10-2-3. Three composite grab samples for benthic diversity were collected within 10 feet of each sample location to account for spatial variability. As a channelized drainage ditch with limited receptors, Wetland 5B was removed from further sampling and analysis. Three surface water samples were collected from Wetland 5A for chemical analysis and fathead minnow (*Pimephales promelas*) toxicity analysis.

Final Remedial Investigation Report NAS Pensacola Site 41 Section 10: Site-Specific Evaluations August 31, 2000

This page intentionally left blank.

Ecological Risk Evaluation

Risk in Wetland 5A was evaluated with respect to two assessment endpoints: 1) survival and growth of macroinvertebrates associated with the benthic environment, and 2) protection of fish viability.

Survival, Growth, and Emergence of Organisms Associated with the Aquatic Environment:

As described in Section 7.14, this assessment endpoint was evaluated using the sediment quality triad approach (sediment chemistry, toxicity, and diversity). Table 10-2-10 compares detected Phase IIB/III sediment concentrations to benchmark levels, and lists calculated HQs for each parameter. DDT and its metabolites are also compared to basewide levels (see Section 6). As shown on the tables, sediment HQ values are greater than one for a range of contaminants. At location, 5A04, alpha-chlordane, fluoranthene, and gamma-chlordane were the greatest contributors. At location 5A05, bis(2-ethylhexyl)phthalate, cadmium and lead were the greatest contributors. DDT and its metabolites were detected below their basewide levels. Application of these sediment chemistry results to the decision making triad revealed a matrix score of "+" for sediment chemistry.

Sediment Toxicity

Survival results in the *Chironomus tentans* test were 100% for location 5A-04, 100% for location 5A05, and 83% for location 5A06, as presented in Table 10-2-11. Statistical difference were noted in the weights collected at the end of the 10-day exposure (locations 5A04 2.6 mg, 5A05 1.6 mg, and 5A06 2.8 mg when compared to the control 2.6 mg). Midge larvae were maintained under optimum conditions for the next 18 days so emergence could be calculated. 60% of the control larvae emerged, 75% of the larvae from location 5A04 emerged, 50% of the larvae from location 5A05 emerged, and 75% of the larvae from location 5A06 emerged. Application of these results to the decision making triad revealed a triad matrix score of "—" for the toxicity test.

Table 10-2-10 (1) Wetland 5A Phase IIB/III Sediment Concentrations Compared to Benchmark Levels

Sample Location	Parameter	Detected Concentration	Sediment Benchmark Value (SBV)	HQ	SBV - HQ Reference
041 M 5A040	1			P-1	
4,4'-DDT (7.2	1.19	6.05	b
	rdane (UG/KG)	4.5	1.7	2.65	a
Anthracene	•	16	46.9	0.34	b
Arsenic (M	•	0,52	7.24	0.07	a b
	ithracene (UG/KG)	100	74.8	1.34	b
• •	rene (UG/KG)	140	88.8	1.58	b
	nexyl)phthalate (BEHP) (UG/KG)	210	182	1.15	b
Cadmium (0.42	0.68	0.62	b
Chromium	` '	4.1	52.3	0.08	аb
Chrysene	,	170	108	1.57	b
Copper (M		21.5	18.7	1.15	a b
	ne (UG/KG)	260	113	2.30	b
	C (Lindane) (UG/KG)	0.24	0.32	0.75	b
-	lordane (UG/KG)	7.9	1.7	4.65	a
Lead (MG/		54.5	30.2	1.80	a b
Mercury (N		0.13	0.13	1.00	a b
Nickel (MC		2.5	15.9	0.16	a b
	ene (UG/KG)	97	86.7	1.12	b
Pyrene (U	, ,	300	153	1.96	b
Zinc (MG/)		77.1	124	0.62	a b
0448453.050		200			3 5 46%
)41M5A050					ESE.
Antimony (27.7	12	2.31	. a
. 7,57,152.1	ithracene (UG/KG)	41	74.8	0.55	b
£55	rene (UG/KG)	52	88.8	0.59	b
100	nexyl)phthalate (BEHP) (UG/KG)	950	182	5.22	b
Cadmium		3.2	0.68	4.71	b
Chromium		50.1	≦ 52.3	0.96	a b
Chrysene		58	108	0.54	b
Copper (M		108	18.7	5.78	ab
200	ne (UG/KG)	72	113	0.64	b
Lead (MG/		258	30.2	8.54	ab ab
Mercury (N	3	0.09	0.13	0.69	ab
Nickel (MC	Plant THE CONTRACT OF THE CONT	7.5	15,9	0.47	ab
100000	ene (UG/KG)	28	86.7	0.32	b
Pyrene (U		87	153	0.57	b
Silver (MG		0.15	0.73	0.21	b
Zinc (MG/I	(G)	394	124	3.18	a b
041 M 5A060	1				**************************************
	UG/KG)	1.3	1.22	1.07	

⁽a) USEPA Screening Concentration for Sediment - EPA SSVs
(b) FDEP Sediment Quality Assessment Guidelines - FDEP SQAGs
Some of the numbers in the table may vary because of rounding.

Table 10-2-10 (2) Wetland 5A Phase IIB/III Sediment Concentrations Compared to Benchmark Levels

Sample Location	Parameter	Detected Concentration	Sediment Benchmark Value (SBV)	HQ	SBV - HQ Reference
4,4'-DDE (UG/KG)	3.6	2.07	1.74	b
4,4'-DDT (UG/KG)	3.2	1.19	2.69	b
Antimony	(MG/KG)	2	12	0.17	а
Cadmium	(MG/KG)	1.2	0.68	1.76	b
Chromium	(MG/KG)	24.4	52.3	0.47	аb
Copper (M	G/KG)	25.6	18.7	1.37	аb
Dieldrin (U	G/KG)	1.4	0.72	1.94	b
Endrin (UC	G/KG)	1.1	3.3	0.33	а
Fluoranthe	ne (UG/KG)	16	113	0.14	b
Lead (MG/	'KG)	75.5	30.2	2.50	a b
Mercury (N	/IG/KG)	0.06	0.13	0.46	a b
Nickel (MC	G/KG)	1.8	15.9	0.11	a b
Zinc (MG/I	KG)	103	124	0.83	a b

Notes:

 ⁽a) USEPA Screening Concentration for Sediment - EPA SSVs
 (b) FDEP Sediment Quality Assessment Guidelines - FDEP SQAGs
 Some of the numbers in the table may vary because of rounding.

Table 10-2-11 Toxicity Test Results Wetland 5 Sediment

Site	% Survival	Weight (mg)	Emergence	Triad Matrix Scoring
Control (negative)	100	2.6	60%	
Wetland 5 (5A-04)	100	2.6	75%	_
Wetland 5 (5A-05)	100	1.6	50%	
Wetland 5 (5A-06)	83	2.8*	75%	

Note:

Benthic Diversity in Sediment

Sediment samples were also sorted for benthic diversity. Sample locations 5A04, 5A05, and 5A06 contained a diverse representation of palustrine organisms. Sample location 5A04 was dominated by *Limnodrilus* species and *Tubifex tubifex*, both of which are oligocheates. Location 5A05 exhibited a higher diversity (3.16), than locations 5A04 (2.56), and 5A06 (2.43). Benthic diversity results and application to the toxicity test results are presented in Table 10-2-12. Application of these results to the decision making triad revealed a triad matrix score of "—" for the benthic diversity test.

Table 10-2-12
Benthic Diversity Results and Application to the Triad Matrix
Wetland 5 Sediment

Site	Shannon-Weiner Diversity	Pielou's Evenness	Margalef's Richness	Triad Matrix Scoring
Wetland 5 (5A-04)	2.56	1.11	9.76	_
Wetland 5 (5A-05)	3.16	1.37	9.74	
Wetland 5 (5A-06)	2.43	1.25	6.88	

Decision Making Triad Evaluations

Based on the ecological risk evaluation performed at Wetland 5, sediment results can be scored via the decision making triad, and the overall condition of the wetland for sediment can be

^{* =} Statistically significant difference from control population.

determined. Table 10-2-13 presents the interpretation of the triad analysis for the Wetland 5 Phase IIB/III sediment samples.

Table 10-2-13
Triad Analysis Interpretation
Wetland 5 Sediment

Location	Sediment Chemistry	Toxicity Test	Benthic Assessment	Interpretation
Wetland 5 (5A-04)			 1 1 2 4 4 4 5 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Contaminants are not bioavailable.
Wetland 5 (5A-05)	+	_		Contaminants are not bioavailable.
Wetland 5 (5A-06)			4 () 4 () - 	Contaminants are not bioavailable;

Condition number 3 denotes that Wetland 5 sediments are acceptable and no further action is recommended for sediment for this wetland. Based on the results of the chemistry and toxicity data, condition number 3 exists. This can now be applied to the Simplified Decision Flow Chart for Sediments, as discussed in Figure 7-2.

Protection of Fish Viability:

This assessment endpoint was evaluated using two lines of evidence. Direct comparison of tissue residue concentrations to toxic effects thresholds, was not evaluated in Wetland 5A because the shallow water depth does not support upper trophic level species.

Surface Water Toxicity

One line of evidence was toxicity testing of the fathead minnow (*Pimephales promelas*). The endpoints for this test were survival and growth, which is measured by weight. Fathead minnow test results were 97.5% survival for the fish exposed to location 5A06, and 100% survival for fish at locations 5A04 and 5A05 including control organisms. Weights differed slightly, with a statistically significant difference noted for fish exposed to locations 5A05 (0.43 mg) and location 5A06 (0.46) when compared to fatheads exposed to location 5A04 (0.49 mg) and the control (0.58 mg). Toxicity results are shown in Table 10-2-14. Application of these results to

the decision making triad discussed Section 7.14 revealed a triad matrix score of "—" for the fathead minnow test.

Table 10-2-14
Fathead Minnow Chronic Bioassay Results
Wetland 5 Surface Waters

Location	% Survival	Weight (mg)	Matrix Scoring		
Control (negative)	100	0.58			
Wetland 5 (5A-04)	100	0.49			
Wetland 5 (5A-05)	100	0.43*			
Wetland 5 (5A-06)	97.5	0.46*			

Note:

Surface Water Chemistry

A second line of evidence, comparison of surface water contaminants to HQ values, shows that the HQ value of 1 was exceeded for several metals, particularly lead. Comparisons are provided in Table 10-2-15. Application of surface water chemistry results to the decision making matrix revealed a score of "+" for surface water chemistry. Table 10-2-16 presents the interpretation of the analysis for the Wetland 5 surface water sample. Based on the results of the chemistry and toxicity data, condition number 3 exists. This can now be applied to the Simplified Decision Flow Chart for Surface Water, as discussed in Figure 7-3. Condition number 3 denotes that Wetland 5 surface water is acceptable and no further action is recommended for surface water for this wetland.

Statistically significant difference from control population.

Table 10-2-15 (1) Wetland 5A Phase IIB/III Surface Water Concentrations Compared to Water Quality Criteria

Sample Location	Parameter	UOM	Detected Concentration	Water Quality Criteria	HQ	Criteria Reference
041W5A0401	Freshwater					
Aluminum		MG/L	124.00	87,00	1.43	a
Coppei		LIGAL	4.10	7.80	0,53	ab
(/cm		HGAL	755.00	1000.00	0.76	ab
Lead		UG/L	9.00	1.71	5.28	3.0
Zinc		UGAL	23.20	70,20	0.33	ati
NAME AND ADDRESS OF	Personne	12.00				
P. Carrier	0.000	100	100	200	166	100
Accessed to			COLUMN TWO	144	Sec.	100
Simer.		-	146	340	- Name	196
Simon .		-	-18	340	-	Hr.
Team		-	- 696	796	140	100
1400		-60	146.00	444	196	100
the state of the s		-	100	15	1044	111
- Charles			414	100		
70004		-	1.61	1146	100	191
100		100	744	**	110	10
41W5A0691	Freshwater					
Alumojum	20,027,7662	UGÆ	124,00	47,00	1.43	a
Iron		UGAL	2500.00	1000.00	2,50	ab
Zine.		UG/L	15.40	70,20	0.22	ati

Notes.

⁽a) USEPA Water Quality Criteria (1995)
(b) FDEP Class III Water Quality Criteria (1996)
Some of the numbers in the table may vary because of rounding

Table 10-2-16
Matrix Analysis Interpretation
Wetland 5 Surface Water

Location	Water Chemistry	Toxicity Test	Interpretation
Wetland 5 (5A-04)			Contaminants are not bioavailable.
Wetland 5 (5A-05)	+	_	Contaminants are not bioavailable.
Wetland 5 (5A-06)	egyagyan ereket kanalan adalah dari dari dari dari dari dari dari dari		Contaminants are not bioavailable.

10.2.5 Human Health Risk Assessment

10.2.5.1 Samples Included

Sediment

041M5A0101, 041M5A0201, 041M5A0301, 041M5A0401, 041M5A0501, 041M5A0601, 041M5A0701, 041M5B0101, 041M5B0201

Surface Water

041W5A0101, 041W5A0201, 041W5A0401, 041W5A0501, 041W5A0601, 041W5A0701, 041W5B0201

10.2.5.2 Current and Future Land Use

The area may be used by Navy and civilian personnel who happen to be in the area for work related duties or children who find the area attractive. No routine grounds maintenance activities have been reported in this area, therefore, the maintenance worker scenario was not included in this risk assessment. There is no recreational or fishing use. The adolescent trespasser scenario was considered conservatively representative of potential exposure populations for this wetland.

10.2.5.3 Fish COPCs Identified

No fish tissue data were available for this wetland, and this exposure pathway would likely be incomplete; therefore, no COPCs were identified.

10.2.5.4 Sediment COPCs Identified

As shown in Table 10-2-17, the following COPC was identified:

• Lead

10.2.5.5 Surface Water COPCs Identified

As shown in Table 10-2-18, the following COPCs were identified:

- Lead
- Vinyl chloride

10.2.5.6 Risk Characterization

Adolescent Trespasser

Table 10-2-19 summarizes risk estimates for the surface water pathways. Vinyl chloride was the only contributor to risk estimates for the surface water pathway. The cumulative risk estimated for this wetland is 1.9E-6. Vinyl chloride was identified as a COC for surface water based on its contribution to cumulative risk estimates for this wetland.

Lead Risk Characterization

A conservative exposure scenario was developed to assess the significance of surface water concentrations of lead at Wetland 5. This scenario involves a child (age 6 to 7) who accompanies an older sibling to the wetland one day a week for a year. Exposure to Wetland 5 sediment and surface water was considered additional to those they typically encountered at the child's home.

TABLE 10-2-17 OCCURRENCE, DISTRIBUTION, AND SELECTION OF CHEMICALS OF POTENTIAL CONCERN NAS PENSACOLA SITE 41

Scenario Timetranie: Current and Future Medium: Sediment Exposure Medium: Sediment Exposure Point: Wetlands5a and 50

	ISEGORAL																
		(1)		(1)							(2)	(3)	(4)	(5)		(6)
							Location of	Detection		į	Concentration	l .			Potential		Platonale for
CAS Nunter	Charrieral	Minimum Concentration	Minimum Qualifier	Maximum Concentration	Maximum: Qualifier	Unis	Maxenum	Frequency	Range of Detection Limits	MEAN	Usedfor	Background Vatue	Addiescent Site Trespasser PRG	Residential Still RBC	ARAR/TBC	COPC Flag	Contaminant Elelection or
		Ourige ne allon	Commun	Donae Gallon	QUALITIES		Concentration		}	ł	Screening		Healmost I MO	700	Source	7	Selection
540590	1,2-Dichloroethene (total)	11 00	J	11 00	J	UGKG	041M5E0201	1 / 9	12 00 - 83 00	1100	11	N/A	2800000	76000 F	J N/A	NO	9SL "
95497	2-Melhylphenol (c-Cresol)	200.00	j	200 00		LIC/KG	04 1M5E0201	1 / 9	400.00 - 1600.00	200 00	200	NA	16000000	3909000 1	N/A	NO	BSL
72548	4.41-DDD	0.23	J	2 30	J	UG/KG	041M5A0401	6 / 9	821 - 081	1 29	2.3	N/A	92000	2700 0	N/A	NO	38L
72559	4,4'-DDE	0.32	J	120.00	DJ	UG/KG	D41M5A0501	7 / 9	0.20 - 0.61	18 48	120	N/A	65000	1900 (N/A	NO.	8SL
50293	4.4'-DDT	0.78	J	5.00		UG/KG	041M5A0501	3 / 2	0.20 - 0.73	2.38	5	N/A	65000	1900 (N/A	NO.	ÐSL
106445	4- Methylphenol (p-Cresol)	100 00	J	200 00	J	IJG/KG	D41M5B0201	4 / 3	400 00 - 1200 00	150 00	200	N/A	1600000	39000 h	N/A	ND	BSL
208258	Acenaphthylene	120.00		120 00	J	UG/KG	041M5A0501	1 / 9	40 00 - 140 00	120 00	120	N/A	12000000		N/A	NO.	BSL
67641	Acetone	66 DD	J	5200.00	d d	UG/KG	Q41M600101	7 / 9	13 00 - 130.00	1719 43	5700	N/A	75000000		N/A	NO	BSL
120127	Arthracene	44 00		44 80		UG/KG	841M5A8781	1 / 9	63 00 - 1400 00	44.00	44	N/A	95000000		N/A	NO.	BSL
7440360	Antimony (Sb)	0.29		10 90		MG/KG	041M5A0801	5 / 9	0.14 - 4.40	3.68	10	N/A	130	31 1		NO	BSL
11097691	Areclar-1254	6.70		53 00		UG/KG	641M5R0201	3 / 9	2.00 - 610	25 23	53	N/A	11000	160 (NO	BSL BSL
11098925 7440382	Arector-1260	2 60 D 78	7	100 00 3 20		UGMG MG/KG	041M5A0401	3 / 9	3 20 - 14 00 '	39.53 2.01	100 3.2	N/A N/A	11000	320 C		NO NO	BSL BSL
56553	Arsenic (As) Benzo(a)anthracene	120.00	,	3 20 320 00		UG/KG	041M5A0501	3 / 9	41 00 - 140 00	226.87	320	N/A	30000	900 (1	NO	F6L
50328	Benzo(a)pyrane	37.60		240.00		LIGNIG	041M5A0501	4 / 3	41 DO - 140 DO	154 25	240	N/A	3000	86 (,	NO:	BSL
205992	Benzo(b)fluoranthene	57.00	j	350 00	J	UGAKG	041M5A0201	4 / 9	41 00 - 160 00	180.00	360	N/A	30000	890 (NO.	BSL
191242	Benzo(g,h,i)perylene	120.00	Ů	290 00	ı ı	UG/KG	041M5A0701	3 / 9	41 00 - 140 00	198 57	260	NA	9590000	230000 1		NO	98.
207089	Benzo(k)fluoranthene	73.00	J	170 00		LIG/KG	041M5A0461	3 / 9	41 00 - 160 00	110 33	170	NA	300000	9900 0		NO	BSL
7440417	Beryllium (Be)	0.27	Ĵ	0.83	J	MCVKG	041M5A0501	4 / 9	0.06 - 0.44	0.51	0.83	N/A	530	16		NO	BSL
B5687	Sutylbenzylphthalate	38.00	j j	790.00	j	UG/KG	Q41M5El0201	3 / 9	400.00 - 1400.00	106.00	200	N/A	53000000	16000000 N		NO	BSL
85748	Carbazole	48.90	J	96 00		UG/KG	041M5B0201	2 / 9	410 00 - 1400 00	72 00	95	N/A	1100000		N/A	NO	BSL
108907	Chiorobenzene	7 00	J	7 00	l j	UG/KG	04 1M5E0201	1 / 9	12.00 - 83.00	7 00	7	N/A	6300000	150000 h	I N/A	NO	BSL B
219019	Chrysene	160 00	J	510 00	J	LIGIKG	€4 1M5 AU701	3 / 9	41 00 - 140 00	360 00	510	N/A	3600000	99000 0	N/A	NO.	BSL
7440484	Cotiati (Co)	8 30	•	13.4D		MG/KG	Q41M5A0301	7 / 9	0.70 - 1.30	4 97	13 4	N/A	19000	470 N	N'A	NO.	BSL B
7440508	Copper (Cu)	13 10	J	317 00	J	MG/KG	04 1M5A0401	8 / 9	3 10 - 3.10	110.10	317	N¥A	13000	310 1		NO	F.S.L
94742	Di-ri-bulyiphihalate	100 00		106.60		UGMG	041M5A0501	1 / 9	409 90 - 1400 00	100.00	100	N/A	32000000	7900000 1	I N/A	NO	PSL
117840	Di-n-octyl phthalale	22 00	J	22 00	J	LIG/KG	041M5A0501	1 / 9	410 00 - 1600 00	22 00	22	N/A	6300000		N/A	NO.	FISI.
60571	Dieldrin	0.42		7 19	J	UG/KG	041M5A0201	4 / 9	0.20 - 0.81	2.72	7.1	N/A	1400	40 (NO	FISE.
	Endosulfan II	170	J	1 70	J	UG/KG	041M5A0181	1 / 9	0.20 - 9.73	170	1.7	N/A	1990000	47000	N/A	NO.	BSL
72208	Endrin	1 10	J	1 10	J	HO/KG	041M5A0101	1 / 9	0 20 - 0 73	1 18	1.1	N/A	95000		I N/A	NEO	BSL
7421934	Endran aldehyde	0.72	J	0.72	D	UGAKG	041M5A0501	1 / 9	0.20 - 0.73	0.72	0.72	N/A	95000	2300 1		NO	BSL
53494705	Endrin kelone	0.26	J	0.26	,i	UG/KG	041M5A0101	1 / 9	0.21 - 9.91	0.26	0.26	N/A	95000		N/A	CM	BBI.
206440 193395	Fluoranthene Indono(1,2,3-cd)pyrene	71 00 110.00	ز	1100 00 310 00		UG/KG	041M5A0401 041M5A0701	6 / 9	41 00 - 129 00 41 00 - 140 00	399 8 3 203 33	1100 310	N/A N/A	13 0 0000 30000	310000 h 980 d	1	NO NO	BSL BSL
7439976	Mercury (Hg)	0.25	J	100	ا ر	MG/KG	041M5R0201	6 / 9	0.05 - 0.17	061	310	N/A	95	23	N/A N/A	NO	BSL BSL
75092	Methylena chloride	250.00	Ĵ	250.00	J J	UG/KG	041M5A0101	1 / 9	12 00 93 00	250 00	260	N/A	2900000	95000 0		NO	est.
7440020	Nickel (Ni)	1 30	j	93 90	ľ	MG/KG	041M5A0301	8 / 9	5 30 - 5 30	21 24	93.9	N/A	5300	150 h	N/A	NO.	BSL
85018	Phenanthrene	110 00	j :	240 00	, i	UG/KG	041M5A0701	3 / 9	41 00 - 140 00	193 33	2+0	N/A	9500000		N/A	NO	BSL
129000	F'yrene	71 00		730.00		UG/KG	041M580201	6 / 9	41 00 - 120 00	307 00	730	N/A	9500000	730000 N		NO	ESL
7782492	Selenium (Se)	1 50	J	3.68	J	ма/ка	041M5A0101	6 / 9	0 16 - 0 22	2 13	3.6	N/A	1600	39 1	N/A	NO	gist I
7440224	Silver (Au)	0.42	J	5 20	J	MG/KG	041M5B0201	3 / 9	0.24 - 1.60	2 24	5.2	N/A	1608	39 1	N/A	NO	FISL F
7440235	Sodium (Na)	8.60		122 00		MG/KG	041M5A0401	8 / 9	2 50 - 2 60	60 26	122	N/A	N/A	N/A	N/A	NO.	EN
7440280	Tratium (T-)	1 40		1.40		MG/KG	041M5A0501	1 / 9	0.18 - 1.30	140	1.4	N/A	22	55 1	4	NO.	BSL
108883	Foluena	5 00		280 00		IJG/KG	041M5A0401	4 / 9	12 00 - 53 00	102 00	290	N/A	00000000	1500000 1		NO.	BSL
7440622	Variadium (V)	2 20	J	24 00	ال	MG/KG	841M5A0701	7 / 9	0.83 - 1.10	14.34	24	N/A	2200	55 1	N/A	NO.	BSL
75014	Vinyl chloride	42.00		42 00		LIGYKG	041M580201	1 / 9	4 00 - 53 00	42.00	42	N/A	12000	3400 0		NO	95L
319846	aipha-BHC	0.00	j	1.60	ل	UG/KG	041M5A0501	4 / 9	0 16 - 0 45	0.77	1.8	N/A	3500		N/A	NO	BSL BOX
5103719	alona-Chiordane	0 19 110 00	j	1 60		UG/KG	041M5A0501	1 / 9	0.10 - 0.36	0.83	15	NA NA	63000	1900 (NO NO	BSL NTX
117817	bis(2-Chloroethoxy)methane	690.00	J	110 00	J.	UG/KG	041M5A0501 041M5A0701	3 / 9	400 00 - 1400 00 410 00 - 1400 00	110 00	1500		N/A 1600000	45000 C	N/A !	NO NO	BSL BSL
	bis(2-Ethylhexyl)phthalate (BEHF) gamma-Chiordane	0.23	J	1500 90 1 30	J	UG/KG LUG/KG	941M5A0701	3 / 9	410 00 - 1400 00 0	1163 33 0 84	1500	N/A N/A	1600000 63000	1800 0		NO NO	BSL
7429905	Alumanum (Ali	491.00		18700 00	ı "	MG/KG	041M5A0101	9 / 9	NAV	7536 57	18700	N/A	320000		N/A	NO.	BSL
	Barum (Ba)	130	J	150 00		MG/KG	041MSA0501	9 / 3	NAV	34 67	150	N/A	22000		N/A	NO	BSL
7440439	Cadmium (Cd)	0.27	j	220 00		MG/KG	041M5A0701	9 / 9	NAV	29 10	220	N/A	320		N/A	NO.	BSL
7440702	Calcium (Ca)	109 00	Ĵ	71000 00		MC/KG	041M5A0201	9 / 9	NAV	11425 56	71000	N/A	N/A	N/A	NA	NO.	EN
7440473	Chromium (Cr)	2.80	_	416 00		MG/KG	041M5,AQ501	9 / 9	NAV	67 25	415	N/A	1600	23 h		NO	BSL
7432896	son (Fe)	306 00		9830 00		MG/KG	041M5/40801	9 / 9	NAV	4041 33	9930	NA	NA	NA	N/A	NO	EN
7439921	Lead (Pb)	11 50		461.00	J.	MS/KG	041M5B0201	9 / 9	NAV	190 40	481	N/A	400	400		NO	ASL
7439954	Magnesium (Mg)	27 10	3	5950 00		MG/KG	041M5A0701	0 / 9	NAV	1111 93	5960	N/A	N/A	N/A	NA	NO	EN
	Manganese (Mn)	1.40		205 00		MG/KG	041M5A0701	9 / 9	NAV	5132	205	N/A	15000	1100 1	4	NO.	PSL P
	Potassium (K)	10.50	ل	413 99	J	MG/KG	04 1M5A0501	9 / 9	NAV	172 71	413	N/A	N/A	N/A	N/A	NO.	EN I
7449666	Zine (Zn)	2.90	L	2290 00	L	MG/KG	041M5A0701	9 / 9	NAV	487 12	2290	N/A	95000	2300 h	N/A	NO	BSL.

⁽¹⁾ Mannunymaximum gelested concentration

Deletion Reason Below Screening Levels (BSL) Background Levels (BKG) No Taxiony Information (NTX) Essenhal Numera (EN)

Elefonomis : N/A ≈ Not Applicable NAV ≈ Not Available

COPC = Chenycal of Peternal Concern

ARAR/TBC = Applicable or Releveant and appropriate Requirement/ 16 Be Considered

J = Estimated Value C = Carolnogenic

N Noncarolinogenis

⁽²⁾ Maximum concentration used as screening value
(3) No background concentrations were developed for this media.

⁽⁴⁾ PRFIs for one trepresser scenario calculated based on equisors and parameters presented in Section 8 of this report. (5) PBCs for residential soli presented in Region III Res-Based Concentration Tables, UNEPA 1888) (6) Pational Color (7) Pational Color (8)
TADLE 10-2-18 OCCURRENCE, DISTRIBUTION, AND SELECTION OF CHEMICALS OF POTENTIAL CONCERN NAS PENSACOLA SITE 41

Scenario Timeframe: Current and Future Medium: Surface Water Exposure Medium: Surface Water Exposure Point: Wetlands 5A and 5B Surface Water

		(1)		(4)	· · · · ·		i ·				(2)		(3)	(n e		(5)
CAS Number	Chemical	Minimum Concentration	Minimum Qualifier	(1) Maximum Concentration	Maximum Qualifier	Units	Location of Maximum Concentration	Detection Frequency	Range of Detection Limits	Mean	Concentration Used for Screening	Background Value	Adolescent Site Trespasser PRG	Tap Water RBC	Potential ARAR/TBC Source	COPC Flag	Rationale for Contaminant Delection or Selection
75343	1.1-Dichloroethane	1.00		3.00		UG/L	041W5B0201	2 / 7	NAV	2.00	3	N/A	7300	80	N/A	NO	BSL
95578	2-Chlorophenol	1.00	J	1.00	J	UG/L	041W5B0201	1 / 7	NAV	1.00	1	N/A	82	18	N/A	NO	BSL
59507	4-Chloro-3-methylphenol	1.00	J	1.00	J	UG/L	041W5B0201	1 / 7	NAV	1.00	1	N/A	N/A	N/A	N/A	NO	NTX
67641	Acetone .	8.00	J	9.00	ا ر	UG/L	041W5A0601	2 / 7	NAV	8.50	9	N/A	21000	370	N/A	NO	BSL
7429905	Aluminum (Al)	153.00	J	2060.00	[]	UG/L	041W5B0201	6 / 7	NAV	707.33	2060	N/A	120000	3700	N/A	NO	BSL
7440360	Antimony (Sb)	3.10	J	3.10		UG/L	041W5A0501	1 / 7	NAV	3.10	3.1	N/A	48	1.5	N/A	NO	BSL
7440393	Barium (Ba)	13.60	J	41.40	[UG/L	041W5A0101	7 / 7	NAV	26.79	41.4	N/A	8300	260	N/A	NO	BSL
75274	Bromodichloromethane	2.00		2.00		UG/L	041W5A0601	1 / 7	NAV	2.00	2	N/A	110	0.17	N/A	NO	BSL
7440439	Cadmium (Cd)	3.20	J	19.00	i	UG/L	041W5B0201	2 / 7	NAV	11.10	19	N/A	60	1.8	N/A	NO	BSL
7440702	Calcium (Ca)	5460.00		28600.00		UG/L	041W5A0501	7 / 7	NAV	15637,14	28600	N/A	N/A	N/A	N/A	NO	EN
67663	Chloroform	1.00		1.00		UG/L	041W5A0601	1 / 7	NAV	1.00	1	N/A	730	0.15	N/A	NO	BSL
7440473	Chromium (Cr)	11.40		40.80		UG/L	041W5B0201	2 / 7	NAV	26.10	40.8	N/A	360		N/A	NO	BSL
7440484	Cobalt (Co)	3.00		3.90	J	UG/L	041W5B0201	2 / 7	NAV	3.45	3.9	N/A	7100	220	N/A	NO	BSL
7440508	Copper (Cu)	7.20	J	52.70		UG/L	041W5B0201	4 / 7	NAV	25.20	52.7	N/A	4800	150	N/A	NO	BSL
124481	Dibromochloromethane	2.00		2.00		UG/L	041W5A0601	1 / 7	NAV	2.00	2	N/A	200	0.13		NO	BSL
959988	Endosulfan i	0.03	J	0.03		UG/L	041W5A0101	1 / 7	NAV	0.03	0.03	N/A	780		N/A	NO	BSL
7439896	Iron (Fe)	357.00	J	2890.00	1 1	UG/L	041W5B0201	7 / 7	NAV	1368.14	2890	N/A	N/A	N/A	N/A	NO	EN
7439921	Lead (Pb)	2.80	J	94.10		UG/L	041W5B0201	6 / 7	NAV	25.17	94.1	N/A	15	15	N TTAL	YES	ASL
7439954	Magnesium (Mg)	2090.00	J	6710.00	i l	UG/L	041W5A0501	7 / 7	NAV	3294.29	6710	N/A	N/A	N/A	N/A	NO	EN
7439965	Manganese (Mn)	20.50		109.00]	UG/L	041W5B0201	7 / 7	NAV	57.20	109	N/A	2400	73	N/A	NO	BSL
7439976	Mercury (Hg)	0.14	J	0.14	1	UG/L	041W5B0201	1 / 7	NAV	0.14	0.14	N/A	36		N/A	NO	BSL
621647	N-Nitroso-di-n-propylamine	1.00	J	1.00	1	UG/L	041W5B0201	1 / 7	NAV	1.00	1	N/A	1.1	0.0096	D N/A	NO	BSL
7440097	Potassium (K)	1050.00	J	5580.00		UG/L	041W5A0501	7 / 7	NAV	2592.86	5580	N/A	N/A	N/A	N/A	NO	EN
129000	Pyrene	2.00	l	2.00		UG/L	041W5B0201	1 / 7	NAV	2.00	2	N/A	54	110	N/A	NO	BSL
7440235	Sodium (Na)	7710.00		21300.00		UG/L	041W5A0501	7 / 7	NAV	12290.00	21300	N/A	N/A	N/A	N/A	NO	EN
7440280	Thallium (TI)	3.50	J	3.50		UG/L	041W5A0101	1 / 7	NAV	3.50	3.50	N/A	8.3	0.26	N/A	NO	BSL
79016	Trichloroethene	10.00		10.00		UG/L	041W5B0201	1 / 7	NAV	10.00	10	N/A	280	1.6		NO	BSL
7440622	Vanadium (V)	4.80	J	5.20	J	UG/L	041W5B0201	2 / 7	NAV	5.00	5.2	N/A	830		N/A	NO	BSL
75014	Vinyl chloride	6.00		6.00	[]	UG/L	041W5B0201	1 / 7	NAV	6.00	6	N/A	3.1	0.019		YES	ASL
It I	Zinc (Zn)	55.80		236.00		UG/L	041W5A0601	5 / 7	NAV	136.44	236	N/A	36000	1100	N/A	NO	BSL
	bis(2-Ethylhexyl)phthalate (BEHP)	2.00	J	5.00		UG/L	041W5A0401	5 / 7	NAV	2.80	5	N/A	110	4.8	_	NO	BSL
156592	cis-1,2-Dichloroethene	1.00		1.00	<u> </u>	UG/L	041W5A0601	1 / 7	NAV	1.00	. 1	N/A	670	6.1	N/A	NO	BSL

(1) Minimum/maximum detected concentration

(2) Maximum concentration used as screening value.

(3) PRGs for adolescent site trespasser scenario calculated using equations and parameters presented in Section 8 of this report.

(4) Tap Water RBCs are presented in Region III Risk-Based Concentration Tables, (USEPA, 1998).

(5) Rationale Codes

Selection Reason: Above Screening Levels (ASL)

Deletion Reason: Below Screening Levels (BSL)

Background Levels (BKG) Essential Nutrient (EN) No Toxicity Information (NTX) Definitions: N/A = Not Applicable

NAV = Not Available COPC = Chemical of Potential Concern

ARAR/TBC = Applicable or Releveant and Appropriate Requirement/ To Be Considered

J = Estimated Value C = Carcinogenic

N = Noncarcinogenic

TTAL = Treatment Technique Action Level

TABLE 10-2-19 CALCULATION OF CANCER RISKS REASONABLE MAXIMUM EXPOSURE NAS PENSACOLA SITE 41

Scenario: Timeframe: Current and Future

Medium: Surface water

Exposure Medium: Surface water
Exposure Point: Wetlands 5A and 5B
Receptor Population: Trespasser
Receptor Age: Adolescent

	Exposure Route	Chemical of Potential Concern	Medium EPC Value	-	Route EPC	EPC Selected for Hazard Calculation	Intake (Cancer)	Intake (Cancer) Units	Cancer Slope Factor	Slope Factor Units	Cancer Risk
Permal Vinyl chloride 0.006 MG/L N/A M 5.36E-07 mg/kg-day 2.375 (mg/kg-day) ⁻¹ 1.27E-06	Ingestion	Vinyl chloride	0.006	MG/L	N/A	М	3.53E-07	mg/kg-day	1.9	(mg/kg-day) ⁻¹	6.71E-07
	Dermal	Vinyl chloride	0.006	MG/L	N/A	М	5.36E-07	mg/kg-day	2.375	(mg/kg-day) ⁻¹	1.27E-06

Total Risk 1.94E-06

EPC = Exposure Point Concentration

MG/L = Milligram per Liter

M = Medium-specific EPC selected for risk calculation.

This additional exposure was presented as an "alternate" source within the constructs of the Lead Model. The standard default assumptions in the Lead Model were retained to simulate background exposures, in order to provide a conservative estimate of daily intake from sources unrelated to Wetland 5.

The assumption was made that this child would incidentally ingest 0.05 liters of surface water and 100 mg of sediment during every visit, represented in the Lead Model as an alternate source. The bioavailability of lead ingested from the alternate source (Wetland 5 sediment and surface water) was equal to that of drinking water lead ingested from the standard residential default source. Assuming incidental ingestion of 0.05 liters of surface water and 100 milligrams of sediment once per week with a lead concentrations of 94.1 μ g/L (surface water) and 481 mg/kg (soil), the annual alternate source exposure was estimated to be 7.52 μ g lead/day. Table 10-2-19 presents the lead model output for a child 6 to 7 years old under these exposure conditions.

Figure 10-2-4 shows the probability percentage of blood lead levels for the hypothetical child receptor. Based on this model output, the geometric mean blood level is estimated to be $3.3 \mu g/dL$, and the probability of blood lead levels in excess of $10 \mu g/dL$ is 0.82%. USEPA generally considers media concentrations that result in probability percentage estimates of 5% or less sufficiently protective of potential child receptors. As a result, sediment and surface water lead concentrations at Wetland 5A would not require specific action under the hypothetical exposure scenario.

10.2.5.7 Remedial Goal Options

RGOs were developed in accordance with USEPA Region IV Supplemental Guidance to RAGS Bulletin 5, Remedial Options (USEPA, 1996a). Vinyl chloride was the only COC identified at this wetland. Because vinyl chloride was identified as a COC for surface water based only on cancer risk estimates, only risk based RGOs were developed. The maximum vinyl chloride concentration of 0.006 mg/L in surface water resulted in a risk estimate of 1.94E-6, as shown in Table 10-2-20. Using a linear ratio, 0.0031 mg/L would correspond with a target risk of 1E-6. Therefore, 0.031 mg/L and 0.31 mg/L represent target risks of 1E-5 and 1E-4, respectively.

Section 10: Site-Specific Evaluations

August 31, 2000

Table 10-2-20 Lead Model (Version 0.99d) Inputs and Results NAS Pensacola, Wetland 5 Pensacola, Florida

AIR CONCENTRATION: $0.100~\mu g$ Pb/m3 DEFAULT

Indoor AIR Pb Conc: 30.0 percent of outdoor.

Other AIR Parameters:

Age	Time Outdoors (hr)	Vent. Rate (m3/day)	Lung Abs. (%)
0-1	1.0	2.0	32.0
1-2	2.0	3.0	32.0
2-3	3.0	5.0	32.0
3-4	4.0	5.0	32.0
4-5	4.0	5.0	32.0
5-6	4.0	7.0	32.0
6-7	4.0	7.0	32.0

DIET: DEFAULT

DRINKING WATER Conc: $4.00~\mu g$ Pb/L DEFAULT

WATER Consumption: DEFAULT

SOIL & DUST:

Soil: constant conc. Dust: constant conc.

Soil (µg Pb/g)	House Dust (µg Pb/g)
200.0	200.0
200.0	200.0
200.0	200.0
200.0	200.0
200.0	200.0
200.0	200.0
200.0	200.0
	200.0 200.0 200.0 200.0 200.0 200.0 200.0

Additional Dust Sources: None DEFAULT

Alternative Source Intake: Wetland 5A sediment and surface water

6-7: 7.52 μ g Pb/day

MATERNAL CONTRIBUTION: Infant Model Maternal Blood Conc; 2.50 µg Pb/dL

CALCULATED BLOOD Pb and Pb UPTAKES:

	Blood Level	Total Uptake	Soil + Dust Uptake	Diet Uptake	Water Uptake	Alt. Source Uptake	Air Uptake
YEAR	$(\mu g/dL)$	$(\mu g/day)$	(μg/day)	$(\mu \mathbf{g}/\mathbf{day})$	(μg/day)	(μg/day)	(μg/day)
	*****		provide an option region and an last on our age	*******			*****
0.5-1:	4.1	7.60	4.68	2.54	0.37	0.00	0.02
1-2:	4.5	10.93	7.36	2.63	0.91	0.00	0.03
2-3:	4.2	11.44	7.44	2.98	0.96	0.00	0.06
3-4:	4.0	11.48	7.53	2.90	0.99	0.00	0.07
4-5:	3.4	9.65	5.69	2.85	1.04	0.00	0.07
5 -6:	3.0	9.39	5.16	3.03	1.11	0.00	0.09
6-7:	3.3	12.88	4.82	3.31	1.11	3.55	0.09

Figure 10-2-4 Probability Plots for Blood Lead Levels Wetland 5

Final Remedial Investigation Report NAS Pensacola Site 41 Section 10: Site-Specific Evaluations August 31, 2000

This page intentionally left blank.

10.2.6 Conclusions and Recommendations

Wetland 5A was sampled as a Group B wetland during Phase IIB/III. Wetland 5B was classified with Group D. The Group D wetlands appear as man-made drainage ditches and are in developed areas of the base. Due to their channelized features and proximity to developed areas, they have limited ecological receptors. As proposed in the approved RI/FS SAP Addendum, (EnSafe, 1997), Wetland 5B was eliminated for further ecological risk characterization.

Phase IIB/III assessment endpoint and triad analyses revealed that sediment and surface water were acceptable at Wetland 5A.

The HHRA identified lead as a sediment COPC, and lead and vinyl chloride as surface water COPCs at Wetlands 5A and 5B. No fish tissue COPCs were identified for these wetlands. Only vinyl chloride in surface water was considered under the adolescent trespasser scenario, based on its contribution to cumulative risk estimates for this wetland. Under USEPA guidelines, sediment and surface water lead concentrations at Wetland 5A would not require specific action under the hypothetical exposure scenario. Since Wetlands 5A and 5B have no recreational value for swimming, the potential for incidental ingestion of surface water is considered low. Also, these wetlands have generally restricted public access. Because of the limited overall ecological risk at Wetlands 5A and 5B, the restricted access to human trespassing within these areas, and the limited potential for surface water ingestion by adolescent trespassers, no further action is recommended for Wetlands 5A and 5B.

Final Remedial Investigation Report NAS Pensacola Site 41 Section 10: Site-Specific Evaluations August 31, 2000

This page intentionally left blank.

10.3 Wetland 3

10.3.1 Site Description

Wetland 3 lies west of the A.C. Read golf course, on the northeastern edge of Site 1. Wetland 3 drains via a culvert running under John Tower Road, and beneath a golf course fairway into Wetland 4D.

Parsons and Pruitt (USEPA, 1991) described this area as a palustrine system with predominantly scrub-shrub emergent vegetation. The area contains sweet bay magnolias (Magnolia virginiana), cattails (Typha latifolia), and sawgrass (Cladium jamaicense). A shallow sheet flow of water drains from the southwest to the northeast across this wetland, before discharging into Wetland 4D. Groundwater seepage and surface water drainage occurs in this area, and the presence of iron is visibly apparent. Surface water at this wetland ranges from 0.25 to about 1 foot in depth. Sediment is highly organic, with TOC detected up to 24%.

The IR site potentially affecting Wetland 3 is Site 1 (Sanitary Landfill), used from the mid-1950s until 1976 as the predominant disposal site for all solid wastes generated on the base (NESA, 1983). The Site 1 RI report (E/A&H, 1996) determined that the groundwater sample collected from the monitoring well closest to Wetland 3 exceeded surface water criteria. Based on this exceedance, a groundwater interception trench is currently being installed upgradient of the wetland to prevent the shallow groundwater from discharging to the wetland. The recovered groundwater will be discharged to the sewer line for treatment at the wastewater treatment plant.

10.3.2 Nature and Extent

The methods for evaluating nature and extent are presented in Section 6. Figure 10-3-1 denotes the Phase IIA Wetland 3 sampling locations.

Sediment

Nineteen metals plus cyanide were detected in Wetland 3 sediment samples. Six metals — arsenic (12.8 ppm, 35.5 ppm, and 27.1 ppm at locations 0302, 0303, and 0307), cadmium (2.2 ppm, 5.8 ppm, 2.9 ppm, 2.0 ppm, 1.8 ppm, and 72.7 ppm at locations 0101, 0302, 0303, 0305, 0306, and 0307), chromium (196 ppm at location 0307), copper (68.8 ppm at location 0307), lead (36.3 ppm and 101 ppm at locations 0101 and 0302), and zinc (297 ppm at location 0307) — exceeded sediment benchmark levels at Wetland 3. Thirteen pesticides were detected in Wetland 3 sediment samples: 4,4'- DDT and its metabolites, aldrin, alpha/beta/delta-BHC, dieldrin, endosulfan sulfate, endrin/endrin ketone, and alpha/gamma-chlordane. 4,4'-DDD (400 ppb), 4,4'-DDE (120 ppb), and 4,4'-DDT (220 ppb) exceeded basewide levels at sample location 0103. All other concentrations of 4,4'-DDT and its metabolites were below basewide levels.

Alpha-chlordane exceeded its sediment benchmark level (1.7 ppb) at location 0103 (2.2 ppb). Dieldrin exceeded its benchmark level (0.72) ppb at location 0302 (6.0 ppb). The PCB Aroclor-1260 at location 0302 (350 ppb) also exceeded its sediment screening level (21.6 ppb). Twenty-one SVOCs were detected in Wetland 3 sediment samples, many of which were high- and low-molecular weight PAHs. Other SVOCs detected included four different phthalate esters, as well as 1,2- and 1,4-dichlorobenzene. Four PAHs exceeded sediment benchmark levels, including acenaphthene (98 ppb) at location 0303, benzo(a)pyrene (180 ppb) at location 0307, and fluorene (95 ppb) and naphthalene (160 ppb) at location 0303. The phthalate ester bis(2-ethylhexyl)phthalate also exceeded its benchmark level at locations 0305 (210 ppb) and 0307 (270 ppb), respectively. Five VOCs were detected at Wetland 3 including 2-butanone, acetone, benzene, chlorobenzene, and toluene. Acetone is a common laboratory contaminant.

Table 10-3-1 shows the Wetland 3 Phase IIA sediment sample results (frequency of detection, range of detected concentrations, and average detected concentration). Table 10-3-2 compares detected concentrations at each sample location to sediment benchmark levels, and lists calculated HQs for each parameter. Only the detected parameters with benchmark levels are presented in Table 10-3-2. The HQs will be discussed further in the ecological risk section.

Table 10-3-1
Phase IIA Detected Concentrations in Wetland 3 Sediments

Parameter	Frequency of Detection	Range of Detected Concentrations	Average Detected Concentration
Inorganics (mg/kg)			
Aluminum (Al)	10/10	426 - 25600	4517.9
Antimony (Sb)	3/10	0.23 - 2.4	1.02
Arsenic (As)	9/10	0.56 - 35.5	9.63
Barium (Ba)	10/10	1.6 - 438	53.19
Cadmium (Cd)	7/10	0.52 - 72.7	12.56
Calcium (Ca)	10/10	350 - 31800	7325.99
Chromium (Cr)	10 /10	1.5 - 196	26.13
Cobalt (Co)	1/10	2.5	2.5
Copper (Cu)	5/10	2.2 - 68.8	19.91
Cyanide (CN)	2/10	1.5 - 5.1	3.3
Iron (Fe)	10/10	1940 - 386000	60030
Lead (Pb)	10/10	2.4 - 101	20.61
Magnesium (Mg)	9/10	23.2 - 1420	272.79
Manganese (Mn)	10/10	2.3 - 1270	152.08
Nickel (Ni)	1/10	0.78	0.78
Potassium (K)	7/10	10.9 - 468	97.24
Selenium (Se)	3/10	0.44 - 2	1.41
Sodium (Na)	6/10	4.5 - 291	102.2
Vanadium (V)	10/10	1.2 - 160	21.24
Zinc (Zn)	10/10	1.2 - 297	37.42
Pesticides and PCBs (µg/kg)			
4,4'-DDD	10/9	1.3 - 400	49.11
4,4'-DDE	7/9	0.84 - 120	21.59
4,4'-DDT	9/9	0.32 - 220	27.08
Aldrin	3/9	0.23 - 1	0.64
alpha-Chlordane	8/9	0.17 - 2.2	0.76
alpha-BHC	3/9	0.19 - 1.2	0.61
Aroclor-1260	1/10· F 2 7 7 19	350 4 * 1 - 1400	350
beta-BHC	1/9	0.7	0.7
delta-BHC	2/9	0.18 - 0.25	0.22
Dieldrin	1/9	6	6

Table 10-3-1
Phase IIA Detected Concentrations in Wetland 3 Sediments

Parameter	Frequency of Detection	Range of Detected Concentrations	Average Detected Concentration
Pesticides and PCBs (µg/kg)			
Endosulfan sulfate	2/9	1.5 - 1.7	1.6
Endrin	4/9	0.53 - 1.8	1.16
Endrin ketone	1/10	1.4	1.4
gamma-Chlordane	3/9	0.11 - 1.7	0.78
SVOCs (μg/kg)			
1,2-Dichlorobenzene	1/10	410	410
1,4-Dichlorobenzene	4/10	58 - 1400	754.5
Acenaphthene	1/10	98	98
SVOCs (µg/kg) continued			
Benzo(a)anthracene	1/10	23	23
Benzo(a)pyrene	2/10	48 - 180	114
Benzo(b)fluoranthene	1/10	85	85
Benzo(g,h,i)perylene	1/10	46	46
Benzo(k)fluoranthene	1/10	27	27
Butylbenzylphthalate	1/10	23	23
Chrysene	1/10	32	32
Di-n-butylphthalate	2/10	36 - 77	5 6.5
Di-n-octyl phthalate	2/10	45 - 45	45
Diethylphthalate	1/10	47	47
Fluoranthene	1/10	46	46
Fluorene	1/10	95	95
Indeno(1,2,3-cd)pyrene	1/10	31	31
Naphthalene	1/10	160	160
Phenanthrene	1/10	24	24
Phenol	1/10	55	55
Pyrene	1/10	43	43
bis(2-Ethylhexyl)phthalate (BEHP)	4/10	76 - 270	161
VOCs (μg/kg)			
2-Butanone (MEK)	1/7	180	180
Acetone	1/8	1100	1100
Benzene	2/10	18-34	26
Chlorobenzene	6/10	2-620	182.33
Toluene	1/10	2	2

Notes:

The total number of samples has been reduced by the number of rejected samples. However, note that no positive results rejected. All results are in micrograms per kilogram (μ g/kg) or parts per billion (ppb), except for metals which are in milligrams per kilogram (mg/kg) or parts per million (ppm).

Table 10-3-2 (1) Wetland 3 Phase IIA Sediment Concentrations Compared to Benchmark Levels

Sample Location	Parameter	Detected Concentration	Sediment Benchmark Value (SBV)	на	SBV - HQ Reference
DO WILLIAM		Tellerintanan	1007		(ca) an price
No. Of Concession, Name of Street, or other					
COLUMN TO SERVE	*******		100		
District to	~	200	10.00	1000	_
Gár in		94	100	1000	100
She Chan	a Astron	100	111	NUMBER OF	K
Name of Co.	411	19.6	10	1940	1.44
Sales M.		34	944	1000	- 10
(Stead)	∞ 1811	344	191	1940	1466
Annual Print		140	AJ.		-00
Course prices		MA AL	AL.		4.5
- M-		ALCO	774	-	100
Del Water			1 10000		100
001M000302					
4,4'-DDD (UG)	KG)	6.2	1,22	5.08	0
4,4'-DDE (UG)		25 J	2.07	7.2)	ъ
4.4'-DDT (UG/		133	119	1,09	8
alpha-Chlordar		D.51 J	1.7	0.50	5
Arsenia (MG/k		164	7.24	0.22	al fr
Chrémium (Mo		24	52,3	0.05	de
Lead (MG/KG)		6.5 J	302	0.18	B.5.
Zinc (MG/KG)		6	124	0.05	ab
SELMINATE !					
Large Co.		Control Co.	100	Contract No.	- V
1000000	-		100		
All other disk		100	100	10.00	0000
-	- Dellam	10.0	100	1500	
Donner w	000	100	- Carrier	1000	100
Tree Miles	-34.1400	100		1000	246
And parison	AMPAGE	100	146	Am.	46
041M030101					
4.4'-DDD (UG)	KG)	14 D.J	1.22	11 48	ь
4.4'-DDE (UG)		21 04	2,07	10.14	ь
4.4'-DDT (UG/		75 DJ	1 19	6.30	ь
alpha-Chlordar		D.88 T	1.7	0.40	a
Arsenic (MG/k		18	7.24	0,25	3 0
	icone: (UG/KG)	23 1	74.8	0,31	ti.
Benzo(a)pyren		48	88.8	0.54	6
Cadmium (MC		0.52 4	0.68	0.76	6
Chromium (MC		4.5	52,3	0.09	e b

Notes:

⁽a) USEPA Screening Concentration for Scriment - EPA SVVs
(b) FOEP Sediment Quality Assessment Guidelines - FDEP SOAGS
Some of the numbers in the table may vary because of rounding.

Table 10-3-2 (2) Wetland 3 Phase IIA Sediment Concentrations Compared to Benchmark Levels

Sample Location	Parameter	Detected Concentration	Sediment Benchmark Value (SBV)	На	SBV : HO
Chrysena (UD	ik(G)	32 4	los	0.30	ь
Copper (MG/r		22 J	(B.7)	012	a (7)
Endrin (UG/K)		D 58 J	3.3	DE/O	a
Fluoranthene		46	113	0.41	ь
Lead (MG/KG	Water Control of the	128 J	102	6 A 8	аb
Phenanthrene		24 1	86.7	0,24	b
Pyrene (UC/K		43.	153	0,28	h
Zinc (MG/KG)	9 43	6.4 (124	0.05	4 B
-			THEFT	100	
A Facility Lab	-	100	0.1	28.61	
Addition has	MI. L. I	J.B.J.	7.90	1,814	100
-	ACCRECATE OF	74.96-71	100		
4000		147.6		1.480	
Approval (DOM:	14,55	TANK TO SERVICE	19.0%	- 21
1505.80		94		31M	41
Inne in	mi.	-48 to	10 A 71	2944.	-
CONTRACT OR	PA	81	AT I	4.00	44
COMMITTEE STATE		TE	1041	OR	
-		10	451	200	- A
Aprel 1889	ma home	3.61		3.00	100
That profes		J#U1		700	1.6
Service.		TEAS.		-	
M1M030301					
4.41-DDD (UG	(MG)	1474	(1.22)	1.07	- 10
4,4'-1313F; (U/3	WG)	DUBBIO	2.07	D-41	16
4,4'-DDT (UG		D.48 J	1.19	E 40	b
Acenaphthene	(UG/KG)	5)#	671	14.61	b
Antimony (MC	3/KG)	D 44 J	/(2	0.04	(3)
Arsenic (MG/	kg)	35.5	7.24	4 90	a,6
Cadmium (M)	3/KG)	S W	0 68	1.16	.5
Chromum (M	G/KG)	7.3	523	D-14	30
Copper /MG/	KG)	4.6	187	0.75	ab
Endrin (UG/K	G)	181	3.3	0.55	1.8
Flumene (UG	(KG)	1/5	21.2	4.48	b
Lead (MG/KG	9)	11.5	30 Z	0.38	ab
Naphthalana	(UG/KG)	160	34.0	4 62	16.
Zinc (MG/KG)		3.4	124	0.63	an
41M030401					
#42NDD (00	(KC)	15 P	122 22 22	(1)	, i
44 DDE ING		0.0	207	043	2

Notes:

(a) LISEPA Screening Contentration for Sediment - EPA SVVs

(b) FDEP Sediment Quality Assessment Guidelines - FIREP SQAGs

Some of the numbers in the lable may vary because of rounding

Table 10-3-2 (3) Wetland 3 Phase IIA Sediment Concentrations Compared to Benchmark Levels

Sample Location	Parameter	Detected Concentration	Sedimont Benchmark Value (SBV)	но	SBV - HQ Reference
COLUMN TWO	440000000	- WILE	3.80 mg	Aprelli	Sin son
-	5000	841.34(8)	5 Th.	340	
766000	-0.00	344	124.7	-	-
1	AND DESCRIPTIONS	N S. T.	MILITAN SER	1 1×c	1800
January Per	ME. TO THE OWNER OF THE OWNER OWNER OF THE OWNER O	100	2001	-	140
Total Control	+ 1-0*GC	315	THE REAL PROPERTY.	im.	
1946 IMENTS		18	100	1 8 3	3460
April Milita		3.00 (1974	1,694	467
SH HER		100	.04	100	190
041M030501				-	
4,4-000 (UG/K	(G)	351	1,22	2.87	b.
Antimony (MG/		0,23 J	12	0.02	а
Arsenic (MG/KC		3.5	7.24	0.48	a b
bis (2 Ethylhexy)	phthalate (BEHP) (UG/KG)	210.4	182	1.45	b
Badmum (MG/		-2	0.58	2.94	tr
Ehramium (MG.		5.3	52.3	0.10	2.6
Endrin (UG/KG)		133	3.3	10 39	a
Endan ketone (UG/KG)	14 1	3.3	0.42	a
Lead (MG/KG)		2.4	30.2	9.08	a b
Zine (MG/KG)		1.2	124	0.01	9 b
041M030601				10.717	220
4.4 -DDD (UG/K	(G)	77 D	1.22	6.31	ď
4.4'-DDE (UG/K		2.5 J	2.07	121	ь
4,440DT (UG/K		1.9 J	1.19	1.60	b
aipha-Chlordane	7	0.69 J	1.7	0.41	
Arsenio (MG/KC	The state of the s	2.2	7.24	0.30	ab
	phthelate (BEHP) (UG/KG)	88 J	182	9.48	b
Cadmium (MG/		1.8	0.68	2.65	b
Chromium (MG	- 1000000000000000000000000000000000000	4.9	52,3	0.09	аb
gamma-Chlorda		0.54	17	0.32	a
Lead (MG/KG)		8	30.2	Q.26	ab
Zinc (MG/KG)		6.3	124	0.05	ab
041M030701		sin V		1996.	
4 4'-DDD (UG/K	(G)	6.8 J	1.22	5 57	10
4.4" DDT (UG/K		L 40 d	1 19	0.79	b
alpha Chlordans		0.45 J	(7	0.26	ä
Arsenic (MG/K)	100000	27.1	7 22	3.74	a b
Benzo(a)pyrene		180	88.5	2.03	ь
)phthalate (8EHP) (UG/KG)	270 J	182	1,48	bx
Cadmum (MG/		72.7	0.68	106.91	b

Notes:

⁽a) USEPA Screening Concentration for Sediment - EPA SWs
(b) FDEP Sediment Quality Assessment Guidelines. FDEP SQAGs Some of the humbers in the labte may vary because of rounding

Table 10-3-2 (4) Wetland 3 Phase IIA Sediment Concentrations Compared to Benchmark Levels

Sample Location Parameter		Detected Concentration	Sediment Benchmark Value (SBV)	рн	SBV - HQ Reference
Chromium (MC	G/KG)	196	52.3	3.75	a b
Copper (MG/K	(G)	68.8	18.7	3.68	a b
Lead (MG/KG))	18.7	30.2	0.62	a b
Zinc (MG/KG)		297	124	2.40	аb

 ⁽a) USEPA Screening Concentration for Sediment - EPA SVVs
 (b) FDEP Sediment Quality Assessment Guidelines - FDEP SQAGs

Surface Water

Surface water samples were collected at locations 0101, 0102, 0103, 0301, 0302, 0303, and 0304. Sixteen metals were detected in Wetland 3 surface water samples. The surface water quality criteria for aluminum (87 ppb) and iron (1,000 ppb) were exceeded at all seven sample locations (170 ppb and 8,080 ppb at location 0101, 175 ppb and 8,430 ppb at location 0102, 98.6 ppb and 7,810 ppb at location 0103, 149 ppb and 17,900 ppb at location 0301, 2,150 ppb and 59,600 ppb at location 0302, 951 ppb and 176,000 ppb at location 0303, and 211 ppb and 21,500 ppb at location 0304). Cadmium (3.4 ppb) and lead (20.3 ppb) exceeded criteria at sample location 0302, while at sample location 0303, cadmium (3.8 ppb), copper (9.6 ppb), and lead (7.1 ppb) exceeded criteria. Lead (1.9 ppb) was also exceeded at sample location 0103. Endrin ketone, was detected at location 0302 at a concentration (0.25 ppb) above its surface water criteria (0.0023 ppb). Aroclor-1260 (0.5 ppb) was also detected at location 0302 above its criteria (0.014 ppb). Three SVOCs, naphthalene, and 1,2- and 1,4-dichlorobenzene were detected in Wetland 3 surface water below their respective water quality criteria. Four VOCs were detected in Wetland 3 surface water, including benzene, chlorobenzene, methylene chloride, and cis-1,2-dichloroethene. No VOCs exceeded any surface water quality standard. Methylene chloride is a common laboratory contaminant.

Table 10-3-3 shows the Wetland 3 Phase IIA surface water sample results (frequency of detection, range of detected concentrations, and average detected concentration). Table 10-3-4 compares detected concentrations at each sample location to surface water quality criteria and lists calculated HQs for each parameter. Only the detected parameters with water quality criteria are presented in Table 10-3-4. The HQs will be further discussed ecological risk section.

Table 10-3-3
Phase IIA Detected Concentrations in Wetland 3 Surface Water

Parameter	Frequency of Detection	Range of Detected Concentrations	Average Detected Concentration
Inorganics (μg/L)			
Aluminum (Al)	7/7	98.6 - 2150	557.8
Antimony (Sb)	2/7	3 - 3.3	3.15
Arsenic (As)	4/7	2.7 - 48.9	18
Barium (Ba)	7/7	27.6 - 56.8	37.61
Cadmium (Cd)	2/7	3.4 - 3.8	3.6
Calcium (Ca)	717	22900 - 32600	27800
Chromium (Cr)	2/7	8.7 - 9.3	9
Copper (Cu)	2/7	4.7 - 9.6	7.15
Iron (Fe)	7/7	7810 - 176000	42760
Lead (Pb)	3/7	1.9 - 20.3	9.77
Magnesium (Mg)	7/7	1540 - 2320	2170
Manganese (Mn)	7/7	127 - 265	167. 43
Potassium (K)	7/7	1380 - 1950	1625.71
Sodium (Na)	7/7	5770 - 7420	6522.86
Vanadium (V)	4/7	2.2 - 11.1	6.125
Zinc (Zn)	1/7	10.4	10.4
Pesticides and PCBs (μg/L)			
Aroclor-1260	1/7	0.5	0.5
Endrin ketone	1/7	0.25	0.25
SVOCs (μg/L)			
Naphthalene	1/7	1	1
1,2-Dichlorobenzene	1/7	1	1
1,4-Dichlorobenzene	6/7	2 - 10	4
VOCs (μg/L)			
Benzene	5/7	1 - 3	1.8
Chlorobenzene	6/7	3 - 30	12.17
Methylene chloride	2/7	120	660
cis-1,2-Dichloroethene	1/7	1	1

Note:

All results are in micrograms per liter ($\mu g/L$) or parts per billion (ppb).

Table 10-3-4 (1) Wetland 3 Phase IIA Surface Water Concentrations Compared to Water Quality Criteria

Sample Location Par	rameter	UOM	Detected Concentration	Water Quality Criteria	на	Criteria Reference
UNIONE TO 1	Practisons		-1-3			
Section 2	100	-	100	146	11000	
Marries.		-	291	RY	11000	
Book :			160	84	127779	
•		200	1000	CM.C		34
001W000302	Freshwater					
1,4-Dichlorobenzeno		UG/L	2.0	11.2	0.17857	а
Aluminum		UG/L	175.0	87.Q	2,01149	B
Benzene		UG/L	1.0	53 Q	0.01887	a
Iron		UG/L	8,430,0	1.000.0	8.43	ab
001W000303	Freshwater	111-	-	**		
Aluminum		UG/L -	93.5	87.0	1 13333	a
fron		UG/L	7,810,0	1,000.0	7.61	a b
Lead	, 20a (dec)	UG/L	1.9	1.71	3.11111	ab
				100 mm		
		1.00	16	* 1	W '	4(4)
041W030101	Freshwater			10.00		
1 A-Dichlorobenzone		UGIL	20	1.1.2	0.17857	a
Aluminym		UGAL	149,0	87.0	1 71264	a
Arsenic		UG/L	27	50.0	D.054	b
trop		DG/L	17,900.0	1,000 0	17.9	вb
041W030201	Freshwater	-	-57-			
1,4-Dichlorobenzene		UGAL	4.0	11.2	0,35714	3
Aluminum	The of White son	- UG/L	2,150.0	87.0	24.71264	a
Antimony		UG/L	33	160.0	0.02062	, a
Aracior-1260		UG/L	0.5	0.014	85,71428	a b
Arsenic		UG(L	17.2	50.0	D.344	ь
Benzene	780	UG/L	1.0	53.0	0.01887	A .
Cadmium		UGAL	3.4	0.774	4,39276	a b
Chromium		UGIL	8.7	11.0	0.79091	ab
Copper		UG/L	4.7	7.8	0 60256	9.6
Endrin ketone	<u>4</u> 5	UG/L	0.25	0.0023	103,69565	. ab
lton		UG/L	59,600.0	1,000,0	59.6	2 b
Lead	and the same of the same	UG/L	20.3	1.71	11.87134	ab
Zinc		UGAL	10.4	70.2	D 14815	a b

⁽a) USEPA Water Quality Criteria (1995)
(b) FDEP Class III Water Quality Criteria (1995)
Some of the numbers in the table may vary because of rounding.

Table 10-3-4 (2) Wetland 3 Phase IIA Surface Water Concentrations Compared to Water Quality Criteria

Sample Location	Parameter	UOM	Detected Concentration	Water Quality Criteria	HQ	Criteria Reference
041W030301	Freshwater	5 (1) 5 (1) 5 (1) 1 (1)	100 mm 10		The state of the s	
1,2-Dichlorobe	nzene	UG/L	1.0	15.8	0.06329	а
1,4-Dichlorobe	nzene	UG/L	10.0	11.2	0.89286	а
Aluminum		UG/L	951.0	87.0	10.93103	а
Arsenic		₫ UG/L	48,9	50.0	0.978	b
Benzene	A	ÜG/L	2.0	53.0	0.03774	а
Cadmium		UG/L	3,8	0.774	4.90956	a b
Chromium		UG/L	9.3	11.0	0,84545	аb
Copper	1000 PT 1000 P	UG/L	9.6	7.8	1.23077	ab
Iron		UG/L	176,000.0	1,000.0	176.0	ab
Lead		-3 UG/L	7.1	1.71	4.15205	аb
L.	7.5 mes. 1 mes. 2 mes.					
041W030401	Freshwater	***************************************	ininining (2) — 1 no blancanini (2) inin 2 2 inin 29.5.			x490000 - 248/3-1-
1,4-Dichlorobe	nzene	UG/L	4.0	11.2	0.35714	а
Aluminum		UG/L	211.0	87.0	2.42529	а
Antimony		UG/L	3.0	160.0	0.01875	а
Arsenic		UG/L	3.2	50.0	0.064	b
Benzene		UG/L	3.0	53.0	0.0566	а
tron		UG/L	21,500.0	1,000.0	21.5	a b
Naphthalene		UG/L	1.0	62.0	0.01613	а

Notes:

(a) USEPA Water Quality Criteria (1995)
(b) FDEP Class III Water Quality Criteria (1996)
Some of the numbers in the table may vary because of rounding.

10.3.3 Fate and Transport

Pathways evaluated for wetland-specific fate and transport correlate with those identified in the conceptual model presented in Section 9: surface water/sediment transport into the wetland; groundwater discharge into the wetland; sediment/surface water transport within the wetland; sediment leaching to surface water within the wetland; and surface water/sediment transport from the wetland. Because sediment transport and storm water runoff data are lacking, the evaluation is qualitative in nature. The method of evaluating leaching from sediment to surface water was presented in Section 9. Table 10-3-5 presents those contaminants present in sediment above benchmark levels and their calculated SSLs. Contaminants present in surface water above water quality criteria are presented in Table 10-3-4.

Transport Into the Wetland

Surface Water/Sediment Pathway

Based on landform and watershed analysis, the following sources can contribute contamination to Wetland 3 through this pathway:

• Potential storm water runoff and sediment entrainment from Site 1.

Sediment contaminants above benchmark levels (see Table 10-3-5) validate this sediment transport pathway, and by inference surface water as well. Additionally, four inorganics and one organic were present in surface water above criteria, further validating the pathway.

Groundwater Discharge Pathway

Based on potentiometric analysis, Site 1 is the primary potential source that would directly contribute contamination to Wetland 3 through this pathway. Contamination found in groundwater validates this pathway.

Table 10-3-5
Calculated Sediment Screening Values for Wetland 3

Parameter	USEPA or FDEP Surface Water Standard	Kd	SSL DF = 100	Maximum Concentration Detected	Leaching Potential DF = 100
Inorganics	(ppb)		(ppm)	(ppm)	
Arsenic	50 b	2.9E+01	146	35.5	NO
Cadmium	0.774 ^{a. b}	7.5E+01	5.82	72.7	YES
Chromium	11 ^{a, b}	1.9E+01	21.1	196	YES
Copper	7.8 a.b	4.3E+02	336	68.8	NO
Lead	1.71 a, b	9E+02	154	101	NO
Zinc	70.2 ^{a, b}	6.2E+01	436	297	NO
Organics	(ppb)		(ppb)	(ppb)	
4,4 DDE	10.5 2	2.55E+05	2.68E+08	120	NO
4,4 DDD	0.0064 a	5.7E+04	3.65E+04	400	NO
4,4 DDT	0.001 *, b	1.50E+05	1.50E+04	220	NO
Dieldrin	0.0019 a, b	1.22E+03	2.32E+02	6	NO
Acenaphthene	17 ²	4.45E+02	7.57 E +05	98	NO
Benzo(a)pyrene	0.031 b	5.83E+04	1.81E+05	180	NO
Fluoranthene	39.8 *	6.12E+03	2.44E+07	46	NO
Naphthalene	62 *	1.14E+02	7.07E+05	160	NO
Bis(2-ethylhexyl)phthalate	0.3 *	8.62E+05	2.59E+07	270	NO

Notes:

Kd for organics calculated using foc of 0.057 (numerical average of all sediment samples).

Kds are from: USEPA, 1996b (first preference); Superfund Chemical Data Matrix(USEPA, 1996c) (second preference); Texas Risk Reduction Program Concept Document 2, Volume 1, Appendix VII, 1996 (third preference); TERRA Model, Oak Ridge National Laboratory, 1984 (fourth preference — primary reference for inorganics).

Kd = normalized partitioning coefficient.

SSL = sediment screening level.

DF = dilution factor.

a = USEPA Freshwater Surface Water Chronic Screening Value (1995a).

b = FDEP Class III Water Quality Criteria (1996).

Transport Within The Wetland

Surface Water/Sediment Migration Pathway

The configuration of the wetland, along with landform analysis, indicates that surface water and sediment transport will occur to the north towards a culvert draining into Wetland 4, and from there into Bayou Grande. Surface water and sediment can therefore be considered to be mobile, and the pathway valid for this wetland.

Sediment Leaching to Surface Water Pathway

Nine organics — four pesticides and five semivolatiles — and six inorganics exceeded their SSV (see Table 10-3-5), but only two — cadmium and chromium — exceeded their calculated SSLs (see Table 10-3-5). Cadmium was also present in the corresponding surface water above standards, indicating a high potential for this pathway. In surface water, parameters above standards included PCBs, copper, iron, and lead. These additional parameters are attributable to the surface water/groundwater discharge pathway from Site 1. Because cadmium was detected in sediment above its SSL and in surface water above standards and chromium exceeded its SSL, the pathway is considered valid, with a high potential for partitioning to surface water.

Transport From the Wetland

Surface water and sediment from Wetland 3 can be expected to move into the drainage culvert connecting it with Wetland 4, and from there to Bayou Grande. Therefore sediment and surface water contamination can be expected to be mobile and not remain within the wetland.

10.3.4 Ecological Risk Assessment

10.3.4.1 Phase IIA

HQs for Wetland 3 sediment samples are presented in Table 10-3-2. Phase IIA sediment sample results compared to the appropriate sediment benchmark levels revealed HQs above 1 for arsenic (1.77, 4.9, and 3.74 at locations 0302, 0303, and 0307), cadmium (3.24, 8.53, 4.26, 2.94, 2.65,

and 106.91 at locations 0101, 0302, 0303, 0305, 0306, and 0307), chromium (3.75 at location 0307), copper (3.68 at location 0307), lead (1.20 and 3.34 at locations 0101 and 0302), and zinc (2.40 at location 0307). 4,4'- DDD, 4,4'-DDE, and 4,4'-DDT each had HQs above 1at locations 0101 (15.57, 1.64, and 8.32), 0102 (5.08, 1.21, and 1.09), 0103 (327.87, 57.97, and 184.87), 0301 (11.48, 10.14, and 6.30), and 0306 (6.31, 1.21, and 1.60). 4,4'-DDD, and 4,4'-DDT also had HQs above 1 (25.41 and 1.18) at location 0302, while single concentrations of 4,4'-DDD had HQs above 1 at sample locations 0303 (1.07), 0304 (1.31), 0305 (2.87), and 0307 (5.57). As discussed in the nature and extent section, most concentrations of 4,4'- DDT and its metabolites were below basewide levels. Alpha-chlordane had a HQ above 1 at location 0103 (1.29). Dieldrin had a HQ greater than 1 at location 0302 (8.33), as did Aroclor-1260 (16.2). Four PAHs had HQs greater than 1 including acenaphthene (14.61) at location 0303, benzo(a)pyrene (2.03) at location 0307, and fluorene (4.48) and naphthalene (4.62) at location 0303. The phthalate ester bis(2-ethylhexyl)phthalate also had HQs above 1 at locations 0305 (1.15) and 0307 (1.48), respectively. Phase IIA surface water results revealed a HQ greater than 1 for aluminum and iron at all seven sample locations (1.95 and 8.08 at location 0101, 2.01 and 8.43 at location 0102, 1.13 and 7.81 at location 0103, 1.71 and 17.9 at location 0301, 24.71 and 59.6 at location 0302, 10.93 and 176 at location 0303, and 2.43 and 21.5 at location 0304). HQs were above 1 for cadmium (4.39) and lead (11.87) at sample location 0302, and also at sample location 0303 for cadmium (4.91), copper (1.23), and lead (4.15). Lead also had a HO above 1(1.11) at sample location 0103. The HQ was above 1 for endrin ketone (108.70) and Aroclor-1260 (35.71) at location 0302. HQs greater than 1 indicate the potential for excess risk.

Phase IIA surface water results revealed HIs from 10.05 to 247.27 at location 0302.

Phase IIB/III

Based on the Phase IIA data, Wetland 3 was classified in Group B and sampled in Phase IIB/III. Color-codes, groupings and rationale for classification are described in Section 7.

Conceptual Model

Freshwater Wetland 3, surrounded mostly by woods and downgradient of Site 1, is fed by several groundwater seeps in its southeastern portion. These seeps merge to form a narrow surface water channel through the wetland's center. The channel is about 4 inches deep and about one to two feet wide. The remaining portion of the wetland is mostly saturated sediment with a thin layer of surface water overlaying it. The degree of saturation varies depending on the amount of recent precipitation. An approximate 100 square foot and three foot deep area in the lower section of the wetland has been excavated to clear the drainage culvert into Wetland 4D. Small fish species have been observed in this excavated area. However, this wetland is not considered large enough to support higher trophic level fish species, and none have been observed. Contaminants of concern in this wetland are mostly metals and pesticides. This wetland supports small fish and benthic macroinvertebrates, which have been identified as the primary habitat functional uses. As with Wetland 5A, the conceptual model focuses on the toxic effects that may be occurring to fish and benthic macroinvertebrates since food chain impacts are not considered to be a viable exposure route. The conceptual model for Wetland 3 is shown on Figure 10-3-2.

Sampling Location Rationale

Sediment samples for toxicity analysis, sediment chemistry, TOC, and grain size were collected from Phase IIA locations 2 and 7 (Figure 10-3-3). Three composite grab samples for benthic diversity were collected within 10 feet of each sample location to account for spatial variability. One surface water sample was collected from the newly excavated culvert for chemical analysis and fathead minnow (*Pimephales promelas*) toxicity analysis. This culvert, near sample location 1, is in the most downgradient portion of Wetland 3.

August 31, 2000

Ecological Risk Evaluation

Risk in Wetland 3 was evaluated with respect to two assessment endpoints: 1) survival, growth,

and emergence of macroinvertebrates associated with the benthic environment, and 2) protection

of fish viability.

Survival, Growth, and Emergence of Organisms Associated with the Aquatic Environment:

As discussed in Section 7, this assessment endpoint was evaluated using the sediment quality triad

approach for chemistry, toxicity, and diversity analysis. Results are scored via the decision

making triad, and the overall condition of the wetland for this assessment endpoint is determined.

Sediment Chemistry

As shown on Table 10-3-6, sediment HQ values are elevated for cadmium and DDD in particular

in sample location 0307. However, the DDD concentration (49 ppb) is below its basewide

concentration (50 ppb). Application of these sediment chemistry results to the decision making

triad discussed in Section 7.14 revealed a matrix score of "+" for sediment chemistry.

Sediment Toxicity

Survival results in the *Chironomus tentans* test were 83% for location 03-02, and 91% for

location 03-07, as presented in Table 10-3-7. Statistical difference were noted in the weights

collected at the end of the 10-day exposure at location 03-07 (location 03-02 2.9 mg,

location 03-07 2.0 mg, [Table 10-3-7]). Midge larvae were maintained under optimum conditions

for the next 18 days so emergence could be calculated. 50% of the control larvae, 60% of the

larvae from location 03-02, and 70% of the larvae from location 03-07 emerged. Toxicity results

are presented in Appendix E. Application of these results to the decision making triad discussed

Section 7.14 revealed a triad matrix score of "—" for the chironomid test.

10-3-20

Final Remedial Investigation Report NAS Pensacola Site 41 Section 10: Site-Specific Evaluations August 31, 2000

This page intentionally left blank.

indicates the organisms being tested out-performed the control organisms for this category. Scale in Feet 60 120 240 360

Growth (%) is calculated by comparing to the bioassay exposed organism to the control organism performance. * indicates a statistically significant difference from the control organism.

480

NAS Pensacola Site 41 - NAS Pensacola Wetlands Remedial Investigation

FIGURE 10-3-3 PHASE IIB WETLAND 3 TOXICITY AND DIVERSITY RESULTS

Table 10-3-6 (1) Wetland 3 Phase IIB/III Sediment Concentrations Compared to Benchmark Levels

Sample Location	Parameter	Detected Concentration	Sediment Benchmark Vällie (SBV)	HQ	SBV - HQ Reference
BATMACODO)		790.01		No. of	100
46 800 1	days:	146	110	2.00	- 40
ALC: U	Marit .	1931	14.6	1800	100
There's	enci.	4.0	100	100	1460
- Desired	MARKET .	-mf	MAG	100	1201
Triangle pass		247	The same of the sa	Labor 19	-
Charles printer		DMC	1.45	L. GANGER	
Special Married	Lated Control	31	146	100	100
Jan Mile	0	-01	.24	100	1000
U41M03070					
4,4'-DDD (UG/KG)	48	1.22	40.16	fi.
4.4'-DDE (UG/KG)	11	207	5.31	10
4.4 DOT (9.3	119	7.82	6
Arsenic (M	G/KG)	4.2	7.24	D 58	a tr
ois(2-Ethyl)	nexyl)phthalate (BEHP) (UG/KG)	500	182	2.75	B
Cadnium		6.3	ប ខម	13 63	10
Chromium	(MG/KG)	19	52.3	0.36	ab
Copper (M	G/KG)	4	16 7	0.21	a h
gamma-Ch	lordane (LIG/KIG)	0.74	1.7	0.44	à
Lead (MG/	K(G)	35,6	30.2	1 1B	a b
Mercury (N	rg/kg)	9,05	0.13	0.46	≥.11
Nickel (MC	WG)	3:1	15.9	n.19	a by
Silver (MG	(KG)	0.42	0.73	0.58	b
Zinc (MG/I	(G)	234	124	1.89	áb

⁽a) USEPA Scieening Concentration for Sediment - EPA SSVs.
(b) FDEP Sediment Quality Assessment Guidelines - FDEP SQAG=
Some of the numbers in the table may vary because of rounding

August 31, 2000

Table 10-3-7 Toxicity Test Results Wetland 3 Sediment

Site	% Survival	Weight (mg)	Emergence	Triad Matrix Scoring
Control (negative)	91	2.7	50%	
Wetland 3 (03-02)	83	2.9	60%	
Wetland 3 (03-07)	91	2.0*	70%	

Note:

Benthic Diversity in Sediment

Sediment samples were also sorted for benthic diversity. Location 03-02 exhibited a higher diversity (2.24), with more organisms (71), and a greater number of overall species (10) than location 03-07 (diversity 1.92, total organisms 5, and number of species 4). Wetland station 03-02 had representatives of the *Chironomus* and *Sphaerium* indicating the most dominant occurrence. *Tubifex tubifex*, an oligochaete, and *Culicoides*, an aquatic insect, were next in abundance. All the mentioned species may be found in a predominantly palustrine ecosystem. The diversity results are detailed in Appendix D. Benthic diversity results and application to the toxicity test results are presented in Table 10-3-8. Application of these results to the decision making triad discussed Section 7.14 revealed a triad matrix score of "—" for the benthic diversity test.

Table 10-3-8

Benthic Diversity Results and Application to the Triad Matrix Scoring
Wetland 3 Sediment

 Site	Shannon-Weiner Diversity	Pielou's Evenness	MargaleFs Richness	Triad Matrix Scoring
 Wetland 3 (03-02)	2.24	0.97	9,77	
Wetland 3 (03-07)	1.92	1.39	3.38	-

Statistically significant difference from control population.

Decision Making Triad Evaluations

Based on the ecological risk evaluation performed at Wetland 3, sediment and surface water results can be scored via the decision making triad, and the overall condition of the wetland for sediment and surface water can be determined.

Table 10-3-9 presents the interpretation of the triad analysis for the Wetland 3 Phase IIB/III sediment samples. Based on the results of the chemistry and toxicity data, condition number 3 exists. This can now be applied to the Simplified Decision Flow Chart for Sediments, as discussed in Figure 7-2.

Table 10-3-9
Triad Analysis Interpretation
Wetland 3 Sediment

Location	Sediment Chemistry	Toxicity Test	Benthic Assessment	Interpretation
Wetland 3	+	_	_	Contaminants are not bioavailable.

Condition number 3 denotes that Wetland 3 sediments are acceptable and no further action is recommended for sediment for this wetland.

Protection of Fish Viability:

This assessment endpoint was evaluated using two lines of evidence, surface water toxicity and surface water chemistry. Tissue residue analysis was not conducted at this wetland because the shallow surface water depth will not support upper trophic level fish.

Surface Water Toxicity

The first line of evidence was the acute and chronic toxicity to the fathead minnow (*Pimephales promelas*). Fathead minnows were exposed to surface water which was sampled at location 03-01. Survival (97.5%) at the site was high, and although lower, weights were not

significantly different when compared to the control fish (location 03-01 0.49 mg, control 0.58 mg). Application of the results to the decision matrix reveal a score of "—" for the toxicity testing. Fathead Minnow toxicity results and application to the matrix are shown in Table 10-3-10.

Table 10-3-10
Fathead Minnow Toxicity Results
Wetland 3 Surface Waters

Location	% Survival	Weight (mg)	Matrix Scoring
Control (negative)	100	0.58	
Wetland 3 (03-01)	97.5	0.49	

Note:

Surface Water Chemistry

The second line of evidence, comparison of surface water contaminants to water quality criteria, shows that an HQ greater than 1 is exceeded for iron as shown in Table 10-3-11. Application of surface water chemistry results to the decision matrix reveal a score of "+" for surface water chemistry. Although the HQ value for iron (19.60) was greater than 1 for surface water, a potential for toxic effects to fish is not anticipated because the toxicity results showed no chronic effects for survival, even with the slight reduction in weight among exposed species.

Table 10-3-12 presents the interpretation of the analysis for the Wetland 3 surface water sample. Based on the results of the chemistry and toxicity data, condition number 3 exists. This can now be applied to the Simplified Decision Flow Chart for Surface Water, as discussed in Figure 7-3. Condition number 3 denotes that Wetland 3 surface water is acceptable and no further action is recommended for surface water for this wetland.

^{* =} Statistically significant difference from control population.

Table 10-3-11 (1) Wetland 3 Phase IIB/III Surface Water Concentrations Compared to Water Quality Criteria

Sample Location	Parameter	UOM	Detected Concentration	Water Quality Criteria	HQ	Criteria Reference
041W030101	Freshwater					
Aluminum		UG/L	59.10	87.00	0.68	а
Antimony		UG/L	2.60	160.00	0.02	а
Iron		UG/L	19600.00	1000.00	19.60	аb

Notes:

Some of the numbers in the table may vary because of rounding.

⁽a) USEPA Water Quality Criteria (1995)(b) FDEP Class III Water Quality Criteria (1996)

Table 10-3-12 Analysis Interpretation Wetland 3 Surface Water

Location	Water Chemistry	Toxicity Test	Interpretation
Wetland 3	+		Contaminants are not bioavailable.

10.3.5 Human Health Risk Assessment

10.3.5.1 Samples Included

Sediment

041M030101, 041M030201, 041M030301, 041M030401, 041M030501, 041M030601, 041M030701, 001M000301, 001M000302, 001M000303

Surface Water

041W030101, 041W030201, 041W030301, 041W030401, 01W000301, 01W000302, 01W000303

10.3.5.2 Current and Future Land Use

This wetland is not currently used by the Navy. Wetland 3 could be used by Navy personnel walking through the area or children who may find the area attractive. More than 50% of the sediment at Wetland 3 is exposed for most of the year, so assuming sediment exposure would be similar to soil exposure. Dermal contact could be a significant exposure pathway and was included in this HHRA. Based on the species present, depth of surface water, and habitat, fishing would not likely occur, and wading would be the most likely exposure scenario.

10.3.5.3 Fish Tissue COPCs Identified

No fish tissue data were available for this wetland, and this exposure pathway would likely be incomplete; therefore, no COPCs were identified.

10.3.5.4 Sediment COPCs Identified

As shown in Table 10-3-13, the following COPC was identified:

Arsenic

10.3.5.5 Surface Water COPCs Identified

As shown in Table 10-3-14, the following COPCs were identified:

- Aroclor 1260
- Arsenic
- Lead
- Methylene chloride

10.3.5.6 Risk Characterization

Tables 10-3-15 and 10-3-17 summarize cancer risk estimates for the sediment and surface water pathways. Arsenic was the only contributor to risk estimates for the sediment pathway while arsenic and Aroclor 1260 were the primary contributors to the surface water pathway. Table 10-3-19 summarizes risk and hazard estimates for Wetland 3. The cumulative risk estimated for this wetland is 1.8E-5. The HI shown in Table 10-3-19 was estimated to be 0.17. Arsenic and Aroclor 1260 were identified as COCs in surface water and arsenic was identified as a COC in sediment. These constituents were identified as COCs based on their contribution to cumulative risk estimates for this wetland. Tables 10-3-15 through 10-3-18 detail cancer and noncancer hazard estimates for this wetland. Although exposure would likely be acute or subchronic, hazard estimates were developed for completeness. Because of the shallow water depth and limited game fish habitat, fishing and subsequent fish tissue ingestion are unlikely at Wetland 3. However, physical and biological hazards of Wetland 3 could pose a risk to site trespassers. Quicksand and snakes are commonly encountered at this wetland.

TABLE 10-3-13 OCCURRENCE, DISTRIBUTION, AND SELECTION OF CHEMICALS OF POTENTIAL CONCERN NAS PENSACOLA SITE 41

Scenario Finetratia Current and Futi Medium Sediment Exposure Medium Sediment Exposure Point Metland 3 Sediment

			,		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			,										
CAS Number	Chemcal	(1) Minjmum Concentration	Minmum Qualifier	Maxenium Maxenium Concentration	Maxemum Qualifier	Unds	Location of Maximum Concentration	Detection Frequency	Range of Detection Limits	u ean	Concentration Used for Soreening	(3) Sackground Value	Adolescent Site Trespasser Screening Toxicity Value	Residential RBC for Soil	Å	Potential RAP/TBC Source	COPG Flag	(6) Rationale for Contentinant Detection or Selection
95501	1,2-Dishlorobenzene	410 0000	3	410 0000	J	UG/KG	041M030201	1 / 10	400 08 - 2100 0G	410.0	410	N/A	20000000		N	N/A	NO.	BSL
106467	1,4-Dichlerobenzene	58 0000		1400 0000	J	UG/KG	041M030201	4 / 10	400 00 - 2100 00	754.5	1460	N/A	970000	27000	C	N/A	NO.	BSL
76933	2-Butarisne (MEK)	180 0000	1	180 0000		HG/kG	041M030701	1 / 10	13 00 - 290 00	180 D	190	N/A	190000000	47000000	N	N/A	NO.	est
72548	4,41,000	1 3000	J	400.00		LIG/KG	QG1MQQQ303	10 / 10	NAV	49.1	450	N/A	92000	2700	C	N/A	NO.	est
72559	4.4 - DDE	0.6400	1 . 1	120 0000		UG/KG	041M030601	7 / 10	0.88 - 1.50	21.6	120	N/A	65000		c l	N/A	NO	BSI.
50293	4,4'-D01	0.3200	j j	220 0000	"	HG/KG	041M030701	9 / 10	110 - 110	27.1	220	N/A	65000		c .	N/A	NO	BSL
83329	Acenaphthene	99 0000	'	98 0000		UG/KG	041M030301	1 / 19	19 00 490 00	986	98	N/A	19000000		N	N/A	NO	BSL B
57541	Acetone	1100 0000		1100 0000		UG/KG	041M030301	1 / 10	14 00 - 1600 00	11000	1100	N/A	32000000		7	N/A	NO.	BSL BSL
8			1 1					1 ' '		,	,				c l		NO.	
309002	Aldran	0 2300	1	1 0900	,	UG/KG	041M030301		0.01 - 11.00	0.6	1 1	NA	1300	30		N/A		BSL
319846	alpha-BHC	0 1900	J	1 2000	j	NGKO	041M030601	3 / 10	0-01 - 11-00	0.6	12	N/A	3599	100	6	N/A	NO	BSL
5103719	alpha-Chiordana	0 1700	ا ت	2 2000	J	newe.	041M030201	8 / 10	002 - 005	0.8	2.2	N/A	63000	1600	C	N/A	NO	BSL
7429905	Aluminum (Al)	426 0000	1 1	25500 00		MG/KG	G41N4038201	12 / 12	NAV	4257.9	25500	N/A	320000		и	N/A	NO.	BSL
7440360	Anteriony (Sb)	0.2300	J	44 0000	J.	MG/KG	041M936301	5 / 12	0.13 - 9.80	119	44	N/A	130	3	N	N/A	NO.	98L
11095925	Aracior-1260	358 8886	DJ	350 0000	DJ DJ	UG/KG	041M030301	1 7 10	2 40 - 220 00	350 0	350	NA	11000	320	c	N/A	NO	BSL B
7440382	Arronic (As)	0.5500	J	35 5008		MG/KG	001M000303	10 / 12	0.28 - 0.74	10.2	35.5	N/A	15	0.43	c	N/A	YES	ASL
7440393	Barrum (Ba)	1 6000		438 9000		MG/KG	001M000302	11 / 12	450 - 450	57.6	436	N/A	22000	550	N	N/A	NO	BSL #
71432	Benzene	18 0000	J	34 0000	1 3 1	UGAKS	041M030201	2 / 10	13 0a - 200.00	28.0	34	N/A	760000	22000	0	N/A	NO.	BSL #
56553	Genzo(a)anthracane	23 0000	5 1	23 0000		UG/KG	04 1M030101	1 / 10	46 00 - 480 00	23.0	23	N/A	30000	660	c l	N/A	NO.	BSL
50320	Benzo(a)pyrene	48 0000	1 1	190 0000	1 -	HG/KG	G41M030101	2 / 10	46 00 - 490 00	114 0	190	N/A	3000	66	c	N/A	NO	BSL
205992	Genzo(b) fluoranthene	95.0000		95 0000	í I	UG/KG	041M030101	1 / 10	45 00 - 460 00	850	85	N/A	30000	860	č	N/A	NO	BSL
191242		46 0000		46 0000		UG/KG	041M030101	1 / 10	46 00 - 469 00	460	45	N/A	9500000		N	N/A	NO NO	BSL
	Benzo(g.n.i)perylene																	
207089	Benzo(k)fluoranthene	27.0000	ال	27 0000	J	UG/KG	941M038101	1 / 10	4600 - 48000	27.6	27	N/A	300000	9600	0	N/A	NO	BSL
319057	beta-PHC	0.7000	J	0.7000	J	LIGNIG	041M030301	1 / 10	0 01 - 11 00	6.7	0.7	N/A	12000	350	C	N/A	NO	PSL P
117817	bis(2-Ethylhexyl]phthalate (BEHP)	75 0000	J	270 0000	J	UOMG	941M930701	4 / 10	360 00 - 3000 06	161.0	270	N/A	1600000	45000	c	N/A	NO	PSL
95687	Butylbenzyiphthalala	23 0000	J	23 0000		UG/KG	041M030101	1 / 10	54 00 - 3000 00	23.0	73	N/A	63000000	1600000	N	N/A	NO.	BSL B
7440439	Cadmium (Cd)	0.5200	J	72 7000		MC/KG	041M030201	7 / 12	0 19 - 1 30	12.6	72.7	N/A	320	9	N	N/A	NO	B&L
7440702	Calcium (Ca)	350 0000	J	31600 00		MG/KG	001M000302	12 / 12	NAV	5673.5	31960	N/A	N/A	N/A	- 1	N/A	NO.	EN
108907	Chlorobenzene	2 0000	J	620 0000		UGKG	041M030101	5 / 10	13 00 - 200 00	192.3	620	N/A	6300000	160000	N	N/A	NO.	ÐSL.
7440473	Chromsum (Cr)	1 5000	i 1	196 00	1 1	MG/KO	041M030401	12 / 12	NAV	23.7	196	N/A	950	23	N	N/A	NO.	est.
216019	Chrysene	32 0000	, ,	32 0000	ارا	HOAKG	04184030101	1 / 10	46 00 - 480 00	32.0	32	N/A	3000000	88000	c l	N/A	NO	BSL
7440484	Coball (Co)	2 5000	Ű	2 5000	5 1	MG/KG	841M638281	1 / 12	0 15 - 4 70	2.5	2.5	N/A	19000000	470	N	N/A	NC	BSL
7440508	Copper (Cu)	1 4000	ŭ	68 8000	*	MG/KG	001M009301	7 / 12	0.95 - 3.10	17.1	69.8	N/A	13000000	310	N	N/A	NO	BSL
57125	Cyanide (CN)	1 5000	ľ	5 1000	ا ر	MG/KG	041M030501	2 / 10	060 - 528	3.3	51	N/A	5300000	160	N	N/A	NO.	BSL BSL
319968	delta-BHC	0 1800	ا ر	0 2500	ŭ	UG/KG	041M030501	2 / 10	001 - 1160	0.2					10		NO.	
											0.26	N/A	12000	350		N/A		P.SL
50571	Dieldrin	6 0000	J	6 0000	- 4	HG/KC	041M030201	1 / 10	0 24 / 22 60	6.0	В	N/A	1400	40	C	N/A	NO	PSL P
84662	Diethy londhalate	47 CGC0	J	47 0000	J	UG/NG	041M030301	1 / 10	400 00 - 3000 00	47.0	47	N/A	2500000000		N	N/A	NO	BSL B
04742	D+n-butylphthalate	36 0000		77 9000	ان	UG/KG	041M030101	2 / 10	430 00 - 3000 00	56.5	77	N/A	32000000		N	N/A	NO.	BSL
117840	Den-estyl phihainte	45 0060	1	45 0000	J	UG/KG	041M030301	2 / 10	400 00 - 3000 00 j	450	45	N/A	6300000		N	N/A	NO.	BSL B
1931078	Endosullan sulfate	1 5000	J	1 7090	J	HG/kG	041M030701	2 / 10	0.24 - 22.00	16	1.7	NA	1900000	47000	N I	N/A	NO.	BSL
72208	Endrin	0.5300	J	1 8000	J	HG/RG	041M030101	4 / 10	0 24 - 22 00	12	1.0	N/A	95000	2300	N	N/A	NO.	BSL
53494705	Endrin ketone	1.4000	J	1 4000	ال	UG/KG	041M030301	1 / 19	0.24 : 22.00	14	14	N/A	95000	2300	N	N/A	NO.	est.
206440	Fluoranthene	46 0000		46 0000		1JO/KG	941M030191	1 / 10	4500 - 460GD	450	46	N/A	13000000	310000	N	N/A	NO.	est 🕯
86737	Fluorene	95 0000		25 0000		LIGAKG	041M030301	1 / 10	19 00 - 480 00	950	95	AVA	13000000	310000	N	N/A	NO.	BSL
5103742	gaginia-Chlordana	0.1100	1 1	1 7000	J	UDIKG	04 1M030201	3 / 10	0.02 - 11.00	n e	1.7	N/A	63000		c	N/A	NO	BSL
193395	inganol 1,2,3-cd pyrene	31 0000	J	31 0000	ĭ	HGRKG	04184030101	1 / 10	46 66 480.00	31.0	31	N/A	30000		c l	N/A	NO	BSL I
7439895	Iron (Fa)	1940 0000	ا ر	306000 00	'	MG/KG	00100000001	12 / 12	NAV NAV	78510	385000	N/A	N/A	N/A	1	N/A	NO	EN
7439921	Lead (Pb)	2 4000				MG/KG					101		400		N.		NO.	
				101 0000	1		04 1M/030501		1 90 - 14 30	20.6		N/A		1	~ '	OSWER		BSL
7439954	Magnesium (Mg)	23 2000	1	1420 0000	J	MG/KG	041M030401	9 / 12	33 90 - 270 00	272 8	1420	N/A	N/A	N/A	- 1	N/A	NO	EN
7439365	Mangariese (Mn)	2 3000	1	1278 86	J	MG/KG	001M000321	12 / 12	NAV	148.3	1270	N/A	15000		N	N/A	NO.	BSL
91203	Naphthalene	160 0000		160 0000		UG/KG	041M030301	1 / 10	40.00 - 490.00	160.0	150	N/A	13000000		N	N/A	NO.	RSL
7446020	Nickel (Ni)	0.7900	J	0.7800	J	MG/KG	041M030401	1 7 12	0.55 - 18.60	9.0	0.78	N/A	6300	160	N	N/A	NO.	BSL
85018	Phenanthrene	24 0000	J	24 0000	J	UG/KG	041M030101	1 / 10	4600 - 496D0	24 ()	24	NA	9500000	230500	N	N/A	NO.	BSL
108952	Phenci	55 0000	J	55 0000	J	UGAKG	001M000301	1 / 10	400.00 - 3000.00	55 0	55	N/A	190000000	4700000	N	N/A	NO	BSL
7440097	Potassaum (K)	10.9000	ایا	486 0000	J	MG/KG	041M030201	9 / 12	073-00 - 742-00	113.3	468	N/A	N/A	N/A	- 1	N/A	NO	EΝ
129000	Pyrene	43 0090		43 0000	"	UGAKG	D41M030101	1 / 10	45 09 - 480 00	43.0	43	N/A	9500000		N	N/A	NO.	esu
7782492	Selenium (Se)	0.4400		3 3000		MCAC	041M030101	4 / 12	0 16 - 4 40	19	3.3	N/A	1600		N	N/A	NO.	5SL
7440224	Silver (Ag)	10 5000	ı ı	10 5000	;	MG/KG	041M030701	1 / 12	022 - 620	10,5	10.5	N/A	1600	39	N	N/A	NO	BSL
7440235	Sodum (Na)	4 5000	1	291 0000	J	MG/KG	041M030701	7 / 12	250 - 21200	93.3	291	N/A	N/A	N/A	"	N/A	NO.	EN EN
190003	Tokiene	7 5000	J.	291 0000	J		041M030301	1 / 10	13.00 - 200.00	20	291	N/A	63000000		N	N/A	NO I	BSL
7440522			,		"	UG/KG												
7440522	Vanedrum (V)	1 2000	'	160 00		MG/KG	001M000301	12 / 12	NAV	19.6	150 00	N/A	2200	55	N	N/A	NO NO	BSL BSL
/440000	Zinc (Zn)	1 2000	L	297.00		MG/KG	041M030201	12 / 12	NAV	327	297.00	N/A	95000	2300	N	N/A	NO	BSL

(1) Minimun/maximum detected concentration

(2) Maximum concentration used as screening value

(3) This chemical was not detected at background sampling locations

(4) RBCs for site trespasser scenario were calculated based on equations and parameters presented in Section 8 of this report

(5) RECs for residential scenario as presented in USEPA Region III Risk-Based Concentration Tables, 1998. Office of Solid Wast and Emergency Response (USWER)

(5) Resonate Codes

Selection Reason: Above Screening Levels (ASL) Celevon Reason Below Screening Levels (BSL) Background Levels (BKG) No Yaxicey Information (NTX)
Essential Numeril (EN) Not Available (NAV)

Definitions N/A = Not Applicable

COPC = Chanyoal of Poterbal Concern

ARAR/TEC = Applicable of Relevent and Appropriate Requirement To Be Considered

J = Estimated Value

C = Caronogenia

N Noncarollogenic

TAb__ 10-3-14 OCCURRENCE, DISTRIBUTION, AND SELECTION OF CHEMICALS OF POTENTIAL CONCERN NAS PENSACOLA SITE 41

Scenario Timeframe: Current and Future Medium: Surface Water Exposure Medium: Surface Water Exposure Point: Watland 3 Surface Water

7			Y							1								
li l		(1)		(1)	}						(2)		(3)		(4)			(5)
CAS Number	Chemical	Minimum Concentration	Minimum Qualifier	Maximum Concentration	Maximum Qualifier	Units	Location of Maximum Concentration	Detection Frequency	Range of Detection Limits	Mean	Concentration Used for Screening	Background Value	Adolescent Site Trespasser Screening Toxicity Value	Tap Water RBC		Potential ARAR/TBC Source	COPC Flag	Rationale for Contaminant Delection or Selection
95501	1,2-Dichlorobenzene	1.000		1.0000		UG/L	041W030301	1 / 7	NAV	1.00	1	N/A	1300	6.4	N	N/A	NO	BSL
106467	1,4-Dichlorobenzene	2.000	J	10.0000		UG/L	041W030301	6 / 7	NAV	4.00	10	N/A	430	0.47	С	N/A	NO	BSL
7429905	Aluminum (Al)	98.600		2150.0000		UG/L	041W030201	7 / 7	NAV	557.80	2150	N/A	120000	3700	N	N/A	NO	BSL
7440360	Antimony (Sb)	3.000	J	3.3000	J	UG/L	0410/030201	2 / 7	NAV	3.15	3.3	N/A	48	1.5	N	N/A	NO	BSL
11096825	Aroclor-1260	0.500	J	0.5000	J	UG/L	041W030201	1 / 7	NAV	0.50	0.5	N/A	0.093	0.033		N/A	YES	ASL
7440382	Arsenic (As)	2.700	J	48.9000		UG/L	041W030301	4 1 7	NAV	18.00	48.9	N/A	5.6	0.045	c	N/A	YES	ASL
7440393	Barium (Ba)	27.600	J	55.8000		UG/L	041W030301	7 / 7	NAV	37.61	56.8	N/A	8300	260	N	N/A	NO	BSL
71432	Benzene	1.000	J	3.0000		UG/L	041W030401	5 / 7	NAV	1.80	3	N/A	91	0.36	c	N/A	NO	BSL
7440439	Cadmium (Cd)	3.400	J	3.8000	J	UG/L	041W030301	2 / 7	NAV	3.50	3.8	N/A	60	1.8	N	N/A	NO	BSL
7440702	Calcium (Ca)	22900.000		32500.0000		UG/L	041W030201	7 / 7	NAV	27800.00	32600	N/A	N/A	N/A		N/A	NO	EN
108907	Chlorobenzene	3.000		30.0000	D	UG/L	041W030301	6 / 7	NAV	12.17	30	N/A	420	3.5	N	N/A	NO	BSL
7440473	Chromium (Cr)	8.700	l i	9.3000	اد	UG/L	041W030301	2 / 7	NAV	9.00	9.3	N/A	360	11	N	N/A	No	BSL
7440508	Copper (Cu)	4.700	J	9.5000	J	UG/L	041W030301	2 / 7	NAV	7.15	9.6	N/A	4800	150	N	N/A	NO	BSL
53494705	Endrin ketone	0.250) J	0.2500	J	UG/L	041W030201	1 / 7	NAV	0.25	0.25	N/A	10	1.1	N	N/A	NO	BSL B
7439896	Iron (Fe)	7810.000		176000.0000		UG/L	041W030301	7 / 7	NAV	42760.00	176000	N/A	N/A	N/A	N	N/A	NO	EN
7439921	Lead (Pb)	1.900	ı	20.3000	1	UG/L	041W030201	3 / 7	NAV	9.77	20.3	N/A	15	15	N	TTAL	YES	ASL
7439954	Magnesium (Mg)	1540.000	1	2320.0000		UG/L	001W000302	7 / 7	NAV	2170.00	2320	N/A	N/A	N/A		N/A	NO	EN
11 1	Manganese (Mn)	127.000		265.0000		UG/L	041W030201	7 / 7	NAV	167,43	265	N/A	2400	73	N	N/A	NQ	BSL
17 1	Methylene chloride	120.000	ם	1200.0000	ם	UG/L	041W030101	2 / 7	NAV	550.00	1200	N/A	1000	4.1	С	N/A	YES	ASL
91203	Naphthalene	1.000		1.0000	1	UG/L	041W030401	1 / 7	NAV	1.00	1	N/A	33 0	150	N	N/A	NO	BSL
11 1	Potessium (K)	1380.000	J	1950.0000		UG/L	001V/000301	7 / 7	NAV	1625.71	1950	N/A	N/A	N/A		N/A	NO	EN
11 1	Sodium (Na)	5770.000		7420.0000		UG/L	001W000303	7 / 7	NAV	6522.86	7420	N/A	N/A	N/A		N/A	NO	EN
1)	Vanadium (V)	2.200	J	11.1000		UG/L	041W030301	4 / 7	NAV	6.13	11.1	N/A	830	26	N	N/A	ND	BSL
11	Zinc (Zn)	10.400	J	10.4000	J	UG/L	041W030201	1 / 7	NAV	10.40	10.4	N/A	36000	1100	N	N/A	NO	BSL
156592	cis-1,2-Dichloroethene	1.000		1.0000		UG/L	041W030401	1 / 4	NAV	1.00	1	N/A	670	61	N	N/A	NO	BSL

- (1) Minimum/maximum detected concentration
- (2) Maximum concentration used as screening value.
- (3) PRGs for adolescent site trespasser scenario calculated using equations and parameters presented in Section 8 of this report.
- (4) PRGs for commercial maintenance worker scenario calculated using equations and parameters presented in Section 8 of this report

(5) Rationale Codes

Selection Reason: Above Screening Levels (ASL)

Deletion Reason: Below Screening Levels (BSL)

Background Levels (BKG) Essential Nutrient (EN) No Toxicity Information (NTX)

Not Available (NAV)

Treatment Technique Action Level (TTAL)

Definitions: N/A = Not Applicable

COPC = Chemical of Potential Concern

ARAR/TBC = Applicable or Releveant and Appropriate Requirement/ To Be Considered

J = Estimated Value

C = Carcinogenic

N = Noncarcinogenie

TABLE 10-3-15 CALCULATION OF CANCER RISKS REASONABLE MAXIMUM EXPOSURE NAS PENSACOLA SITE 41

Scenario; Timeframe: Current and Future

Medium: Sediment

Exposure Medium: Sediment Exposure Point: Wetland 3 Receptor Population: Trespasser Receptor Age; Adolescent

Exposure Route	Chemical of Potential Concern	Medium EPC Value	Medium EPC Units	EPC Selected for Hazard Calculation	Intake (Cancer)	Intake (Cancer) Units	Cancer Slope Factor	Slope Factor Units	Cancer Risk
Ingestion	Arsenic	35.5	MG/KG	М	4.523E-08	mg/kg-day	1.5	(mg/kg-day) ⁻¹	2.41E-06
Dermal	Arsenic	35.5	MG/KG	М	1.854E-09	mg/kg-day	7.5	(mg/kg-day) ⁻¹	4.94E-07
<u> </u>	<u> </u>					Total Ri	sk All Exposure R	nutes/Pathways	2 90F-06

EPC = Exposure Point Concentration

MG/KG = Milligram per Kilogram

TABLL 10-3-16 RME CALCULATION OF NON-CANCER HAZARDS REASONABLE MAXIMUM EXPOSURE NAS PENSACOLA SITE 41

Scenario: Timeframe: Current and Future

Medium: Sediment

Exposure Medium: Sediment Exposure Point: Wetland 3 Receptor Population: Trespasser Receptor Age: Adolescent

				EPC Selected					
Exposure	Chemical of Potential	Medium	Medium	for Hazard	Intake	Intake	Reference	Reference	Hazard
Route	Concern	EPC Value	EPC Units	Calculation	(Non-Cancer)	(Non-Cancer) Units	Dose	Dose Units	Quotient
Ingestion	Arsenic	35.5	MG/KG	М	3.17E-07	mg/kg-day	3.00E-04	mg/kg-day	0.037
Dermal	Arsenic	35.5	MG/KG	M	1.30E-08	mg/kg-day	6.00E-05	mg/kg-day	0.008
	<u> </u>	l .			Total Haz	ard Index Across All	Exposure Ro	utes/Pathways	0.045

EPC = Exposure Point Concentration

MG/KG = Milligram per Kilogram

TABLE 10-3-17 CALCULATION OF CANCER RISKS REASONABLE MAXIMUM EXPOSURE NAS PENSACOLA SITE 41

Scenario: Timeframe: Current and Future

Medium: Surface water

Exposure Medium: Surface water Exposure Point: Wetland 3 Receptor Population: Trespasser Receptor Age: Adolescent

Exposure Route	Chemical of Potential Concern	Medium EPC Value	Medium EPC Units	Route EPC Value	EPC Selected for Hazard Calculation	Intake (Cancer)	Intake (Cancer) Units	Cancer Slope Factor	Slope Factor Units	Cancer Risk
Ingestion	Arsenic	0.0489	MG/L	N/A	М	2.88E-06	mg/kg-day	1.5	(mg/kg-day) ⁻¹	4.32E-06
1	Aroclor 1260	0.0005	MG/L	N/A	М	2.94E-08	mg/kg-day	0.4	(mg/kg-day) ⁻¹	1.18E-08
	Methylene chloride	1.2	MG/L	N/A	М	7.06E-05	mg/kg-day	0.0075	(mg/kg-day) ⁻¹	5.30E-07
Dermal	Arsenic	0.0489	MG/L	N/A	М	5.98E-07	mg/kg-day	7.5	(mg/kg-day) ⁻¹	4.49E-06
	Arocior 1260	0.0005	MG/L	N/A	M	6.73E-06	mg/kg-day	0.8	(mg/kg-day) ⁻¹	5.38E-06
	Methylene chloride	1.2	MG/L	N/A	М	6.60E-05	mg/kg-day	0.009375	(mg/kg-day) ⁻¹	6.19E-07
									Total Risk	1.53E-05

EPC = Exposure Point Concentration

MG/L = Milligram per Liter

TABLE 10-3-18 RME CALCULATION OF NON-CANCER HAZARDS REASONABLE MAXIMUM EXPOSURE NAS PENSACOLA SITE 41

Scenario: Timeframe: Current and Future

Medium: Surface Water

Exposure Medium: Surface Water Exposure Point: Wetland 3 Receptor Population: Trespasser Receptor Age: Adolescent

emical of Potential Concern	Medium EPC Value		Route EPC	Hazard	Intake	1-4-1	! D. (I	11
Concern	EPC Value			1102010	make	Intake	Reference	Reference	Hazard
		EPC Units	Value	Calculation	(Non-Cancer)	(Non-Cancer) Units	Dose	Dose Units	Quotient
enic	0.0489	MG/L	N/A	М	2.01E-05	mg/kg-day	3.00E-04	mg/kg-day	0.067
hylene chloride	1.2	MG/L	N/A	М	4.94E-04	mg/kg-day	6.00E-02	mg/kg-day	0.0082
enic	0.0489	MG/L		M	4.19E-06	mg/kg-day	6.00E-05	mg/kg-day	0.070
hylene chloride	1.2	MG/L		М	4.62E-04	mg/kg-day	4.80E-02	mg/kg-day	0.0096
					·····				0.15
h	ylene chloride nic	nic 0.0489	ylene chloride 1.2 MG/L nic 0.0489 MG/L	nic 0.0489 MG/L N/A	sylene chloride 1.2 MG/L N/A M nic 0.0489 MG/L M	nic 0.0489 MG/L N/A M 4.94E-04	nic 0.0489 MG/L N/A M 4.94E-04 mg/kg-day nic 0.0489 MG/L M 4.19E-06 mg/kg-day	ylene chloride 1.2 MG/L N/A M 4.94E-04 mg/kg-day 6.00E-02 nic 0.0489 MG/L M 4.19E-06 mg/kg-day 6.00E-05 ylene chloride 1.2 MG/L M 4.62E-04 mg/kg-day 4.80E-02	njene chloride 1.2 MG/L N/A M 4.94E-04 mg/kg-day 6.00E-02 mg/kg-day nic 0.0489 MG/L M 4.19E-06 mg/kg-day 6.00E-05 mg/kg-day

EPC = Exposure Point Concentration

MG/L = Milligram per Liter

TABLE 10-3-19 SUMMARY OF RECEPTOR RISKS AND HAZARDS FOR COPCS REASONABLE MAXIMUM EXPOSURE NAS PENSACOLA SITE 41

Scenario Timeframe: Current and Future Receptor Population: Site Trespasser Receptor Age: Adolescent

Medium	Exposure Medium	Exposure Point	Chemical	Carcinogenic Ris			Chemical	Non-carcinogenic Hazard Quotient			
				Ingestion	Dermal Contact	Total		Primary Target Organ	Ingestion	Dermal Contact	Total
Sediment	Sediment	Wetland 3	Arsenic	2.41E-06	4.94E-07	2.90E-06	Arsenic	skin	0.017	0.0033	0.020
			(Total)	2.41E-06	4.94E-07	2.90E-06	(Total)		0.017	0.0033	0.020
Surface Water	Surface Water	Wetland 3	Arsenic	4.32E-06	4.49E-06	8.81E-06	Arsenic	skin	0.067	0.070	0.14
			Aroclor 1260	1.18E-08	5.38E-06	5.40E-06	Methylene chloride	liver	0.0082	0.0096	0.018
			Methylene chloride	5.30E-07	6.19E-07	1.15E-06					
			(Total)	4.86E-06	1.05E-05	1.53E-05	(Total)		0.075	0.079	0.15
	Total Risk Across All Pathways						Total Hazard Index Across All Pathways				0.17

Lead Risk Characterization

A conservative exposure scenario was developed to assess the significance of surface water concentrations of lead at Wetland 3. This scenario involves a child (age 6 to 7) who accompanies an older sibling to the wetland one day a week for a year. Exposure to Wetland 3 surface water was considered additional to those they typically encountered at the child's home. This additional exposure was presented as an "alternate" source within the constructs of the Lead Model. The standard default assumptions in the Lead Model were retained to simulate background exposures in order to provide a conservative estimate of daily intake from sources unrelated to Wetland 3.

The assumption was made that this child would incidentally ingest 0.05 liters of surface water, represented in the Lead Model as an alternate source. The bioavailability of lead ingested from the alternate source (Wetland 3 surface water) was equal to that of drinking water lead ingested from the standard residential default source. Assuming incidental ingestion of 0.05 liters of surface water once per week with a lead concentration of 20.3 μ g/L, the annual alternate source exposure was estimated to be 0.14 μ g lead/day. Table 10-3-20 presents the lead model output for a child 6 to 7 years old under these exposure conditions.

Figure 10-3-4 shows the probability percentage of blood lead levels for the hypothetical child receptor. Based on this model output, the geometric mean blood level is estimated to be $2.7 \mu g/dL$, and the probability of blood lead levels in excess of $10 \mu g/dL$ is 0.26%. USEPA generally considers media concentrations that result in probability percentage estimates of 5% or less sufficiently protective of potential child receptors. As a result, surface water lead concentrations at Wetland 3 would not require specific action under the hypothetical exposure scenario.

10.3.5.7 Remedial Goal Options

RGOs were developed in accordance with USEPA Region IV Supplemental Guidance to RAGS Bulletin 5, Remedial Options (USEPA, 1996a). Arsenic was the only COC identified at this wetland and was identified as a COC in both sediment and surface water. Because arsenic was identified as a COC for both media based only on cancer risk estimates and not based on hazard index estimates, only risk based RGOs were developed. As shown in Table 10-3-11, the sediment exposure point concentration of 35.5 mg/kg-day resulted in a risk estimate of 2.9E-6 for arsenic. Using a linear ratio, a target risk of 1E-6 would result from 12.24 mg/kg. Therefore, 122.4 mg/kg and 1224 mg/kg represent target risks of 1E-5 and 1E-4, respectively.

The maximum arsenic concentration of 0.0489 mg/L in surface water resulted in a risk estimate of 8.8E-6, as shown in Table 10-3-17. Using a linear ratio, 0.0056 mg/L would correspond with a target risk of 1E-6. Therefore, 0.056 mg/L and 0.56 mg/L represent target risks of 1E-5 and 1E-4, respectively. The maximum Aroclor 1260 concentration of 0.0005 mg/L in surface water resulted in a risk estimate of 5.4E-6, as shown in Table 10-3-18. Using a linear ratio, 0.000093 μ g/L would correspond with a target risk of 1E-6. Therefore, 0.00093 mg/L and 0.0093 mg/L represent target risks of 1E-5 and 1E-4, respectively.

Figure 10-3-4 Probability Plots for Blood Lead Levels Wetland 3

Final Remedial Investigation Report NAS Pensacola Site 41 Section 10: Site-Specific Evaluations August 31, 2000

This page intentionally left blank.

Table 10-3-20 Lead Model (Version 0.99d) Inputs and Results NAS Pensacola, Wetland 3 Pensacola, Florida

AIR CONCENTRATION: 0.100 µg Pb/m3 DEFAULT

Indoor AIR Pb Conc: 30.0 percent of outdoor.

Other AIR Parameters:

Age	Time Outdoors (hr)	Vent.	. Rate (m3/day)	Lung Abs. (%)
0-1	1.0	2.0	32.0	
1-2	2.0	3.0	32.0	
2-3	3.0	5.0	32.0	
3-4	4.0	5.0	32.0	
4-5	4.0	5.0	32.0	
5-6	4.0	7.0	32.0	
6-7	4.0	7.0	32.0	

DIET: DEFAULT

DRINKING WATER Conc: $4.00~\mu g$ Pb/L DEFAULT

WATER Consumption: DEFAULT

SOIL & DUST:

Soil: constant conc.

Dust: constant conc.

Age	Soil (µg Pb/g)	House Dust (µg Pb/g)
0-1	200.0	200.0
1-2	200.0	200.0
2-3	200.0	200.0
3-4	200.0	200.0
4-5	200.0	200.0
5-6	200.0	200.0
6-7	200.0	200.0

Additional Dust Sources: None DEFAULT

Alternative Source Intake: Wetland 3 surface water

6-7: 0.14 μ g Pb/day

MATERNAL CONTRIBUTION: Infant Model Maternal Blood Conc: 2.50 $\,\mu g$ Pb/dL

CALCULATED BLOOD Pb and Pb UPTAKES:

YEAR	Blood Level (µg/dL)	Total Uptake (µg/day)	Soil+Dust Uptake (µg/day)	Diet Uptake (μg/day)	Water Uptake (μg/day)	Alt. Source Uptake (μg/day)	Air Uptake (μg/day)
0.5-1:	4.1	7.60	4.68	2.54	0.37	0.00	0.02
1-2:	4.5	10.93	7.36	2.63	0.91	0.00	0.03
2-3:	4.2	11.44	7.44	2.98	0.96	0.00	0.06
3-4:	4.0	11.48	7.53	2.90	0.99	0.00	0.07
4-5:	3.4	9.65	5.69	2.85	1.04	0.00	0.07
5-6:	3.0	9.39	5.16	3.03	1.11	0.00	0.09
6-7:	2.7	9.54	4.89	3.36	1.13	0.07	0.09

Final Remedial Investigation Report NAS Pensacola Site 41 Section 10: Site-Specific Evaluations August 31, 2000

10.3.6 Conclusions and Recommendations

Wetland 3 was sampled as a Group B wetland during Phase IIB/III. Assessment endpoint and triad analyses from Phase IIB/III revealed that sediment and surface water were acceptable at Wetland 3. The HHRA identified arsenic as a sediment COPC, and Aroclor 1260, arsenic, lead, and methylene chloride as surface water COPCs at Wetland 3. No fish tissue COPCs were identified for this wetland. Under USEPA guidelines, surface water lead concentrations at Wetland 3 would not require specific action under the hypothetical exposure scenario. Since the wetland has no recreational value for fishing or swimming, and is generally restricted to public access, the potential for incidental ingestion of sediment or surface water is considered low. Because of the limited overall ecological risk in Wetland 3, the restricted access to human trespassing within the area, and the limited potential for sediment and surface water ingestion by trespassers, no further action is recommended for Wetland 3.

10.4 Wetland 4D

10.4.1 Site Description

Wetland 4D is in the northwest portion of the A.C. Read golf course, on the eastern half of

NAS Pensacola. Wetland 4D receives surface water discharge from Wetland 3 to the west,

Wetland 4C to the south, and is tidally influenced by Bayou Grande from the north. Site 1 is west

of Wetland 4D, while Site 15 is east of this wetland.

Parsons and Pruitt (USEPA, 1991) described this area as an estuarine system containing emergent

vegetation such as saw grass (Cladium jamaicense) and black needle rush (Juncus roemerianus).

Wetland 4D receives freshwater from Wetlands 4A, 4B, 4C, and Wetland 3. Wetland 4A

encompasses an irrigation reservoir for the golf course and drains into Bayou Grande through

Wetlands 4B, 4C, and 4D. The open water portion of the Wetland 4D ranges from 1 to about

8 feet deep. Sediment in most of the wetland is sandy with a TOC of about 7%.

The IR sites potentially affecting Wetland 4D are Sites 1 and 15. Site 1 (sanitary landfill) was

used from the mid-1950s until 1976 as the predominant disposal site for all solid wastes generated

on the base. Site 15 (Pesticide Rinseate Disposal Site) was actively used from 1963 to 1979 as the

disposal site for rinse water from pesticide mixing and spray equipment cleaning (NEESA, 1983).

10.4.2 Nature and Extent

The methods for evaluating nature and extent are presented in Section 6. Figure 10-4-1 denotes

the Phase IIA Wetland 4D sampling locations.

Sediment

Twenty-one metals were detected in Wetland 4D sediment samples. Six metals exceeded sediment

benchmark levels. Metals exceeding sediment benchmark levels included

arsenic (12 ppm, 20 ppm, and 11 ppm at locations 04D1, 04D2, and 04D4), cadmium

10-4-1

Final Remedial Investigation Report NAS Pensacola Site 41 Section 10: Site-Specific Evaluations August 31, 2000

(3.5 ppm, 3.7 ppm, and 2.8 ppm at locations 04D1, 04D2, and 04D4), chromium (70.2 ppm and 65.5 ppm at locations 04D1 and 04D2), copper (21.3 ppm, 45.8 ppm, and 27 ppm at locations 04D1, 04D2, and 04D4), lead (190 ppm, 348 ppm, and 162 ppm at locations 04D1, 04D2, and 04D4) and mercury (0.16 ppm at location 04D4). Eight pesticides were detected in Wetland 4D sediment samples: 4.4'-DDT and its metabolites, alpha/delta-BHC, dieldrin, endosulfan sulfate, and alpha-chlordane. 4,4'-DDD (110 ppb at location 04D4), 4,4'-DDE (46 ppb at location 04D1, and 65 ppb at location 04D4) exceeded basewide levels. Dieldrin (0.78 ppb and 1.1 ppb at locations 04D1 and 04D4, respectively) also exceeded the benchmark level (0.72 ppb). Three PCBs, including Aroclors-1248/1254/1260 were also detected. Aroclor-1254 at location 04D2 (42 ppb), and Aroclor-1260 at location 04D1 (50 ppb) exceeded the benchmark level for PCBs (21.6 ppb). Thirteen SVOCs were detected in Wetland 4D sediment samples, most of which were high- and low-molecular weight PAHs. Three phthalate esters were also detected. PAHs exceeding sediment benchmark levels included benzo(a)anthracene (130 ppb, 250 ppb, and 88 ppb at locations 04D1, 04D2, and 04D3), benzo(a)pyrene (190 ppb, 310 ppb, and 120 ppb at locations 04D1, 04D2, and 04D3), chrysene (150 ppb, 240 ppb, and 120 ppb at locations 04D1, 04D2, and 04D3), fluoranthene (280 ppb and 310 ppb at locations 04D1 and 04D2), and pyrene (260 ppb and 410 ppb at locations 04D1 and 04D2). The phthalate ester bis(2-ethylhexyl)phthalate was detected above its benchmark level (182 ppb) at location 04D2 (240 ppb). The VOCs acetone (a common laboratory contaminant) and carbon disulfide were also detected in Wetland 4D sediments.

Table 10-4-1 shows the Wetland 4D Phase IIA sediment sample results (frequency of detection, range of detected concentrations, and average detected concentration). Table 10-4-2 compares detected concentrations at each sample location to sediment benchmark levels, and lists calculated HQs for each parameter. Only the parameters with benchmark levels are presented in Table 10-4-2. The HQs will be further discussed in the ecological risk section.

Table 10-4-1
Detected Concentrations in Wetland 4D Sediments

Parameter	Frequency of Detection	Range of Detected Concentrations	Average Detected Concentration
Inorganics (mg/kg)			
Aluminum (Al)	4/4	390 - 14700	7450.2
Antimony (Sb)	1/4	0.95	0.95
Arsenic (As)	5/5	0.49 - 20	8.80°
Barium (Ba)	5/5	0.34 - 9	4.86
Beryllium (Be)	3/5	0.37 - 0.55	0.45
Cadmium (Cd)	4/5	0.26 - 3.7	2.57
Calcium (Ca)	5/5	26.3 - 4510	1786.86
Chromium (Cr)	5/5	0.74 - 70.2	36.25
Cobalt (Co)	3/5	1.1 - 2.1	1.6
Copper (Cu)	5/5	0.49 - 45.8	19.44
Iron (Fe)	5/5	671 - 39400	18842.2
Lead (Pb)	5/5	0.73 - 348	142.33
Magnesium (Mg)	5/5	19.6 - 4590	2032.12
Manganese (Mn)	5/5	2 - 69.3	42.14
Mercury (Hg)	2/4	0.12 - 0.16	0.14
Nickel (Ni)	3/5	6.1 - 6.7	6.3
Potassium (K)	5/5	18.4 - 1530	649.48
Selenium (Se)	3/5	1.5 - 2.3	1.87
Sodium (Na)	5/5	2.5 - 11800	4297.2
Vanadium (V)	5/ 5	0.9 - 38.7	17.5
Zinc (Zn)	5/5	1.4 - 102	51.02
Pesticides and PCBs (µg/kg)			
4,4'-DDD	3/5	15 - 110	52.67
4,4'-DDE	5/5	0.32 - 65	28.21
ALDDE TRANSPORTER	++1/2-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	#47 1.53.9E-1879	2.6381 F442 F
Aroclor-1248	1/5	0.62	0.62
Aroclor-1254	2/5	1.7 - 42	21.85

Table 10-4-1
Detected Concentrations in Wetland 4D Sediments

Parameter	Frequency of Detection	Range of Detected Concentrations	Average Detected Concentration
Pesticides and PCBs (µg/kg)			
Aroclor-1260	1/5	50	50
Dieldrin	2/5	0.78 - 1.1	0.94
Endosulfan sulfate	1/5	0.63	0.63
alpha-BHC	2/5	0.46 - 0.94	0.7
alpha-Chlordane	3/5	1/- 1.5	1.3
delta-BHC	4/5	0.11 - 16	7.28
SVOCs (μg/kg)			
Benzo(a)anthracene	3/5	88 - 250	156
Benzo(a)pyrene	3/5	120 - 310	206.67
Benzo(b)fluoranthene	3/5	160 - 380	260
Benzo(g,h,i)perylene	3/5	130 - 390	270
Butylbenzylphthalate	2/5	68 - 81	74.5
Carbazole	1/5	66	66
Chrysene	3/5	120 - 240	170
Diethylphthalate	1/5	71000	71000
Fluoranthene	3/5	110 - 310	233.33
Indeno(1,2,3-cd)pyrene	3/5	77 - 240	155.67
Phenanthrene	3/5	38 - 80	57
Pyrene	3/5	130 - 410	266.67
bis(2-Ethylhexyl)phthalate (BEHP)	4/5	61 - 240	133.75
VOCs (μg/kg)			
Acetone	4/5	33 - 280	155.75
Carbon disulfide	3/5	4 - 27	16.33

Notes:

The total number of samples has been reduced by the number of rejected samples. However, note that no positive results rejected. All results are in micrograms per kilogram (μ g/kg) or parts per billion (ppb), except for metals which are in milligrams per kilogram (μ g/kg) or parts per million (ppm).

Table 10-4-2 Wetland 4D Phase IIA Sediment Concentrations Compared to Benchmark Levels

Sample Location	Parameter	Detected Consentration	Sediment Benchmark Value (SBV)	но	SBV Reference
- THE CHAPTER					0
1000	200	100 64	1000	100	
7000	2	-0.04	120	321	- 6
NAME OF		000	2.4	140	- 2
-		190	-0.0	200	- 2
- manual district		200	1110	-	
Design Street			100	100	- 44
1	- tenter	-	46.0	1.00	181
	Lebelli		1 400	2.0	100
1	COLUMN TWO IS NOT THE OWNER.	200.000	-	200	- 10
-		124	100	315	100
-		200	846	7.84	100
Transpired And				0.64	100
-10-1		415	40	Medical	- 1
Design Adm	2	Florid I	240	1400	10.00
Minter	-	200	79.	246	- 4
and William		100	600	340	
- Married West		1 444 81	100	240	- 22
- Was dead		100	400	2.05	
1	-	1.00	100	10.00	141
1 Street Street		-	1981	4.00	1.00
feator			100	100	2.0
041M04D201					
4,4 DDD (UG	KG	15 00	1.22	12 30	la la
4,4-00E (UG		20 DJ	2.07	14-64	b
4,4"-DDT (UG:		221	1-19	1.65	b
alpha-Chlordar		1.2	1.7	0.59	а
Antimony (MC		0.45	12	Q/DB	a
Aroclor-1254		42 4	21.6	1.54	12.
Arsenic (MG/I		20	7.24	275	3 (2
	stere (UG/KG)	250	74.8	3,34	b
Benzo(a)pyren		310	86,8	3,49	ti.
bis(2-Ethylhex	(l)phthalate (BEHP) (LIG/KG)	240 J	182	1 32	12
Cadmum (MC		37	68.0	5 44	b
Chromium (M)		65.5	52,3	1.25	ab
Chrysene (UC		240	(OA	2,22	la
Cooper (MG/H		45.8	18,7	2.45	a p
Fluoranthene		310	113	2.74	ła

Basewide level for 4.4-DDE is 40 ppb Basewide level for 4.4-DDD is 50 ppb Basewide level for 4.4-DDT is 20 ppb

⁽a) USEPA Screening Concentration for Sediment - EPA SSVs
(b) FDEP Sodiment Outsity Assessment Guidelines - FDEP SQAGs

Some of the numbers in the table may vary because of rounding. Basewide levels (detailed in Section 6) for DDT and its metabolites.

Table 10-4-2
Wetland 4D
Phase IIA Sediment Concentrations Compared to Benchmark Levels

Sample Location Parameter	Detected Concentration	Sediment Benchmark Value (SBV)	HQ	SBV Reference
Lead (MG/KG)	348	30.2	11.52	аb
Nickel (MG/KG)	6.7 J	15.9	0.42	аb
Phenanthrene (UG/KG)	80 J	86.7	0.92	b
Pyrene (UG/KG)	410	153	2.68	ь
Zinc (MG/KG)	102	124	0.82	a b
041M04D301				
4,4'-DDE (UG/KG)	0.72 J	2.07	0.35	b
4,4'-DDT (UG/KG)	1.5 J	1.19	1.26	b
Arsenic (MG/KG)	0.49 J	7.24	0.07	аb
Benzo(a)anthracene (UG/KG)	88	74.8	1.18	b
Benzo(a)pyrene (UG/KG)	120	88.8	1.35	b 30
bis(2-Ethylhexyl)phthalate (BEHP) (UG/KG)	61 J	182	0.34	b
Cadmium (MG/KG)	0.26 J	0.68	0.38	b
Chromium (MG/KG)	1.3	52.3	0.02	ab
Chrysene (UG/KG)	120	108	1.11	b b
Copper (MG/KG)	2.6	18.7	0.14	a b
Fluoranthene (UG/KG)	110	113	0.97	b
Lead (MG/KG)	10.9	30.2	0.36	ab
Phenanthrene (UG/KG)	38 J	86.7	0.44	Ъ
Pyrene (UG/KG)	130	153	0.85	_z b
Zinc (MG/KG)	3,6	124	0.03	аb
041M04D401				
4,4'-DDD (UG/KG)	110 D	1.22	90.16	ь
4,4'-DDE (UG/KG)	65 DJ	2.07	31.40	b
4,4'-DDT (UG/KG)	3.9 J	1.19	3.28	b
alpha-Chlordane (UG/KG)	1.4 J	1,7	0.82	а
Arsenic (MG/KG)	11	7.24	1.52	аb
Cadmium (MG/KG)	2.8	0.68	4.12	b
Chromium (MG/KG)	43.5	52.3	0.83	аb
Copper (MG/KG)	27	18.7	1.44	аb
Dieldrin (UG/KG)	1.1 J	0.72	1.53	b
Lead (MG/KG)	162	30.2	5.36	аb
Mercury (MG/KG)	0.16 J	0.13	1.23	a b
Nicket (MG/KG)	6.1 J	15.9	0.38	аb
Zinc (MG/KG)	77.5	124	0.63	аb

041M04D501

Notes:

Some of the numbers in the table may vary because of rounding.

Basewide levels (detailed in Section 6) for DDT and its metabolites

Basewide level for 4,4'-DDE is 40 ppb.

Basewide level for 4,4'-DDD is 50 ppb.

Basewide level for 4,4'-DDT is 20 ppb.

⁽a) USEPA Screening Concentration for Sediment - EPA SSVs

⁽b) FDEP Sediment Quality Assessment Guidelines - FDEP SQAGs

Table 10-4-2 Wetland 4D Phase IIA Sediment Concentrations Compared to Benchmark Levels

Sample Location	Parameter	Detected Concentration	Sediment Benchmark Value (SBV)	HQ	SBV Reference
KYOU YE	mq.	Au .	180	Me	- 1
-	MONTH.	1980	200	1000	- A
PROPERTY.	personal contract of	2974	44.	-	N.A.
Reason Street	4	THE R.	-59%	100	***
_	-	16 10	146	686	1.4
-	_	212	30.5	100	1,460
100	~	(148 ×	780	100	
- MINOR		9191	- 00	1.80	200
COLUMN TWO		1110	100	1.80	2.0

Notes.

⁽a) USEPA Screening Concentration for Sediment - EPA SSVs
(b) FDEP Sediment Quality Assessment Guidelines - FDEP SOAGs Some of the numbers in the Jablo may vary because of rounding, Basewide levels (detailed in Section 6) for DOT and its metabolites Basewide level for 4,4'-DDE is 40 ppg B-revide level for 4,4'-DDD is 50 npb Basewide level fo/ 4,4'-DDT is 20 ppb.

Surface Water

Seven metals were detected in Wetland 4D surface water samples. Iron exceeded saltwater surface water criteria (300 ppb) at sample locations 04D1 (1,580 ppb) and 04D4 (695 ppb), as did thallium (6.3 ppb) at sample location 04D4 (11 ppb). No pesticides, PCBs, or SVOCs were detected in surface water at Wetland 4D. One VOC, methylene chloride (a common laboratory contaminant), was detected in Wetland 4D surface water, below its standard.

Table 10-4-3 shows the Wetland 4D Phase IIA surface water sample results (frequency of detection, range of detected concentrations, and average detected concentration). Table 10-4-4 compares detected concentrations at each sample location to surface water quality criteria and lists calculated HQs for each parameter. Only the parameters with water quality criteria are presented in Table 10-4-4. The HQs will be further discussed ecological risk section.

Table 10-4-3
Detected Concentrations in Wetland 4D Surface Water

Parameter	Frequency of Detection	Range of Detected Concentrations	Average Detected Concentration
Inorganics (μg/L)			***
Calcium (Ca)	2/2	32600 - 55000	43800
Iron (Fe)	2/2	695 - 1580	1137.5
Magnesium (Mg)	2/2	63700 - 145000	104350
Manganese (Mn)	2/2	22.6 - 36.4	29.5
Potassium (K)	2/2	21500 - 45900	33700
Sodium (Na)	2/2	686000-1270000	978000
Thallium (T1)	1/2	, 1Ì	11
VOCs (μg/L)			
Methylene chloride	1/2	87	87

Note:

All results are in micrograms per liter ($\mu g/L$) or parts per billion (ppb).

Table 10-4-4 (1) Wetland 4D Phase IIA Surface Water Concentrations Compared to Water Quality Criteria

Sample Location	Parameter	UOM	Detected Concentration	Water Cruality Criteria	но	Criteria Reference
PR CHARACTERS	Name of	*	(11)	741	Ties	35
041W04D4D1	Saltwater	100	-			
tron		LIGIL	695.0	300.0	2 31567	6.
Thallium		.UG/L	110	6.5	1.74603	6.

Notes

(a) USEPA Water Duality Criteria (1895) (b) FDEP Class III Water Quality Criteria (1996)

Some of the numbers in the table may vary because of rounding.

10.4.3 Fate and Transport

Pathways evaluated for wetland-specific fate and transport correlate with those identified in the

conceptual model presented in Section 9: surface water/sediment transport into the wetland;

groundwater discharge into the wetland; sediment/surface water transport within the wetland;

sediment leaching to surface water within the wetland; and surface water/sediment transport from

the wetland. Because sediment transport and storm water runoff data is lacking, many evaluations

are qualitative in nature. The method of evaluating leaching from sediment to surface water was

presented in Section 9. Table 10-4-5 presents those contaminants present in sediment above

benchmark levels and their calculated SSLs. Contaminants present in surface water above

water quality criteria are presented in Table 10-4-4.

Transport Into the Wetland

Surface Water/Sediment Pathway

Based on landform and watershed analysis, the following sources can contribute contamination to

Wetland 3 through this pathway:

• Potential storm water runoff and sediment entrainment from Site 1, Site 15, and the

golf course. Additionally, this wetland has a direct connection to Bayou Grande, and may

experience back flushing of surface water during high tide and storm surge events.

Sediment contaminants above benchmark levels (see Table 10-4-2) validate this sediment transport

pathway, and by inference surface water as well. Additionally, one inorganic exceeded

surface water criteria, further validating the pathway.

Groundwater Discharge Pathway

Based on potentiometric analysis, the primary potential sources that would directly contribute

contamination to Wetland 4D through this pathway are Site 1, Site 15, and the golf course.

10-4-12

Table 10-4-5
Calculated Sediment Screening Values for Wetland 4D

Parameter	USEPA or FDEP Surface Water Standard	Kd	SSL DF = 100	Maximum Concentration Detected	Leaching Potential DF = 100
Inorganics	(ppb)		(рріп)	(ррт)	
Arsenic	36ª	2.9E+01	105	20	NO .
Cadmium	9.3 a, b	7.5E+01	69.9	3.7	NO
Chromium	50 😘	1.9E+01	95.7	70.2	NO
Copper	2.9 a, b	4.3E+02	125	45.8	NO
Lead	5.6 b	9E+02	504	348	NO
Mercury	0.025 a, b	5.2E+01	0.13	0.16	YES
Organics	(ppb)		(ppb)	(ppb)	
4,4 DDE	0.14 *	1.34E+05	1.88E+06	65	NO
4,4 DDD	0.025 a	3.00E+04	7.50E+04	110	NO
4,4 DD T	0.001 a, b	7.88E+04	7.88E + 03	2.9	NO
Dieldrin	0.0019 a, b	642	1.22E+02	1.1	NO
Total PCBs*	0.03 a, b	9.251E+03	2.78E+04	94.32	NO
Benzo(a)anthracene	0.031 b	1.19E+04	3.69E+04	250	NO
Benzo(a)pyrene	0.031 b	3.06E+04	9.51E+04	310	NO
Chrysene	0.031 b	1.19E+04	3.69E+04	240	NO
Fluoranthene	1.6 *	3.21E+03	5.14E+05	310	NO
Pyrene	11,000 ⁶	3.14E+03	3.45E+09	410	NO

Notes:

Kd for organics calculated using foc of 0.030 (numerical average of all sediment samples).

Kds are from: USEPA, 1996b (first preference); Superfund Chemical Data Matrix (USEPA, 1996c) (second preference); Texas Risk Reduction Program Concept Document 2, Volume 1, Appendix VII, 1996 (third preference); TERRA Model, Oak Ridge National Laboratory, 1984 (fourth preference — primary reference for inorganics).

Kd = normalized partitioning coefficient.

SSL = sediment screening level.

DF = dilution factor.

a = USEPA Saltwater Surface Water Chronic Screening Value (1995a).

= FDEP Class II Water Quality Criteria (1996).

Contamination found in groundwater validates this pathway.

^{* =} based on Aroclor-1260

August 31, 2000

Transport Within the Wetland

Surface Water/Sediment Migration Pathway

The configuration of the wetland, along with landform analysis, indicates that surface water and

sediment transport will occur to the north into Bayou Grande. Surface water and sediment can

therefore be considered to be mobile, and the pathway valid for this wetland.

Sediment Leaching to Surface Water Pathway

Ten organics — four pesticides, PCBs, five semivolatiles — and six inorganics exceeded their SSV

(see Table 10-4-2), but only one — mercury — exceeded its calculated SSL (see Table 10-4-5).

Mercury was not detected in the corresponding surface water, thus the potential for their

partitioning to surface water is considered low. Iron was the only constituent in surface water

above standards, and it is likely attributable to the surface water/groundwater discharge pathway.

Because mercury was detected in sediment above their SSLs, the pathway is considered valid, but

with a low potential for partitioning to surface water.

Transport From the Wetland

Surface water and sediment from Wetland 4D can be expected to move directly into

Bayou Grande, with some landward movement during periods of high tide and storm surge events.

Therefore sediment and surface water contamination can be expected to be mobile and not remain

within the wetland.

10.4.4 Ecological Risk Assessment

HOs for Wetland 4D sediment samples are presented in Tables 10-4-2. Phase IIA sediment sample

results compared to the appropriate sediment benchmark levels revealed HQs above 1 for arsenic

(1.66, 2.76, and 1.52 at locations 04D1, 04D2, and 04D4), cadmium (5.15, 5.44, and 4.12 at

locations 04D1, 04D2, and 04D4), chromium (1.34 and 1.25 at locations 04D1 and 04D2), copper

10-4-14

(1.14, 2.45, and 1.44 at locations 04D1, 04D2, and 04D4), lead (6.29, 11.52, and 5.36 at locations 04D1, 04D2, and 04D4) and mercury (1.23 at location 04D4). 4.4'-DDD. 4,4'-DDE, and 4,4'-DDT each had HQs above 1 at locations 04D1 (27.05, 22.22, and 2.44). 04D2 (12.30, 14.01, and 1.85), and 04D4 (90.16, 31.40, and 3.28). 4,4'-DDT also had a HO above 1 at sample location 04D3 (1.26). Dieldrin (1.08 and 1.53 at locations 04D1 and 04D4, respectively) also had an HQ greater than 1. The PCBs Aroclor 1254 and Aroclor-1260 also had HQs greater than 1 at locations 04D2 (1.94), and 04D1 (2.31), respectively. PAHs with HQs above 1 included benzo(a)anthracene (1.74, 3.34, and 1.18 at locations 04D1, 04D2, and 04D3), benzo(a)pyrene (2.14, 3.49, and 1.35 at sample locations 04D1, 04D2, and 04D3), chrysene (1.39, 2.22, and 1.11 at sample locations 04D1, 04D2, and 04D3), fluoranthene (2.48 and 2.74 at sample locations 04D1 and 04D2), and pyrene (1.70 and 2.68 at locations 04D1 and 04D2). The phthalate ester bis(2-ethylhexyl)phthalate had an HQ above 1 at location 04D2 (1.32). Phase IIA surface water results revealed HQs greater than 1 for iron at sample locations 04D1 (5.27) and 04D4 (2.32), and thallium at sample location 04D4 (1.75). HQs greater than 1 indicate the potential for excess risk.

Phase IIB/III

Based on Phase IIA data, Wetland 4D was classified in Group C. Wetlands 18 and 16 were selected to represent Group C because they had the highest levels of contamination in the group. Color-codes, groupings and rationale for classification are described in Section 7.

Risk in Wetland 16 was evaluated with respect to one assessment endpoint, survival, growth, and reproduction of macroinvertebrates associated with the benthic environment. Decision making triad results for Phase IIB/III Wetland 16 sediment analytical results (condition number 2) indicated that Wetland 16 sediment was acceptable and no further action was recommended for this medium. See Section 10.5.4 for a more detailed presentation of the Wetland 15 results.

Wetland 18 assessment endpoints were 1) piscivorous bird health and reproduction; 2) survival,

growth, and reproduction of macroinvertebrates associated with the benthic environment; and 3)

protection of fish viability. Analyses of the data suggest that the detected concentrations in

sediment and surface water are acceptable. See Section 10.6.4 for a more detailed presentation

of the Wetland 18 analysis.

Comparison of Wetland 4D to the Group C representative wetlands (Wetlands 16 and 18) should

indicate that Wetland 4D would have similar results for sediment and surface water. Ecological

risk for sediment and surface water at Wetland 4D should therefore be considered acceptable.

10.4.5 Human Health Risk Assessment

10.4.5.1 Samples Included

Sediment

041M04D101, 041M04D201, 041M04D301, 041M04D401, 041M04D501

Surface Water

041W04D101, 041W04D401

10.4.5.2 Current and Future Land Use

This wetland is on the Navy golf course and could be an exposure point for golfers or trespassers

looking for lost golf balls. The Navy enforces the no fishing/no swimming policy at this wetland.

The adolescent trespasser and maintenance worker scenarios were considered conservatively

representative of potential human receptors at this wetland.

10.4.5.3 Fish COPCs Identified

No fish tissue data were available for this wetland, and this exposure pathway would likely be

incomplete; therefore, no COPCs were identified.

10-4-16

10.4.5.4 Sediment COPCs Identified

As shown in Table 10-4-6, the following COPC was identified:

Arsenic

10.4.5.5 Surface Water COPCs Identified

As shown in Table 10-4-7, no surface water COPCs were identified.

10.4.5.6 Risk Characterization

Adolescent Trespasser

As shown in Table 10-4-8, arsenic is the only contributor to sediment risk estimates for the trespasser scenario. The cumulative risk (ingestion and dermal contact) estimated for this wetland is 1.7E-6. The HI shown in Table 10-4-9 was estimated to be 0.026. Arsenic was identified as a COC in sediment based on its contribution to the cumulative risk estimate for this wetland using the adolescent trespasser scenario. Table 10-4-12 summarizes cancer risk estimates and noncancer hazard estimates for this wetland. Although exposure would likely be acute or subchronic, these hazard estimates were developed for completeness, and RGOs were developed below. Risk managers should also consider ecological endpoints.

Maintenance Worker

As shown in Table 10-4-10, arsenic is the only contributor to sediment risk estimates for the maintenance worker scenario. The cumulative risk (ingestion and dermal contact) estimated for this wetland is 2.7E-6. The HI shown in Table 10-4-11 was estimated to be 0.072. Arsenic was identified as a COC in sediment based on its contribution to the cumulative risk estimate for this wetland using the maintenance worker scenario. Tables 10-4-12 details cancer risk estimates and noncancer hazard estimates for this wetland. Although exposure would likely be acute or subchronic, these hazard estimates were developed for completeness, and RGOs were developed below. Risk managers should also consider ecological endpoints.

TABLE 10-4-6 OCCURRENCE, DISTRIBUTION, AND SELECTION OF CHEMICALS OF POTENTIAL CONCERN NAS PENSACOLA SITE 41

Scenario Timeframe, Current and Fusive Medium: Sediment Exposure Medium: Sediment Exposure Point: Wedand 4d Sediment

		(1)		(1)	T					((2)	(3)	(4)		(5)		(6)
CAS Number	Chemical	Minimum Consentration	Minimum Qualifier	Maximum Concentration	Maximum Qualifier	Units	Location of Maximum Concentration	Detection Frequency	Runge of Detection Limits	MEAN	Concentration Used for Screening	Background Value	Adolescent Site Trespasser PRG	Commercial Maintenance Worker PRG	Potentia ARAR/TE Source		Rationale for Contaminant Delection or Selection
72548	4,4'-DDD	15.0000	נם	110.0000	0	UG/KG	041M04D401	3 / 5	0.21 - 0.21	52.67	110	N/A	92000	57000	C N/A	NO	B\$L
72559	4,4'-DDE	0.3200	i	65,00	ם	UG/KG	041M04D501	5 / 5	NAV	28.21	65	N/A	65000	40000	C N/A	NO	BSL
50293	4,4'-DDT	1.5000	J	3.9000	J	UG/KG	041M04D301	4 / 5	0,21 - 0.21	2.63	3.9	N/A	65000	40000	C N/A	NO	BSL
57641	Acetone	33.0000		280,0000	l	UG/KG	041M04D401	4 / 5	250.00 - 250.00	155.75	280	N/A	32000000	49000000	N N/A	NO	BSL
319846	alpha-BHC	0.4600	J	0.9400	J	ug/Kg	041M04D301	2 / 5	0.01 - 0.04	0.70	0.94	N/A	3500	2200	C N/A	NO	BSL
5103719	alpha-Chlordane	1,0000	J	1.5000	J	UG/KG	041M04D201	3 / 5	0.01 - 0.01	1.30	1.5	N/A	63000	39000	C N/A	NO	BSL
7429905	Aluminum (AI)	390.0000		33400.00		MG/KG	041M04D401	6 / 6	NAV	11775.17	33400	N/A	320000	490000	N N/A	NO	BSL
7440360	Antimony (Sb)	0.9500	J	0.9500	J	MG/KG	041M04D201	1 / 6	0.12 - 18.20	0.95	0.95	N/A	130	200	N N/A	NO	BSL
12672296	Arocior-1248	0.6200	J	0.6200	J	UG/KG	041M04D201	1 / 5	2.10 - 7.70	0.62	0.62	N/A	11000	6900	C N/A	NO	BSL
11097691	Aroclor-1254	1.7000	J	42.0000	J	UG/KG	041M04D501	2 / 5	2,10 - 7.70	21.85	42	N/A	11000	6900	C N/A	NO	BSL
11096825	Aroclor-1260	50.0000	ر ا	50.0000	J	UG/KG	041M04D201	1 / 5	2.10 - 7.70	50.00	50	N/A	11000	6900	C N/A	NO	BSL
7440382	Arsenic (As)	0.4900	J	20.40	J	MG/KG	041M04D301	6 / 6	NAV	10.73	20.4	N/A	15	9.2	C N/A	YES	ASL
7440393	Banum (Ba)	0.3400	l i	59.00	J	MG/KG	041M04D101	6 / 6	NAV	13,89	59	N/A	22000	34000	N N/A	NO	BSL
56553	Benzo(a)a nthrace na	88.0000	!	250.0000	1	UG/KG	041M04D401	3 / 5	41.00 - 1300.00	156.00	250	N/A	30000	19000	C N/A	NO	BSL
50328	Benzo(a)pyrene	120.0000]	310,0000	1	UG/KG	041M04D301	3 / 5	41.00 - 1300.00	206.67	310	N/A	3000	1900	C N/A	NO	BSL
205992	Benzo(b)fluoranthene	160.0000		380,0000		UG/KG	041M04D201	3 / 5	41.00 - 1300.00	260.00	380	N/A	30000	19000	C N/A	NO	BSL
191242	Benzo(g,h,i)perylene	130.0000		390.0000		UG/KG	041M04D101	3 / 5	41,00 - 1300,00	270.00	390	N/A	95000000	15000000	N N/A	NO	BSL
207089	Benzo(k)fluoranthene	100.0000		230.0000		UG/KG	041M04D401	3 / 5	41.00 - 1300.00	156.67	230	N/A	300000	190000	C N/A	NO	BSL
7440417	Beryllium (Be)	0.3700	از	0.8100	l)	MG/KG	041M04D401	4 / 6	0.06 - 0.06	0.54	0.81	N/A	630	980	N N/A	NO	ESL
117817	bis(2-Ethythexyl)phthalate (BEHP)	61,0000	ı	240.0000	J	ug/kg	041M04D201	4 / 5	13000.00 - 13000.00	133.75	240	N/A	1600000	980000	C N/A	NO	BSL
85687	Butylbenzylphthalate	68.0000	J	81.0000	J	UG/KG	041M04D101	2 / 5	400.00 - 13000.00	74.50	81	N/A	63000000	98000000	N N/A	NO	BSL
7440439	Cadmium (Cd)	0.2600	J	3.7000		MG/KG	041M04D201	4 / 6	0.18 - 1.00	2.57	3.7	N/A	320	490	N N/A	NO	BSL
7440702	Calcium (Ca)	26.3000	J	4510.00	l	MG/KG	041M04D501	6 / 6	NAV	2065.72	4510	N/A	N/A	N/A	N/A	NO	EN
86748	Carbazole	66.0000	J	66.0000	J	UG/KG	041M04D101	1 / 5	400.00 - 13000.00	66.00	56	N/A	1100000	690000	C N/A	NO	BSL
75150	Carbon disulfide	4.0000	J	27.0000	J	UG/KG	041M04D401	3 / 5	12.00 - 14.00	16.33	27	N/A	32000000	45000000	N N/A	NO	BSL
7440473	Chromium (Cr)	0.7400		85.10		MG/KG	041M04D501	6 / 6	NAV	44.39	85.1	N/A	1600	2500	N/A	NO	BSL
218019	Chrysene	120.0000		240.0000	İ	UG/KG	041M04D401	3 / 5	41.00 - 1300.00	170.00	240	N/A	3000000	1900000	C N/A	NO	BSL
7440484	Cobalt (Co)	1.1000	J	2.1000)	MG/KG	041M04D201	3 / 6	0.18 - 5.80	1.60	2.1	N/A	19000	29000	N N/A	NO	BSL
7440508	Copper (Cu)	0.4900	J	53.00	J	MG/KG	041M04D501	6 / 6	NAV	25.03	53	N/A	13000	20000	N N/A	NO	BSL
319868	delta-BHC	0.1100	J	16,0000	DJ	UG/KG	041M04D301	4 / 5	0.01 - 0.01	7.28	16	N/A	12000	7600	N/A	NO	BSL
60571	Dieldrin	0.7800	J	1.1000	J	UG/KG	041M04D401	2 / 5	0.21 - 0.68	0.94	1.1	N/A	1400	860	C N/A	NO	BSL
84662	Diethylphthalate	71000.0000	J	71000.0000	L	UG/KG	041M04D401	1 / 5	400.00 - 1300.00	71000.00	71000	N/A	250000000	390000000	N N/A	NO	BSL
1031078	Endosulfan sulfate	D.6300	J	0.6300	J	UG/KG	041M04D2D1	1 / 5	0.21 - 0.77	0.63	0.63	N/A	1900000	2900000	N N/A	NO	BSL
206440	Fluoranthene	110.0000	1	310.0000	l	UG/KG	041M04D301	3 / 5	41.00 - 1300.00	233.33	310	N/A	13000000	20000000	N N/A	NO	BSL
193395	Indeno(1,2,3-cd)pyrene	77.0000		240.0000		UG/KG	041M04D301	3 / 5	41.00 - 1300.00	155.67	240	N/A	30000	19000	C N/A	NO	BSL
7439896	Iron (Fe)	671.0000		47500.00		MG/KG	041M04D401	6 / 6	NAV	23618.50	47500	N/A	N/A	N/A	N/A	NO	EN
7439921	Lead (Pb)	0.7300		350.00	J	MG/KG	041M04D501	6 / 6	NAV	176.94	350	N/A	400	400	N OSWE	S NO	BSL
7439954	Magnesium (Mg)	19.6000	J	5170.00	1	MG/KG	041M04D301	6 / 6	NAV	2555.10	5170	N/A	N/A	N/A	N N/A	NO	EN
7439965	Manganese (Mn)	2.0000	J	90.20	1	MG/KG	041M04D301	6 / 6	NAV	50.15	90.2	N/A	15000	23000	N N/A	NO	BSL
7439976	Mercury (Hg)	0.1200	j	0.1600	J	MG/KG	041M04D101	2 / 6	0.05 - 0.15	0.14	0.16	N/A	95	150	N/A	NO	BSL
7440020	Nickel (Ni)	5.1000		12.8000	J	MG/KG	041M04D201	4 / 6	0.72 ~ 0.74	7.93	12.B	N/A	6300	9800	N N/A	NO	BSL
85018	Phenanthrene	38,0000	J	80.0000	J	UG/KG	041M04D301	3 / 5	41.00 - 1300,00	57.00	80	N/A	9500000	15000000	N N/A	NO	BSL
7440097	Potassium (K)	18.4000	J	3150.00	l	MG/KG	041M04D301	6 / 6	NAV	1066.23	3150	N/A	N/A	N/A	N/A	NO	EN
129000	Pyrene	130.0000		410.0000	[UG/KG	041M04D101	3 / 5	41.00 - 1300.00	266,67	410	N/A	9500000	15000000	N N/A	NO	BSL
7782492	Selenium (Se)	1.5000	J	4.6000	J	MG/KG	041M04D101	4 / 6	0.18 - 0.18	2.55	4.6	N/A	1600	2500	N N/A	NO	BSL
7440235	Sodium (Na)	2.5000	J	11800.00	1	MG/KG	041M04D401	6 / 6	NAV	5381.58	11800	N/A	N/A	N/A	N N/A	NO	EN
7440622	Vanadium (V)	0.9000	J	59.10	1	MG/KG	041M04D301	6 / 6	NAV	24.43	59.1	N/A	2200	3400	N N/A	NO	BSL
7440666	Zinc (Zn)	1.4000		112.00		MG/KG	041M04D501	6 / 6	NAV	61.18	112	N/A	95000	150000	N N/A	NO	BSL

- (1) Minimum/maximum detected concentration
- (2) Maximum concentration used as screening value.
- (3) No background concentrations were developed for this media.
- (4) PRGs for site trespasser scenario calculated based on equations and parameters presented in Section 8 of this report.
- (5) PRGs for commercial maintenance worker scenario calculated based equations and parameters presented in Section 8 of this report.
- (6) Rationale Codes

Selection Reason:

Above Screening Lavets (ASL) Deletion Reason: Below Screening Levels (BSL) Background Levels (BKG) No Toxicity Information (NTX) Essential Nutrient (EN)

Definitions: N/A = Not Applicable

NAV = Not Available

COPC = Cohemical of Potential Concern

ARAR/TBC = Applicable or Relevant and Appropriate Requirement/To Be Considered

OSWER = Office of Solid Waste and Emergency Response

J = Estimated Value C = Carcinogenic

N = Noncarcinogenic

TABLL 10-4-7 OCCURRENCE, DISTRIBUTION, AND SELECTION OF CHEMICALS OF POTENTIAL CONCERN NAS PENSACOLA SITE 41

Scenario Timeframe: Current and Future Medium: Surface Water Exposure Medium: Surface Water Exposure Point: Wetland 4D Surface Water

CAS Number	Chemical	(1) Minimum Concentration	Minimum Qualifier	(1) Maximum Concentration	Maximum Qualifier	Units	Location of Maximum Concentration	Detection Frequency	Range of Detection Limits	Mean	Used for Screening	Background Value		(4) Commercial Maintenance Worker Scraening Toxicity Value	Source	COPC Flag	Selection
7440702	Calcium (Ca)	32600.00		55000.00		UG/L	041W04D401	2 / 2	NAV	43800.00	55000	N/A	N/A	N/A	N/A	NO	EN
7439896	Iron (Fe)	695.00		1580,00		UG/L	041W04D101	2 / 2	NAV	1137.50	1580	N/A	N/A	N/A N	N/A	NO	EN
7439954	Magnesium (Mg)	63700.00		145000.00		UG/L	041W04D401	2 / 2	NAV	104350.00	145000	N/A	N/A	N/A	N/A	NO	EN I
7439965	Manganese (Mn)	22.60		36,40		UG/L	041W04D101	2 / 2	NAV	29.50	36.4	N/A	2400	5000 N	N/A	NO	BSL
75092	Methylene chloride	87.00		87.00	D	UG/L	041W04D401	1 / 2	NAV	87.00	B7	N/A	1000	900 C	N/A	NO	BSL
7440097	Potassium (K)	21500.00		45900.00		UG/L	041W04D401	2 / 2	NAV	33700.00	45900	N/A	N/A	N/A	N/A	NO	EN
7440235	Sodium (Na)	686000.00		1270000.00	i	UG/L	041W04D401	2 / 2	NAV	978000.00	1270000	N/A	N/A	N/A	N/A	NO	EN
7440280	Thallium (TI)	11.00		11.00		UG/L	041W04D401	1 / 2	NAV	11.00	11	N/A	17	26 N	N/A	YES	ASL

(1) Minimum/maximum detected concentration

(2) Maximum concentration used as acreening value.

(4) PRGs for site trespasser scenario calculated based on equations and parameters presented in Section 8 of this report.

(5) PRGs for commercial maintenance worker calculated using equations and parameters presented in Section 8 of this report.

(6) Rationale Codes

Selection Reason: Above Screening Levels (ASL)

Deletion Reason: Below Screening Levels (BSL)

Background Levels (BKG)
Essential Nutrient (EN)

No Toxicity Information (NTX)

Definitions: N/A = Not Applicable

NAV = Not Available

COPC = Chemical of Potential Concern

ARAR/TBC = Applicable or Releveant and Appropriate Requirement/ To Be Considered

J ➤ Estimated Value

C = Carcinogenic

N = Noncarcinogenic

TABLE 10-4-8 CALCULATION OF CANCER RISKS REASONABLE MAXIMUM EXPOSURE NAS PENSACOLA SITE 41

Scenario: Timeframe: Current

Medium: Sediment

Exposure Medium: Sediment
Exposure Point: Wetland 4d
Receptor Population: Trespasser
Receptor Age: Adolescent

					EPC Selected for						
Exposure	Chemical of Potential	Medium	Medium	Route EPC	Hazard	Intake	Intake	Cancer Slope	Slope Factor		
Route	Concern	EPC Value	EPC Units	Value	Calculation	(Cancer)	(Cancer) Units	Factor	Units	Cancer Risk	
Ingestion	Arsenic	20.4	MG/KG	N/A	М	9.20E-07	mg/kg-day	1.5	(mg/kg-day) ⁻¹	1.38E-06	
Dermal	Arsenic	20.4	MG/KG	N/A	М	3.80E-08	mg/kg-day	7.5	(mg/kg-day) ⁻¹	2.85E-07	
Total Risk All Exposure Routes/Pathways											

EPC = Exposure Point Concentration

MG/KG ≈ Milligram per Kilogram

TABLE 10-4-9 CALCULATION OF NON-CANCER HAZARDS REASONABLE MAXIMUM EXPOSURE NAS PENSACOLA SITE 41

Scenario: Timeframe: Current

Medium: Sediment

Exposure Medium: Sediment Exposure Point: Wetland 4d Receptor Population: Trespasser Receptor Age: Adolescent

					EPC Selected		Intake			
Exposure	Chemical of	Medium	Medium	Route EPC	for Hazard	Intake	(Non-Cancer)	Reference	Reference	Hazard
Route	Potential Concern	EPC Value	EPC Units	Value	Calculation	(Non-Cancer)	Units	Dose	Dose Units	Quotient
Ingestion	Arsenic	20.4	MG/KG	N/A	М	6.50E-06	mg/kg-day	3.00E-04	mg/kg-day	0.022
Dermal	Arsenic	20.4	MG/KG	N/A	М	2.60E-07	mg/kg-day	6.00E-05	mg/kg-day	0.0043

Total Hazard Index Across All Exposure Routes/Pathways 0.026

EPC = Exposure Point Concentration

MG/KG = Milligram per Kilogram

TABLE 10-4-10 CALCULATION OF CANCER RISKS REASONABLE MAXIMUM EXPOSURE NAS PENSACOLA SITE 41

Scenario: Timetrame: Current

Medium: Sediment

Exposure Medium: Sediment Exposure Point: Wetland 4d

Receptor Population: Maintenance Worker

Receptor Age: Adult

Exposure Route	Chemical of Potential Concern	Medium EPC Value	Medium EPC Units	Route EPC Value	EPC Selected for Hazard Calculation	Intake (Cancer)	Intake (Cancer) Units	Cancer Slope Factor	Slope Factor Units	Cancer Risk
Ingestion	Arsenic	20.4	MG/KG	N/A	M	1.50E-06	mg/kg-day	1.5	(mg/kg-day) ⁻¹	2.25E-06
Dermal	Arsenic	20.4	MG/KG	N/A	М	6.10E-08	mg/kg-day	7.5	(mg/kg-day) ⁻¹	4.58E-07
Total Risk All Exposure Routes/Pathways									2.71E-06	

EPC = Exposure Point Concentration

MG/KG = Milligram per Kilogram

TABLE 10-4-11 CALCULATION OF NON-CANCER HAZARDS REASONABLE MAXIMUM EXPOSURE NAS PENSACOLA SITE 41

Scenario: Timeframe: Current

Medium: Sediment

Exposure Medium: Sediment Exposure Point: Wetland 4d

Receptor Population: Maintenance Worker

Receptor Age: Adult

					EPC Selected		Intake			
Exposure	Chemical of	Medium	Medium	Route EPC	for Hazard	intake	(Non-Cancer)	Reference	Reference	Hazard
Route	Potential Concern	EPC Value	EPC Units	Value	Calculation	(Non-Cancer)	Units	Dose	Dose Units	Quotient
Ingestion	Агѕеліс	20.4	MG/KG	N/A	M	4.16E-06	mg/kg-day	3.00E-04	mg/kg-day	0.014
Dermal	Arsenic	20.4	MG/KG	N/A	М	1.70E-07	mg/kg-day	6.00E-05	mg/kg-day	0.0028

Total Hazard Index Across All Exposure Routes/Pathways 0.017

EPC = Exposure Point Concentration

MG/KG = Milligram per Kilogram

TABLE 10-4-12 SUMMARY OF RECEPTOR RISKS AND HAZARDS FOR COPCS REASONABLE MAXIMUM EXPOSURE NAS PENSACOLA SITE 41

Scenario Timeframe: Current and Future Receptor Population: Site Trespasser

Receptor Age: Adolescent

Medium	Exposure Medium	Exposure Point	Chemical	Car	cinogenic F	Risk	Chemical	Non-carcinoge	inogenic Hazard Quotient		
				Ingestion	Dermal	Total		Primary Target Organ	Ingestion	Dermal	Total
Sediment	Sediment	Wetland 4d	Arsenic	1.38E-06	2.85E-07	1.67E-06	Arsenic	skin	0.022	0.0043	0.0260
			(Total)	1.38E-06	2.85E-07	1.67E-06	(Total)		0.022	0.0043	0.0260
	Total Risk Across All Exposure Pathways						То	tal Hazard Index Across Al	li Exposure i	Pathways	0.0260

Scenario Timeframe: Current

Receptor Population: Maintenance Worker

Receptor Age: Adult

Medium	Exposure	xposure Exposure		Carcinogenic Risk		Chemical	Non-carcinogenic Hazard Quotient				
Media Media	Medium	ım Point	Chemical	Ingestion	Dermal	Total	Onemical	Primary Target Organ	Ingestion	Dermal	Total
Sediment	Sediment	Wetland 4d	Arsenic	2.25E-06	4.58E-07	2.71E-06	Arsenic	skin	0.014	0.0028	0.017
			(Total)	2.25E-06	4.58E-07	2.71E-06	(Total)		0.014	0.0028	0.017
	Total Risk Across All Exposure Pathways				2.71E-06	То	tal Hazard Index Across A	I Exposure	Pathways	0.017	

10.4.5.7 Remedial Goal Options

RGOs were developed in accordance with USEPA Region IV Supplemental Guidance to RAGS Bulletin 5, Remedial Options (USEPA, 1996a). Arsenic was the only COC identified for this wetland. Because arsenic was identified as a COC for sediment based only on cancer risk estimates and not based on hazard index estimates, only risk based RGOs were developed.

Adolescent Trespasser

As shown in Table 10-4-8, the sediment EPC of 20.4 mg/kg-day resulted in a risk estimate of 1.7E-6 for arsenic. Using a linear ratio, a target risk of 1E-6 would result from 12.2 mg/kg. Therefore, 122 mg/kg and 1220 mg/kg represent target risks of 1E-5 and 1E-4, respectively.

Maintenance Worker

A sediment EPC of 20.4 mg/kg resulted in a risk estimate of 2.7E-6, as shown in Table 10-4-10. Using a linear ratio, 7.61 mg/kg would correspond with a target risk of 1E-6. Therefore, 76.1 mg/kg and 761 mg/kg represent target risks of 1E-5 and 1E-4, respectively. The only surface water quality standard exceeded in Wetland 4D was for iron.

10.4.6 Conclusions and Recommendations

Wetlands 16 and 18 were sampled to represent the Group C wetlands in Phase IIB/III. Wetland 4D has similar contaminants (metals and pesticides/PCBs) as Wetlands 16 and 18, and is also tidally influenced by Bayou Grande. Comparison of Wetland 4D to the Group C representative wetlands (Wetlands 16 and 18) indicate no excess risk for sediment and surface water at Wetland 4D is considered acceptable.

The HHRA identified arsenic in sediment as the only COPC identified at Wetland 4D. However, Wetland 4D's location within the A.C. Read golf course effectively restricts its access by trespassers. Though the wetland could be attractive for recreational swimming and fishing, the

Final Remedial Investigation Report

NAS Pensacola Site 41

Section 10: Site-Specific Evaluations

August 31, 2000

Navy enforces a no fishing/no swimming policy at Wetland 4D. Since the wetland is restricted

to swimming, the potential for incidental ingestion of sediment is considered low. In addition, the

arsenic detected concentrations may be linked to pesticides applied on the golf course in

accordance with Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA).

Because of the lack of excess ecological risk in Wetland 4D, the limited possibilities for incidental

ingestion of sediment from the wetland, no further action is recommended for Wetland 4D.

10-4-26

10.5 Wetland 16

10.5.1 Site Description

Wetland 16 is on the northeastern side of Site 1, along the shore of Bayou Grande. The NAS Pensacola picnic ground lies to the east. Parsons and Pruitt (USEPA, 1991) described this area as an estuarine emergent system containing predominantly black needlerush (*Juncus romerianus*). The wetland also contains saw grass (*Cladium jamaicense*). Wetland 16 generally flows northwest into Bayou Grande through a drainage channel about 3 feet wide. The open water portion of the wetland ranges from 1 to about 4 feet deep and has a maximum width of about 200 feet. Sediment in most of the wetland is sandy, with TOC detected at 6%. Wetland 16 is fed from the east and south by groundwater from Site 1, and receives tidal influences from Bayou Grande. Rubble deposits exist on the south shore of Wetland 16.

The IR site potentially affecting Wetland 16 is Site 1 (Sanitary Landfill), which was used from the mid-1950s until 1976 as the predominant disposal site for all solid wastes generated on the base (NEESA, 1983).

10.5.2 Nature and Extent

The methods for evaluating nature and extent are presented in Section 6. Figure 10-5-1 denotes the Phase IIA Wetland 16 sampling locations.

Sediment

Twenty-one metals were detected in Wetland 16 sediment samples. Eight metals — arsenic (10.9 ppm), cadmium (8.5 ppm), chromium (78.4 ppm), copper (90.8 ppm), lead (182 ppm), mercury (0.41 ppm), silver (1.8 ppm), and zinc (319 ppm) exceeded sediment benchmark levels at sample location 1603. All Wetland 16 metals exceedances occurred at this sample location. Five pesticides were detected in Wetland 16 sediment samples, including 4,4'-DDT and its metabolites, dieldrin, and alpha-chlordane. No 4,4'-DDT or its metabolites exceeded basewide

August 31, 2000

levels. Dieldrin exceeded its sediment screening level (0.715 ppb) at location 1603 (4.2 ppb).

Aroclor-1254 exceeded its sediment screening level (21.6 ppb) at location 1603 (78 ppb).

Seven SVOCs were detected, many of which were high- and low-molecular weight PAHs, and

one phthalate ester. Bis(2-ethylhexyl)phthalate exceeded its screening standard (182 ppb) at

location 1603 (720 ppb). The VOC methylene chloride, a common laboratory contaminant, was

also detected in Wetland 16 sediments.

Table 10-5-1 shows the Wetland 16 Phase IIA sediment sample results (frequency of detection,

range of detected concentrations, and average detected concentration). Table 10-5-2 compares

detected concentrations at each sample location to sediment benchmark levels, and lists calculated

HQs for each parameter. Only the parameters with benchmark levels are presented in

Table 10-5-2. The HQs will be further discussed in the ecological risk section.

Surface Water

Ten metals were detected in Wetland 16 surface water samples. Iron exceeded saltwater

surface water criteria at all three sample locations (414 ppb, 816 ppb, and 1,020 ppb at

locations 001W001601, 1601, and 1602). Thallium exceeded saltwater surface water criteria

(6.3 ppb) at sample locations 1601 (13.9 ppb) and 1602 (14.8 ppb). No pesticides, PCBs, or

SVOCs were detected in surface water at Wetland 16. Two VOCs, 1,1-dichloroethane, and

chlorobenzene were detected below surface water quality criteria.

Table 10-5-3 shows the Wetland 16 Phase IIA surface water sample results (frequency of

detection, range of detected concentrations, and average detected concentration). Table 10-5-4

compares detected concentrations at each sample location to surface water quality criteria and lists

calculated HOs for each parameter. Only the parameters with benchmark levels are presented in

Table 10-5-4. The HQs will be further discussed in the ecological risk section.

10-5-2

Table 10-5-1
Detected Concentrations in Wetland 16 Sediments

Parameter	Frequency of Detection	Range of Detected Concentrations	Average Detected Concentration
Inorganics (mg/kg)			
Aluminum (Al)	4/4	255 - 8880	4123.75
Arsenic (As)	4/4	0.72 - 10.9	3.63
Barium (Ba)	4/4	2.3 - 8.1	4.87
Beryllium (Be)	2/4	0.18 - 0.47	0.33
Cadmium (Cd)	2/4	0.61 - 8.5	4.56
Calcium (Ca)	4/4	53.9 - 2090	781.4
Chromium (Cr)	4/4	1.9 - 78.4	27.43
Cobalt (Co)	4/4	0.7 - 1.7	1.2
Copper (Cu)	3/4	1.4 - 90.8	25.8
Iron (Fe)	4/4	1330 - 39500	12732.5
Lead (Pb)	4/4	2.1 - 182	50.55
Magnesium (Mg)	4/4	109 - 3830	1602.25
Manganese (Mn)	4/4	1.4 - 211	62.73
Mercury (Hg)	1/3	0.41	0.41
Nickel (Ni)	2/4	1.9 - 8.4	5.15
Potassium (K)	3/4	42.9 - 1580	711.64
Selenium (Se)	2/4	0.4 - 0.84	0.62
Silver (Ag)	1/3	1.8	1.8
Sodium (Na)	4/4	480 - 12300	4512.5
Vanadium (V)	4/4	1.2 - 34	11.7
Zinc (Zn)	4/4	2.5 - 319	90.80
Pesticides and PCBs (μg/kg)			
4,4'-DDD	4/4	.27 - 4.8	1.75
4,4'-DDE	3/4	0.3 - 26	9.8
4,4'-DDT	1/4	2.8	2.8
alpha-Chlordane	1/4	0.47	0.47
Aroclor-1254	3/4	2.1 - 78	30.37
Dieldrin	2/4	0.35 - 4.2	2.28
SVOCs (μg/kg)			
Benzo(b)fluoranthene	1/4	100	100
bis(2-Ethylhexyl)phthalate (BEHP)	3/4	110 - 720	336.67
Butylbenzylphthalate	1/4	31	31
Di-n-butylphthalate	1/4	34	34
Diethylphthalate	1/4	90	90
Fluoranthene	2/4	58 - 100	79
Pyrene Andrews Andrews Andrews		45 = 110	. 77.5
VOCs (μg/kg)			
Methylene chloride	317/21-57-57-57	11021431-41	

Notes:

The total number of samples has been reduced by the number of rejected samples. However, note that no positive results rejected. All results are in micrograms per kilogram (μ g/kg) or parts per billion (ppb), except for metals which are in milligrams per kilogram (μ g/kg) or parts per million (ppm).

Table 10-5-2 (1) Wetland 16 Phase IIA Sediment Concentrations Compared to Benchmark Levels

Sample Location	Paramete <i>r</i>	Detected Concentration	Sediment Benchmark Value (SBV)	на	SBV - HQ Reference
on General -					- 10
AND DESCRIPTION		446	140	1460	
Admire Departs		24	714	7.66	100
Character (MCR	6.	945	16.5	Admi	-0-
des MANGE		.47.	41	80%	40
Su James		40	-	450	All
041 M160101					
4,4'-DDD (UG/K	(G)	0.27	1 22	0.22	-th
4.4 DDE (UG/K		0.3	7 07	0.14	a).
Arodor-1254 IU		21	21.6	0.10	ь
Arsenic (MG/KC	Mary Comment of the C	0.72	7.24	0.10	ata
The second secon	ohthalate (BEHP) (UG/KU)	110	182	0.60	15
Chromium (MG		1.9	52.3	0.04	ab
Copper (MG/KG		1.4	18,7	D.177	ah
Lead (MG/KG)		21	30.2	0.07	a tr
Zine (MG/KG)		8,5	124	0.02	11 €
041M160201			* .	, i salabar, É	
4,4"-DDD (UG/K	(G)	(5	1.22	1.23	
4,4'-DDE (UG/K	A STATE OF THE PARTY OF THE PAR	3.1	2.07	1.50	- W
Aroclor-1254: (U	2380 T 00000 C 1806-0 1	- M	21.5	0.51	110
Alsenic (MG/KC	200	1.5%	7.24	0.21	ab
CONTRACTOR SERVICES AND ACCURATION OF SERVICE CONTRACTOR SERVICES AND ACCURATION OF SERVICES AND ACCUR	phthalate (BEHP) (UG/KG)	180	182	0.99	þ
Cadmium (MG/	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.61	0.68	0.90	b
Chromium (MG	000000000000000000000000000000000000000	19.1	52.3	0.37	ab
Copper (MG/KC	5)	5.3	18.7	0.28	ав
Dieldrin (UG/KC	5)	0.35	0.72	0.49	4
Fluoranthene (L	JG/KG)	58	1)3	0.51	b
Lead (MG/KG)		14	30/2	0.46	èЬ
Nickel (MG/KG)		1.9	18,9	0.12	ab,
Pyrene (UG/KG	ii .	45	153	0.29	ь
Zinc (MG/KG)		29.5	124	0.24	эh
041M160301	1889			*	Art i
4 a DDD (UG/H	(G)	4.8	1,22	3.93	0.
4,4'-DDE (UG/K		26	2.07	12 56	16
4,4'-DDT (UG/K		28	1 19	2 35	ь
élpha Chlordane		0.67	1.7	0.28	á
Aroclor-1254 (4)		78	21 6	3.61	b
Arsenic (MG/KG	The state of the s	10.9	1,24	1.51	a 12
the second secon)phthalate (BEHP) (UG/KG)	720	182	3.96	· B

⁽a) LISEPA Screening Concentration for Sediment - EPA SSVs
(b) FDEP Sediment Quality Assessment Guidelines - FDEP SQAGS
Some of the numbers in the table may vary because of rounding.

Table 10-5-2 (2) Wetland 16 Phase IIA Sediment Concentrations Compared to Benchmark Levels

Sample Location Parameter	Detected Concentration	Sediment Benchmark Value (SBV)	HQ	SBV - HQ Reference
Cadmium (MG/KG)	8.5	0.68	12.50	b
Chromium (MG/KG)	78.4	52.3	1.50	аb
Copper (MG/KG)	90.8	18.7	4.86	аb
Dieldrin (UG/KG)	4.2	0.72	5.83	þ
Fluoranthene (UG/KG)	100	113	0.88	b
Lead (MG/KG)	182	30.2	6.03	аb
Mercury (MG/KG)	0.41	0.13	3.15	аb
Nickel (MG/KG)	8.4	15.9	0.53	аb
Pyrene (UG/KG)	110	153	0.72	b
Silver (MG/KG)	1.8	0.73	2.47	b
Zinc (MG/KG)	319	124	2.57	a b

Notes:

 ⁽a) USEPA Screening Concentration for Sediment - EPA SSVs
 (b) FDEP Sediment Quality Assessment Guidelines - FDEP SQAGs
 Some of the numbers in the table may vary because of rounding.

Table 10-5-3 Detected Concentrations in Wetland 16 Surface Water

Paramet	Parameter		Range of Detected Concentrations	Average Detected Concentration
Inorganics (μg/L)				
Aluminum (Al)	reality.	2/3	98.9 - 304	201.45
Barium (Ba)		2/3	30.5 - 31.9	31.2
Calcium (Ca)		3/3	104000 - 145000	121333.33
Iron (Fe)		3/3	414 - 1020	750
Magnesium (Mg)	14. A	3/3	294000 - 419000	350666.67
Manganese (Mn)		3/3	50.1 - 56.6	53.9667
Potassium (K)		3/3	98700 - 162000	125233.33
Sodium (Na)		3/3	2410000 - 3820000	2980000
Thallium (TI)	şi.	2/3	13.9 - 14.8	14.35
Zinc (Zn)		2/3	7.1 - 7.4	7.25
VOCs (μg/L)				
1,1-Dichloroethane		1/3	2	2
Chlorobenzene		2/3	1	1

Note: All results are in micrograms per liter ($\mu g/L$) or parts per billion (ppb).

Table 10-5-4 (1) Wetland 16 Phase IIA Surface Water Concentrations Compared to Water Quality Criteria

Sample Location	Parameter	ПОМ	Detected Concentration	Water Quality Criteria	HQ	Criteria Reference
001W001601	Saltwater					
Aluminum		UG/L	98.9	1,500.0	0 06593	b
Iron		UG/L	414.0	300,0	1.38	ь
********	between					
1		100	1964	700.01	1.00	-
(Service)		The Park Co.	1880	61.	TARK	1.00
-		-	14	37	Long. A.	-
041W160201	Saltwater					
Alaminum		UGA	304.0	1,500 0	0.20267	0
Iron		UG/L	1,020,0	300,0	3.4	B)
Thallivin		UG/L	14.8	6.3	2 34921	b
Zinc		UG/L	7:1	96.0	0.08255	ab

Notes:
(a) USEPA Water Quality Criteria (1995)
(b) FDEP Class III Water Quality Criteria (1995)
Some of the numbers in the table may vary because of rounding:

August 31, 2000

10.5.3 Fate and Transport

Pathways evaluated for wetland-specific fate and transport correlate with those identified in the

conceptual model presented in Section 9: surface water/sediment transport into the wetland;

groundwater discharge into the wetland; sediment/surface water transport within the wetland;

sediment leaching to surface water within the wetland; and surface water/sediment transport from

the wetland. Because sediment transport and storm water runoff data is lacking, many evaluations

are qualitative in nature. The method of evaluating leaching from sediment to surface water was

presented in Section 9. Table 10-5-5 presents those contaminants present in sediment above

benchmark levels and their calculated SSLs. Contaminants present in surface water above water

quality criteria are presented in Table 10-5-4.

Transport Into the Wetland

Surface Water/Sediment Pathway

Based on landform and watershed analysis, the following sources can contribute contamination to

Wetland 16 through this pathway:

Potential storm water runoff and sediment entrainment from Site 1. Additionally, this

wetland has a direct connection to Bayou Grande via a small tidal inlet, and will experience

back flushing of surface water during high tide and storm surge events.

Sediment contaminants above benchmark levels (see Table 10-5-2) validate this sediment transport

pathway, and by inference surface water as well. Additionally, one inorganic exceeded its

surface water criteria, further validating the pathway.

10-5-10

Table 10-5-5
Calculated Sediment Screening Values for Wetland 16

Parameter	USEPA or FDEP Surface Water Standard	Kd	SSL DF = 100	Maximum Concentration Detected	Leaching Potential DF = 100
Inorganics	(ppb)	2.00	(ррт)	(ppm)	
Arsenic	36 •	2.9E+01	105	10.9	NO
Cadmium	9.3 a, b	7.5E+01	69.9	8.5	NO
Chromium	50 . b	1.9E+01	95.7	78.4	NO
Lead	5.6 ^b	9E+02	504	182	NO
Mercury	0.025 • •	5.2E+01	0.13	0.41	YES
Silver	0.23 a.b	8.3	0.194	1.8	YES
Zinc	86.4	6.2E+01	534	319	NO
Organics	(ppb)		(ppb)	(ppb)	
4,4 DDE	0.14	1.03E+05	1.44E+06	26	NO
4,4 DDD	0.025 3	2.3E+04	5.75E+04	4.8	NO
Dieldrin	0.0019 ^{a, b}	4.92E+02	93.5	4.2	NO
Bis(2-ethylhexyl)phthal	ate NA	3.48E+05	NA	720	NA

Notes:

Kd for organics calculated using foc of 0.023 (numerical average of all sediment samples).

Kds are from: USEPA, 1996b (first preference); Superfund Chemical Data Matrix (USEPA, 1996c) (second preference); Texas Risk Reduction Program Concept Document 2, Volume 1, Appendix VII, 1996 (third preference); TERRA Model, Oak Ridge National Laboratory, 1984 (fourth preference — primary reference for inorganics).

Kd = normalized partitioning coefficient.

SSL = sediment screening level.

DF = dilution factor.

USEPA Saltwater Surface Water Chronic Screening Value (1995a).

b = FDEP Class II Water Quality Criteria (1996).

Groundwater Discharge Pathway

Based on potentiometric analysis, the primary potential source that would directly contribute contamination to Wetland 16 through this pathway is Site 1. Contamination found in groundwater validates this pathway.

August 31, 2000

Transport Within the Wetland

Surface Water/Sediment Migration Pathway

The configuration of the wetland, along with landform analysis, indicates that surface water and

sediment transport will occur to the north into Bayou Grande. Surface water and sediment can

therefore be considered to be mobile, and the pathway valid for this wetland.

Sediment Leaching to Surface Water Pathway

Four organics — three pesticides and one semivolatile — and seven inorganics exceeded their SSV

(see Table 10-5-5), but only two — mercury and silver — exceeded their calculated SSL

(see Table 10-5-5). None of these inorganics were detected in the corresponding surface water,

thus the potential for their partitioning to surface water is considered low. Iron was the only

constituent in surface water above standards, and it is likely attributable to the

surface water/groundwater discharge pathway. Because two inorganics were detected in sediment

above their SSLs, the pathway is considered valid, but with a low potential for partitioning to

surface water.

Transport From the Wetland

Surface water and sediment from Wetland 16 can be expected to move directly into Bayou Grande,

with some landward movement during periods of high tide and storm surge events. Therefore

sediment and surface water contamination can be expected to be mobile and not remain within the

wetland.

10.5.4 Ecological Risk Assessment

HQs for Wetland 16 sediment samples are presented in Table 10-5-2. Phase IIA sediment results

compared to the appropriate sediment benchmark levels revealed HQs above 1 for arsenic (1.51),

cadmium (12.50), chromium (1.50), copper (4.86), lead (6.03), mercury (3.15), silver (2.47), and

zinc (2.57) at sample location 1603. HQs were above 1 for 4,4'-DDD (3.93), 4,4'-DDE (12.56),

10-5-12

and 4,4'-DDT (2.35), respectively at sample location 1603. HQs were also above 1 for 4,4'-DDD (1.23) and 4,4'-DDE (1.50) at sample location 1602. However, as noted in the Nature and Extent discussion, the concentrations of 4,4'-DDT and its metabolites were below basewide levels. The HQ was greater than 1 for dieldrin (5.83), Aroclor-1254 (3.61), and bis(2-ethylhexyl)phthalate (3.96) at location 1603. Phase IIA surface water results revealed HQs greater than 1 for iron at all three sample locations (1.38, 2.72, and 3.4 at locations 001W001601, 1601, and 1602). Thallium had HQs above 1 at sample locations 1601 (2.21) and 1602 (2.35). HQs greater than 1 indicate a potential for excess risk.

Phase IIB/III

Based on Phase IIA data, Wetland 16 was classified in Group C and sampled in Phase IIB/III. Color-codes, groupings and rationale for classification are described in Section 7.

Conceptual Model

Estuarine Wetland 16 is fed from the east and the south by groundwater from the area of Site 1 and from the northwest by tidal influences from Bayou Grande. The open water portion of the wetland ranges from about one to five feet deep and has a maximum width of about 200 feet. This wetland supports wading birds, diving birds, fisheries and benthic macroinvertebrates, which are considered the primary habitat functional uses. This wetland is suspected of being impacted by Site 1. Although not as prevalent as some other wetlands, select metals are the primary contaminants of concern. Therefore, directly toxic impacts to benthic macroinvertebrates are expected to be the most significant exposure route. Since benthic exposure is of greatest concern via the sediment, no surface water samples were collected from Wetland 16. The conceptual model for Wetland 16 is shown on Figure 10-5-2.

Sampling Location Rationale

One Phase IIB/III sediment sample was collected at Phase IIA location 16033 for toxicity analysis, sediment chemistry, TOC, grain size, and benthic diversity. This sample was selected because of the relatively high metal concentrations in the sediment. Three composite grab samples for

August 31, 2000

benthic diversity were collected within 10 feet of this sample location to account for

spatial variability.

Ecological Risk Evaluation

Risk in Wetland 16 was evaluated using two estuarine bioassay organisms with the

assessment endpoint: survival and growth of macroinvertebrates associated with the

benthic environment. Impacts to fish were not evaluated because the shallow depth of the wetland

does not support upper trophic level fish. During Phase IIA, water quality criteria were exceeded

for iron only in the two surface water samples collected. An additional sample collected as part

of the Site 1 RI also showed iron to exceed its water quality criteria. There is little data regarding

the toxic effects of iron to fish species.

Survival and Growth of Macroinvertebrates Associated with the Benthic Environment:

As discussed in Section 7, this assessment endpoint was evaluated using the sediment quality triad

approach of chemistry, toxicity and community analysis. Results are scored via the decision

making triad, and the overall condition of the wetland for this assessment endpoint is determined.

Sediment Chemistry

Table 10-5-6 compares detected Phase IIB/III sediment concentrations to benchmark levels, and

lists calculated HQs for each parameter. DDT and its metabolites are also compared to

basewide levels (see Section 6). Only the detected parameters with benchmark levels are presented

in Table 10-5-6. As shown on Table 10-5-6, sediment HQ values are greater than one for DDT

and its metabolites. However, their concentrations are below the basewide levels (see Section 6).

Cadmium is the only other detected parameter with an HQ above 1, therefore, a matrix score of

"-" for chemistry is applied.

10-5-14

Final Remedial Investigation Report NAS Pensacola Site 41 Section 10: Site-Specific Evaluations August 31, 2000

This page intentionally left blank.

Table 10-5-6 (1)

Wetland 16

Phase IIB/III Sediment Concentrations Compared to Benchmark Levels

Sample Location	Parameter	Detected Concentration	Sediment Benchmark Value (SBV)	HQ	SBV - HQ Reference
041M160301					
4,4'-DDD (UG/KG)	6.9	1.22	5.66	b
4,4'-DDE (UG/KG)	4.8	2.07	2.32	b
4,4'-DDT (I	UG/KG)	16	1.19	13.45	b
Arsenic (M	G/KG)	5.5	7.24	0.76	аb
Cadmium ((MG/KG)	0.91	0.68	1.34	b
Chromium	(MG/KG)	24.6	52.3	0.47	a b
Copper (M	G/KG)	16	18.7	0.86	a b
Endrin (UG	S/KG)	1.3	3.3	0.39	a
Fluoranther	ne (UG/KG)	32	113	0.28	þ
Lead (MG/	KG)	29.4	30.2	0.97	аb
Mercury (M	MG/KG)	0.07	0.13	0.54	аb
Nickel (MG	S/KG)	4.4	15.9	0.28	аb
Silver (MG	/KG)	0.34	0.73	0.47	b
Zinc (MG/F	(G)	68.5	124	0.55	a b

Notes:

⁽a) USEPA Screening Concentration for Sediment - EPA SSVs

⁽b) FDEP Sediment Quality Assessment Guidelines - FDEP SQAGs Some of the numbers in the table may vary because of rounding.

Sediment Toxicity

Survival results for Wetland 16 sediments were 93% for the *Leptocheirus* test and 100% for the *Neanthes* test, as presented in Table 10-5-7. Weight was also noted to not be significant different from the control in the *Leptocheirus* test. Application of these results to the decision making triad discussed Section 7.14 revealed a triad matrix score of "—" for the amphipod and polychaete tests.

Benthic Diversity in Sediment

Sediment samples were also sorted for benthic diversity. Location 16-03 was sampled and found to contain a large population of a few polychaetes. *Capitella capitata*, *Mediomastus californiensis*, and *Streblospio benedicti*, are all polychaetes which are found in brackish backwater areas and are considered pollution tolerant. The diversity (1.69) was lower than the diversity detected in other estuarine wetlands. A total of 37 organisms were collected and sorted into five dominant species.

Table 10-5-7
Toxicity Results
Wetland 16 Sediment

	Leptocheirus	Neanthe	3	
Site	% Survival	% Survival	Weight (mg)	Triad Matrix Scoring
Control (negative)	98	100	8.5	
Wetland 16 (16-03)	93	100	8.0	

Note:

Benthic diversity results and application to the triad matrix are presented in Table 10-5-8. Application of these results to the decision making triad discussed Section 7.14 revealed a triad matrix score of "—" for the benthic diversity test.

Table 10-5-8
Benthic Diversity Results
Wetland 16 Sediment

Site	Shannon-Weiner Diversity	Pielou's Evenness	Margalef's Richness	Triad Matrix Scoring
Wetland 16 (16-03)	1.69	1.05	4.72	

^{* =} Statistically significant difference from control population.

Evaluation Summary

Although detected concentrations in sediment generate an HI greater than 1, a potential for toxic effects to the benthic community is not anticipated because the toxicity results showed no acute or chronic effects for survival or growth. DDT and its metabolites were the greatest contributors to the HQs, and their detected concentrations are below basewide levels. The species diversity tests shows that the sample contained a large number of a few polychaetes.

Table 10-5-9 presents the interpretation of the triad analysis for the Wetland 16 Phase IIB/III sediment samples. Based on the results of the chemistry, toxicity, and diversity data, condition number 2 exists. This can now be applied to the Simplified Decision Flow Chart for Sediments, as discussed in Figure 7-2.

Table 10-5-9
Triad Analysis Interpretation
Wetland 16 Sediment

Location	Sediment Chemistry	Toxicity Test	Benthic Assessment	Interpretation
Wetland 16	_		_	2.

Condition number 2 denotes that Wetland 16 sediments are acceptable and no further action is recommended for sediment for this wetland.

10.5.5 Human Health Risk Assessment

10.5.5.1 Samples Included

Sediment

041M01601, 041M016201, 041M016301, 041M160101

Surface Water

041W01601, 041W016201, 041W160101

August 31, 2000

10.5.5.2 Current and Future Land Use

This wetland abuts to the NAS Pensacola picnic grounds. A nature trail traverses the north shore of the wetland, following the shoreline of Bayou Grande. The south shore of Wetland 16 is within the Site 1 landfill, and is restricted to trespassers.

10.5.5.3 Fish Tissue COPCs

No fish tissue data were available for this wetland, and this exposure pathway would likely be incomplete; therefore, no COPCs were identified.

10.5.5.4 Sediment COPCs

As shown in Table 10-5-10, no sediment COPCs were identified.

10.5.5.5 Surface Water COPCs

As shown in Table 10-5-11, the following surface water COPC was identified:

Thallium

10.5.5.6 Risk Characterization

As shown in Table 10-5-12, thallium is the only contributor to hazard index estimates for the surface water pathway under the adolescent trespasser scenario. The hazard index was estimated to be 0.18. As discussed in Section 8 a COC was considered to be a constituent that contributed to a pathway of concern that exceeded unity (one), as a result, thallium was not considered a COC.

10.5.5.7 Remedial Goal Options

No COCs were identified for Wetland 16, and as a result, no RGOs were calculated.

TALLE 10-5-10 OCCURRENCE, DISTRIBUTION, AND SELECTION OF CHEMICALS OF POTENTIAL CONCERN NAS PENSACOLA SITE 41

Scenario Timeframe: Current and Future Medium: Sediment Exposure Medium: Sedimeni Exposure Poini: Welland 16 Sedimeni

		(1)		(1)				T			(2)	(3)	(4)		(5)			(6)
CAS Number	Chemical	Minimum Concentration	Minimum Qualifier	Maximum Concentration	Maximum Qualifier	Units	Location of Maximum Concentration	Detection Frequency	Range of Detection Limits	MEAN	Concentration Used for Screening	Background Value	Adolescent Site Trespasser PRG	Residential Soil RBC		Potential ARAR/TBC Source	COPC Flag	Rationale for Contaminant Delection or Selection
72548	4,4'-DDD	0.2700	J	4.80	J	UG/KG	041M160101	4 / 4	NAV	1.75	4.8	N/A	92000	2700	Ċ	N/A	NO	BSL
72559	4,4'-DDE	0.3000	J	26.0000	J	UG/KG	041M160301	3 / 4	6.10 - 6.10	9.80	26	N/A	65000	1900	С	N/A	NO	BSL
50293	4,4'-DDT	2.8000	J	2.8000	J	UG/KG	041M160301	1 / 4	0.21 - 6.10	2.80	2.8	N/A	65000	1900	С	N/A	NO	BSL
5103719	alpha-Chlordane	0.4700	J	0.4700	J	UG/KG	041M160301	1 / 4	0.10 - 3.20	0.47	0.47	N/A	63000	1800	С	N/A	NO	BSL
7429905	Aluminum (Al)	255.0000		8880.00		MG/KG	041M160201	5 / 5	NAV	3753.00	8880	N/A	320000	7800	N	N/A	NO	BSL
7440360	Antimony (Sb)	15.1000	j	15.1000	j :	MG/KG	041M160301	1 / 5	0.23 - 11.00	15.10	15.1	N/A	130	3.1	N	N/A	NO	BSL
11097691	Aroclor-1254	2.1000	J	78.0000	J	UG/KG	041M160101	3 / 4	61.00 - 61.00	30.37	78	N/A	11000	160	N	N/A	NO	BSL
7440382	Arsenic (As)	0.7200		10.9000		MG/KG	041M160301	4 / 5	0.47 - 0.47	3.63	10.9	N/A	15	0.43	C	N/A	NO	BSL
7440393	Barium (Ba)	2.3000	J	8.1000	J	MG/KG	041M160301	3 / 5	0.69 - 8.40	4.87	8.1	N/A	22000	550	N	N/A	NO	BSL
205992	Benzo(b)fluoranthene	100.0000	J	100.0000	J	UG/KG	041M160301	1 / 4	40.00 - 620.00	100.00	100	N/A	30000	880	c }	N/A	NO	BSL
7440417	Beryllium (Be)	0.1800	J	0.4700	J	MG/KG	041M160301	2 / 5	0.07 - 0.40	0.33	0.47	N/A	630	16	N	N/A	NO	BSL
117817	bis(2-Ethylhexyl)phthal	110.0000	J	720.0000	J	UG/KG	041M160201	3 / 4	620.00 - 620.00	336.67	720	N/A	1600000	46000	C	N/A	NO	BSL
7440702	Butylbenzylphthalate	31,0000	J	31.0000	J	UG/KG	041M160101	1 / 4	620.00 - 1700.00	31.00	31	N/A	63000000	1600000	N	N/A	NO	BSL
7440439	Cadmium (Cd)	0.6100		8.5000		MG/KG	041M160201	2 / 5	0.19 - 1.20	4.56	8.5	N/A	320	7.8	N	N/A	NO	BSL
7440702	Calcium (Ca)	53.9000	J	2090.0000		MG/KG	041M160101	4 / 5	54.40 - 54.40	781.48	2090	N/A	N/A	N/A		N/A	NO	EN
7440473	Chromium (Cr)	1.9000		78.40		MG/KG	041M160101	5 / 5	NAV	26.02	78.4	N/A	1600	23	N	N/A	NO	BSL
7440484	Cobalt (Co)	0.7000	J	1.7000	J	MG/KG	041M160301	2 / 5	0.19 - 1.90	1.20	1.70	N/A	19000	470	N	N/A	NO	BSL
7440508	Copper (Cu)	1.4000	J	90.8000		MG/KG	041M160201	4 / 5	3.90 - 3.90	25.80	90.8	N/A	13000	310	N	N/A	NO	BSL
60571	Dieldrin	0.3500	J	4.2000	J	UG/KG	041M160201	2 / 4	0.21 - 6,10	2.28	4.2	N/A	1400	40	c l	N/A	NO	BSL
84662	Diethylphthalate	90.0000	J	90.0000	J	UG/KG	041M160201	1 / 4	400.00 - 1700.00	90.00	90	N/A	250000000	6300000	N	N/A	NO	BSL
84742	Di-n-butylphthalate	34.0000	J	34.0000	J	UG/KG	041M160201	1 / 4	400.00 - 1700.00	34.00	34	N/A	32000000	780000	N	N/A	NO	BSL
206440	Fluoranthene	58.0000	j	100.0000	J	UG/KG	041M160301	2 / 4	40.00 - 620.00	79.00	100	N/A	13000000	310000	N	N/A	NO	BSL
7439896	Iron (Fe)	1330.0000		39500.00		MG/KG	001M001601	5 / 5	NAV	11242.00	39500	N/A	N/A	N/A		N/A	NO	EN
7439921	Lead (Pb)	2.1000		182.0000		MG/KG	041M160301	4 / 5	11.00 - 11.00	50.55	182	N/A	400	400	N	OSWER	NO	BSL
7439954	Magnesium (Mg)	109.0000	J	3830.0000		MG/KG	041M160301	4 / 5	12.60 - 12.60	1602.25	3830	N/A	N/A	N/A		N/A	NO	EN
7439965	Manganese (Mn)	1,4000		211.00		MG/KG	041M160201	5 / 5	NAV	54.32	211	N/A	15000	1100	N	N/A	NO	BSL
7439976	Mercury (Hg)	0.4100	J	0.4100	J	MG/KG	041M160301	1 / 5	0.05 - 0.18	0.41	0.41	N/A	73	2.3	N	N/A	NO	BSL
75092	Methylene chloride	110.0000		110.0000		UG/KG	041M160301	1 / 4	12.00 - 55.00	110.00	110	N/A	2900000	85000	c	N/A	NO	BSL
7440020	Nickel (Ni)	1.9000	J	8.4000	J	MG/KG	041M160301	3 / 5	0.78 - 14.50	4.30	8.4	N/A	6300	160	N	N/A	NO	BSL
7440097	Potassium (K)	42.9000	J	1580.0000		MG/KG	041M160101	4 / 5	929.00 - 929.00	705.48	1580	N/A	N/A	N/A		N/A	NO	EN
129000	Pyrene	45.0000	J	110.0000	J	UG/KG	041M160201	2 / 4	40.00 - 620.00	77.50	110	N/A	9500000	230000	N	N/A	NO	BSL
7782492	Selenium (Se)	0.4000	J.	0.8400	J	MG/KG	041M160301	2 / 5	0.19 - 1.40	0.62	0.84	N/A	1600	39	N	N/A	NO	BSL
7440224	Silver (Ag)	1.8000	j	1,8000	J)	MG/KG	041M160301	1 / 5	0.26 - 1.50	1.80	1.8	N/A	1600	39	N	N/A	NO	BSL
7440235	Sodium (Na)	480.0000		12300.0000	ŀ	MG/KG	001M001601	4 / 5	2410.00 - 2410.00	4512.50	12300	N/A	N/A	N/A		N/A	NO	EN
7440622	Vanadium (V)	1.2000	J	34.00		MG/KG	041M160101	5 / 5	NAV	11.70	34	N/A	2200	55	ΝÌ	N/A	NO	BSL
7440666	Zinc (Zn)	2.5000		319.00	<u> </u>	MG/KG	001M001601	5 / 5	NAV	75.46	319	N/A	95000	2300	Νj	N/A	NO	BSL

- (1) Minimum/maximum detected concentration
- (2) Maximum concentration used as screening value.
- (3) Background values were not developed for this media.
 (4) PRGs for site trespasser scenario calculated based on equations and parameters presented in Section 8 of this report.
- (5) Residential soil RBCs presented in Region III Risk-Based Concentration Tables, (USEPA, 1998).
- (6) Rationale Codes Selection Reason: Above Screening Levels (ASL)

Deletion Reason:

Below Screening Levels (ASL)
Background Levels (BKG)
No Toxicity Information (NTX) Essential Nutrient (EN)

Definitions:

N/A = Not Applicable

NAV = Not Available

COPC = Chemical of Potential Concern

ARAR/TBC = Applicable or Releveant and Appropriate Requirement/ To Be Considered

OSWER = Office of Solid Waste and Emergency Response

J = Estimated Value C = Carcinogenic

N Noncarcinogenic

TABLE 10-5-11 OCCURRENCE, DISTRIBUTION, AND SELECTION OF CHEMICALS OF POTENTIAL CONCERN NAS PENSACOLA SITE 41

Scenario Timeframe: Current and Future Medium: Surface Water

Exposure Medium: Surface Water Exposure Point: Welland 18 Surface Water

		(1)		(1)							(2)		(3)		(4)			(5)
CAS Number	Chemical	Minimum Concentration	Minimum Qualifier	Maximum Concentration	Maximum Qualifier	Units	Location of Maximum Concentration	Detection Frequency	Range of Detection Limits	Mean	Concentration Used for Screening	Background Value	Adolescent Site Trespasser PRG	Tap Water RBC		Patential ARAA/TBC Source	COPC Flag	Rationals for Contaminant Delection or Selection
75343	1,1-Dichloroethane	2.000	J	2.0000		UG/L	001W001601	1 / 3	NAV	2.00	2	N/A	7300	80	N	N/A	NO	BSL
7429905	Aluminum (AI)	98.900		304.0000		UG/L	041W160201	2 / 3	NAV	201.45	304	N/A	120000	3700	N	N/A	NO.	BSL
7440393	Barium (Ba)	30.500	J	31,9000	J	UG/L	D41W160101	2 / 3	NAV	31.20	31.9	N/A	8300	260	N	N/A	NO	BSL
7440702	Calcium (Ca)	104000.0000		145000,0000		UG/L	001W001601	3 / 3	NAV	121333.33	145000	N/A	N/A	N/A		N/A	NO	EN
108907	Chlorobenzens	1.000	J	1.0000		UG/L	041W160101	2 / 3	NAV	1.00	1	N/A	420	3.5	N	N/A	NO	BSL
7439896	Iron (Fe)	414.000		1020.0000		UG/L	041W160201	3 / 3	NAV	750.00	1020	N/A	N/A	N/A	N	N/A	NO	EN
7439954	Magnesium (Mg)	294000.000		419000.0000		UG/L	001W001501	3 / 3	NAV	350666.67	419000	N/A	N/A	N/A	- 1	N/A	NO	EN
7439965	Manganese (Mn)	50.100		56.6000		UG/L	001W001601	3 / 3	NAV	53.97	56.6	N/A	2400	73	N	N/A	NO	BSL
7440097	Potassium (K)	98700.000		162000,0000		UG/L	001W001601	3 / 3	NAV	125233.33	162000	N/A	N/A	N/A		N/A	NO	EN
7440235	Sodium (Na)	2410000.0000		3820000,0000		UG/L	001W001601	3 / 3	NAV	2980000.00	3820000	N/A	N/A	N/A	ļ	N/A	NO	EN .
7440280	Thallium (TI)	13.900		14.8000		UG/L	041W160201	2 / 3	NAV	14.35	14.8	N/A	8.3	0,26	N	N/A	YES	ASL
7440666	Zinc (Zn)	7.100	J	7.4000	J	UG/L	041W160101	2 / 3	NAV	7.25	7.4	N/A	36000	1100		N/A	NO	BSL

(1) Minimum/meximum detected concentration

(2) Maximum concentration used as screening value.

(3) PRGs for adolescent site trespesser scenario calculated using equations and parameters presented in Section 8 of this report.

(4) Tap water RBCs presented in Region III Risk-Based Concentration Tables, (USEPA, 1998).

(5) Rationale Codes

Selection Reason: Above Screening Levels (ASL)

Deletion Reason: Below Screening Levels (BSL)

Background Levels (BKG) Essential Nutrient (EN)

No Toxicity Information (NTX)

N/A = Not Applicable

NAV ≈ Not Available

COPC = Chemical of Potential Concern

ARAR/TBC = Applicable or Releveant and Appropriate Requirement/ To Be Considered

J = Estimated Value

C = Carcinogenic

N = Noncarcinogenic

TABLE 10-5-12 RME CALCULATION OF NON-CANCER HAZARDS REASONABLE MAXIMUM EXPOSURE NAS PENSACOLA SITE 41

Scenario: Timeframe: Current and Future

Medium: Surface Water

Exposure Medium: Surface Water Exposure Point: Wetland 16 Receptor Population: Trespasser Receptor Age: Adolescent

					EPC Selected for					
Exposure	Chemical of Potential	Medium	Medium	Route EPC	Hazard	Intake	Intake	Reference	Reference	Hazard
Route	Concern	EPC Value	EPC Units	Value	Calculation	(Non-Cancer)	(Non-Cancer) Units	Dose	Dose Units	Quotient
Ingestion	Thallium	0.0148	MG/L	N/A	М	6.09E-06	mg/kg-day	7.00E-05	mg/kg-day	0.087
Dermal	Thallium	0.0148	MG/L		М	1.27E-06	mg/kg-day	1.40E-05	mg/kg-day	0.091
								Tota	al Hazard Index	0.18

EPC = Exposure Point Concentration

MG/L = Milligram per Liter

M = Medium-specific EPC selected for risk calculation.

10.5.6 Conclusions and Recommendations

Wetland 16 is on the northeastern side of Site 1, along the shore of Bayou Grande, and adjacent to the NAS Pensacola picnic ground.

The ecological risk assessment for Wetland 16 measured assessment endpoints for benthic macroinvertebrate community diversity. Benthic community toxicity results showed no chronic effects for survival and emergence, and diversity was satisfactory. Further, decision making triad results for Phase IIB/III sediment analytical results revealed an overall condition number 2 for sediment at Wetland 16, indicating that sediment is acceptable at this wetland. Though no further endpoints were considered at Wetland 16, this wetland is a Group C Wetland, and can be compared to Wetland 18. Ecological risk in Wetland 18 was evaluated with respect to piscivorous bird health and reproduction; survival, growth, and reproduction of macroinvertebrates associated with the benthic environment; and protection of fish viability. Decision making triad results for Wetland 18 Phase IIB/III sediment and surface water analytical results (both condition number 3) indicated that Wetland 18 sediment and surface water were acceptable and no further action was recommended for either media at Wetland 18. The surface water triad results for Wetland 18 should also apply to Wetland 16. Ecological risk for sediment and surface water at Wetland 16 should therefore be considered acceptable.

The HHRA identified no sediment or fish tissue COPCs at Wetland 16. Thallium was identified as a surface water COPC at this wetland; however, since the hazard estimate for thallium was 0.18, it was not considered to be a COC. Since there were no COCs at Wetland 16, no RGOs were calculated.

Because of the lack of excess ecological risk, and the lack of excess human health risk at Wetland 16, no further action is recommended for this wetland.

10.6 Wetland 18

10.6.1 Site Description

Wetland 18 is on the west side of the Site 1 area, along the eastern shore of Redoubt Bayou, which empties to the north into Bayou Grande. Parsons and Pruitt (USEPA, 1991) divided this wetland into two parts, 18A and 18B. The upstream end is Wetland 18A, classified as a palustrine emergent system, and the downstream end is Wetland 18B, classified as a estuarine emergent system. Wetlands 18A and 18B are bordered by Redoubt Bayou to the west, and Site 1 to the east. Wetland 18A is fed by groundwater seep originating from Site 1, which becomes a small stream approximately two-feet wide and one-foot deep. This stream flows through Wetland 18A, which contains woods on either bank. The stream widens as Wetland 18A transitions to Wetland 18B, becoming an emergent marsh containing saw grass (Cladium jamaicense) and black needle rush (Juncus roemerianus). Wetland 18B has a maximum width of about 50 feet, is 1 foot or less in depth, and is tidally influenced from Redoubt Bayou. A shallow sheet flow of freshwater from Wetland 18A flows across Wetland 18B before discharging into Redoubt Bayou.

The IR site potentially affecting Wetland 18 is Site I (Sanitary Landfill), used from the mid-1950s until 1976 as the predominant disposal site for all solid wastes generated on the base (NEESA, 1983).

10.6.2 Nature and Extent

The methods for evaluating nature and extent are presented in Section 6. Figure 10-6-1 denotes the Phase IIA Wetland 18 sampling locations.

Sediment

Sixteen metals plus cyanide were detected in Wetland 18 sediment samples. Arsenic exceeded the sediment benchmark level at three sample locations (8.40 ppm, 31.4 ppm, and 83.8 ppm at

Final Remedial Investigation Report NAS Pensacola Site 41 Section 10: Site-Specific Evaluations August 31, 2000

locations 1801, 18A2, and 18B1). Lead exceeded its sediment benchmark level at all five sample locations (63.3 ppm, 70.1 ppm, 45.4 ppm, 66 ppm, and 111 ppm at locations 1801, 18A1, 18A2, 18A3, and 18B1). Copper and chromium each exceeded criteria at 18A1 (22.6 ppm) and 18B1 (66.2 ppm) respectively. Nine pesticides were detected in Wetland 18 sediment samples, including 4,4'-DDT and its metabolites, aldrin, beta-BHC, endrin, endrin ketone, and alpha/gamma-chlordane. 4,4'-DDD, 4,4'-DDE, and 4,4'-DDT exceeded basewide levels along the upper and middle reaches of Wetland 18A. All three compounds exceeded basewide levels at location 18A1 (930 ppb, 270 ppb, and 1,200 ppb). 4,4'-DDD and 4,4'-DDE exceeded basewide levels at location 1801 (150 ppb for both compounds), while 4,4'-DDE and 4,4'-DDT exceeded basewide levels at location 18A2 (57 ppb and 310 ppb). 4,4'-DDD and 4,4'-DDT exceeded basewide levels at location 18B1 (280 ppb and 1,800 ppb). Endrin (13 ppb), alpha-chlordane (12 ppb), and gamma-chlordane (9.5 ppb) exceeded sediment benchmark levels at sample location 1801. Endrin ketone (6.5 ppb), and alpha-chlordane (4.8 ppb) also exceeded sediment benchmark levels at location 18A2. No PCBs were detected in Wetland 18 sediment samples. Four SVOCs were detected at Wetland 18, including 1,4-dichlorobenzene, 4-methylphenol, di-n-butylphthalate, and napththalene. The single naphthalene detection at sample location 18A2 (300 ppb) exceeded its benchmark level. Six VOCs were detected in Wetland 18 sediment samples, including 2-butanone, acetone, benzene, chlorobenzene, methylene chloride, and toluene. Acetone and methylene chloride are common laboratory contaminants.

Table 10-6-1 shows the Wetland 18 Phase IIA sediment sample results (frequency of detection, range of detected concentrations, and average detected concentration). Table 10-6-2 compares detected concentrations at each sample location to sediment benchmark levels, and lists calculated HQs for each parameter. Only the detected parameters with benchmark levels are presented in Table 10-6-2. The HQs will be further discussed in the ecological risk section.

Table 10-6-1 **Detected Concentrations in Wetland 18 Sediments**

Parameter	Frequency of Detection	Range of Detected Concentrations	Average Detected Concentration
Inorganics (μg/kg)			
Aluminum (Al)	5/5	1550 - 11100	6606
Arsenic (As)	5/5	2.9 - 83.8	25.8
Barium (Ba)	5/5	10.9 - 35.9	21.78
Beryllium (Be)	1/5	0.73	0.73
Calcium (Ca)	5/5	228 - 6840	3651
Chromium (Cr)	4/5	5.8 - 66.2	21.8
Copper (Cu)	4/5	5.2 - 22.6	14.3
Cyanide (CN)	1/5	8.8	8.8
Iron (Fe)	5/5	805 - 128000	40681
Lead (Pb)	5/5	45.4 - 111	71.16
Magnesium (Mg)	5/5	206 - 3420	1395.4
Manganese (Mn)	5/5	15.3 - 105	55.04
Potassium (K)	4/5	151 - 846	393.25
Selenium (Se)	3/5	2.2 - 3.8	2.97
Sodium (Na)	5/5	153 - 3300	1002.4
Vanadium (V)	4/5	7.3 - 50.9	18.85
Zinc (Zn)	5/5	6.7 - 49.3	19.24
Pesticides and PCBs (µg/kg)			
4,4'-DDD	5/5	16 - 930	285
4,4'-DDE	4/5	14 - 270	122.75
4,4'-DDT	4/5	1.9 - 1800	827.98
Aldrin	1/5	3.7	3.7
alpha-Chlordane	2/5	4.8 - 12	8.4
beta-BHC	1/5	1.3	1.3
Endrin ketone	1/5	6.5	6.5
Endrin	1/5	13	13
gamma-Chlordane	1/5	9.5	9.5
SVOCs (μg/kg)			
1,4-Dichlorobenzene	1/5	1100	1100
4-Methylphenol (p-Cresol)	2/5	170 - 330	250
Di-n-butylphthalate	3/5	160 - 430	253.33
Naphthalene	1/5	300	300
VOCs (μg/kg)			
2-Butanone (MEK)	2/4	98 - 120	109
Acetone	3/4	440 - 750	556.67
Benzene	2/4, 2/1, 2/1	34 - 50	ranan 42 ana Ma
Chlorobenzene	2/4	46 - 430	238
Meibylene chloride	1/4	750	750
Toluene	2/4	85 - 220	152.5

Notes: The total number of samples has been reduced by the number of rejected samples. However, note that no positive results rejected. All results are in micrograms per kilogram ($\mu g/kg$) or parts per billion (ppb), except for metals which are in milligrams per kilogram (mg/kg) or parts per million (ppm).

Table 10-6-2 (1) Wetland 18 Phase IIA Sediment Concentrations Compared to Benchmark Levels

Sample Location Parameter	Detected Concentration	Sodiment Benchmark Value (SBV)	на	SBV - HQ Reference
001M001801				
4,4'-DDD (UG/KG)	150	1 22	122.95	Ð
4,4'-DDE (UG/KG)	150	2.07	72 46	+
alpha-Chlordane (LIG/KG)	12	1.7	7.06	à
Arsenic (MG/KG)	8.4	7.24	116	ab
Engrin (UG/KG)	13	3.3	3.94	2
gamma-Chlordane (UG/KG)	9.5	1.7	5.59	а
Lead (MG/KG)	63.3	30 Z	2.10	a'b
Zinc (MG/KG)	0.0	124	0.14	ab
041M18A104		206	- A	# · 24
4,4'-000 (UG/KG)	930.	1.22	/62,30	ь.
4.4\DDE (UG/KG)	270	2.07	130.43	h 6
4.4-DDT (UG/KG)	1200	1.19	1008.40	b
Argenic (MG/KG)	2.9	7.24	0,40	ab
Chromium (MG/KG)	5.8.	52.3	0.11	аb
Copper (MG/KG)	22.6	187	1,21	a b
Lead:(MG/KG)	70.1	30.2	2,32	ab
Zint (MG/KG)	6.7	124	0.05	ah
041M18A201				
4,4'-DDD (UG/KG)	48	1.22	40.16	b
4,4' DDE (UG/KG)	57	2 07	27.54	b
A,A'-DOT (UG/KG)	310	(1.19)	260,50	b
alpha-Chlordane (UG/KG)	4,8	17	2,82	á
Arsenic (MG/KG)	314	7.24	4 34	аБ
Chromnum (MG/KG)	W.S	52.0	0.17	a b
Copper (MG/KG)	5.2	18.7	0.28	a b
Enden ketone (UG/KG)	6.5	9.8	1 97	a
Lead (MG/KG)	45.4	30 2	1.50	а В
Naphinalene (UG/KG)	300	34.6	5.57	Ď.
Vinc (MG/KG)	124	124	0.08	a h
enegation				
At his name	1.6	1.00	18.81	- No. 11
Miles States	NA.	5,00	Arth.	- 1
Artific property	14	1.46	7.66	- 1
Adam (Albert	2.6	134	100	4.0
Street, March	.45	- 36	-444	199
CONTRACTOR OF THE PARTY OF THE	the state of		10.445	4.0
THE PROPERTY AND ADDRESS OF THE PARTY AND ADDR	200	THE REST OF	100	100
AT REAL PROPERTY.	100		40.00	W. C. LEWIS

⁽s) USEPA Screening Concentration for Sediment EPA SSVs.
(b) FDEP Sediment Quality Assessment Guidelines - FDEP SQAGs.
Some of the numbers in the table may vary because of rounding.

Table 10-6-2 (2)

Wetland 18

Phase IIA Sediment Concentrations Compared to Benchmark Levels

Sample Location	Parameter	Detected Concentration	Sediment Benchmark Value (SBV)	HQ	SBV - HQ Reference
	· · · · · · · · · · · · · · · · · · ·			777	Attach
041 M 18B10	1				
4,4'-DDD (l	JG/KG)	280	1.22	229.51	Ь
4,4'-DDT (U	JG/KG)	1800	1.19	1512.61	ь
Arsenic (M	G/KG)	83.8	7.24	11.57	a b
Chromium	(MG/KG)	66.2	52.3	1.27	аb
Copper (MC	G/KG)	17.9	18.7	0.96	аb
Lead (MG/I	KG)	111	30.2	3.68	a b
Zinc (MG/K	(G)	49.3	124	0.40	a b

Notes

⁽a) USEPA Screening Concentration for Sediment - EPA SSVs

⁽b) FDEP Sediment Quality Assessment Guidelines - FDEP SQAGs

Surface Water

Surface water samples were collected at locations 001W0018, 18A1, and 18B1. Twelve metals were detected in Wetland 18 surface water samples. Aluminum (1,220 ppb), arsenic (68.3 ppb), chromium (15.6 ppb), iron (122,000 ppb) and lead (12.2 ppb) exceeded freshwater surface water screening criteria (87 ppb, 50 ppb, 11 ppb, 1,000 ppb and 1.71 ppb, respectively) at location 18A2. Aluminum (237 ppb) also exceeded its freshwater criteria at 001W0018. Iron (10,900 ppb) exceeded saltwater surface water criteria (300 ppb) at location 18B1. No pesticides or PCBs were detected in surface water. One SVOC, 1,4-dichlorobenzene, and two VOCs, benzene, and chlorobenzene, were each detected at locations 18A2 and 18B1 below the respective freshwater and saltwater quality criteria for these parameters.

Table 10-6-3 shows the Wetland 18 Phase IIA surface water sample results (frequency of detection, range of detected concentrations, and average detected concentration). Table 10-6-4 compares detected concentrations at each sample location to surface water quality criteria, and lists calculated HQs for each parameter. Only the detected parameters with water quality criteria are presented in Table 10-6-4. The HQs will be further discussed in the ecological risk section.

10.6.3 Fate and Transport

Pathways evaluated for wetland-specific fate and transport correlate with those identified in the conceptual model presented in Section 9: surface water/sediment transport into the wetland; groundwater discharge into the wetland; sediment/surface water transport within the wetland; sediment leaching to surface water within the wetland; and surface water/sediment transport from the wetland. Because sediment transport and storm water runoff data is lacking, many evaluations are qualitative in nature. The method of evaluating leaching from sediment to surface water was presented in Section 9. Table 10-6-5 presents those contaminants detected in sediment above benchmark levels and their calculated SSLs. Contaminants present in surface water above water quality criteria are presented in Table 10-6-4.

Table 10-6-3
Detected Concentrations in Wetland 18 Surface Water

Parameter	Frequency of Detection	Range of Detected Concentrations	Average Detected Concentration
Inorganics (µg/L)			
Aluminum (Al)	3/3	119 - 1220	525.33
Arsenic (As)	1/3	68.3	68.3
Barium (Ba)	1/3	26.2	26.2
Calcium (Ca)	3/3	3060 - 9420	6746.67
Chromium (Cr)	1/3	15.6	15.6
Iron (Fe)	3/3	848 - 122000	44582.67
Lead (Pb)	1/3	12.2	12.2
Magnesium (Mg)	3/3	1110 - 7280	3413.33
Manganese (Mn)	3/3	47.6 - 144	100.53
Potassium (K)	3/3	901 - 3600	2147
Sodium (Na)	3/3	5340 - 48300	19933.33
Vanadium (V)	1/3	10	10
SVOCs (μg/L)			
1,4-Dichlorobenzene	2/3	1 - 2	. 1.5
VOCs (μg/L)			
Benzene	2/3	1 - 5	3
Chlorobenzene	2/3	5 - 14	9.5

Note:

All results are in micrograms per liter (μ g/L) or parts per billion (ppb).

Transport Into the Wetland

Surface Water/Sediment Pathway

Based on landform and watershed analyses, the following sources can contribute contamination to Wetland 18 through this pathway:

 Potential storm water runoff and sediment entrainment from Site 1. During high tides and storm surges, surface water and sediment from Bayou Redoubt may enter the wetland.

Sediment contaminants above benchmark levels (see Table 10-6-5) validate this sediment transport pathway, and by inference surface water as well. Additionally, arsenic, iron, and lead were present in surface water above standards, further validating the pathway.

Table 10-6-4 (1) Wetland 18 Phase IIA Surface Water Concentrations Compared to Water Quality Criteria

Sample Location	Parameter	MOU	Detected Concentration	Water Quality Criteria	но	Criteria Reference
901W001801	Freshwater					
Aluminum		IIG/L	237,0	87.0	2,72414	a
Iran		UG/L	848.0	1,000,0	0.848	ab
HEADWIN	Prophoson					
1 dillions	the Control of the Co	-000	the America	A 100 M	-0.000	
River		-	1201	100	a make	
Street,			140	Contract Con	201.40	
Manage .		THE REAL PROPERTY.	19.	111	1000	1.67
-		1865	100000	150	Course.	DOM:
-		-	TELES.	Lead	DUL	1246
87		-	- 44	1000	-	346
041W18B101	Saltwater					
1,4:Dichtoropena	100000	UGIL	Ť.0.	19.0	0.05025	ā
Aluminum	7.677	(IG/L	119.0	1.500,0	0,07933	6
Henzene		LIGAL	T D	71,28	0,01403	- 0
1for		LIGIL	10.900.0	300.0	35,33333	6

(a) USEPA Water Quality Criteria (1995)
(b) FDEP Class III Water Quality Criteria (1996)
Some of the numbers in the table may vary because of rounding

Table 10-6-5 Calculated Sediment Screening Values for Wetland 18

Parameter	USEPA or FDEP Surface Water Standard	Kd	SSL DF = 100	Maximum Concentration Detected	Leaching Potential DF = 100
Inorganic	(ppb)		(ррт)	(ppm)	
Arsenic _* ,	50 b	2.9E+01	145,67	83.8	NO
Chromium	11 a.b	1.9E+01	21.04	66.2	YES
Copper	7.8	4.3E+02	335.5	22.6	NO
Lead	1.71 ^{a, b}	9E+02	153.92	111	NO
Organics	(ppb)		(ррь)	(ppb)	
4,4 DDE	10.5 *	8.8E+05	1.05E+08	270	NO
4,4 DDD	0.0064 °	1.97E+05	1.26E+05	930	NO
4,4 DDT	0.001 a, b	5.18E+05	5.18E+04	1800	NO
Alpha Chlordane	0.004 a,b	9.00E+02	3.6E+02	0.70	NO
Endrin	0.0023 a, b	2,42E+03	5. 56E +02	13	NO
Napthalene	62 °	3.94E+02	2.44E+06	300	NO

Notes:

Kd for organics calculated using foc of 0.197 (numerical average of all sediment samples).

Kds are from: USEPA, 1996b (first preference); Superfund Chemical Data Matrix (USEPA, 1996c) (second preference); Texas Risk Reduction Program Concept Document 2, Volume 1, Appendix VII, 1996 (third preference); TERRA Model, Oak Ridge National Laboratory, 1984 (fourth preference — primary reference for inorganics).

Kd = normalized partitioning coefficient.

SSL sediment screening level.

DF dilution factor.

USEPA Freshwater Surface Water Chronic Screening Value (1995a).

FDEP Class III Water Quality Criteria (1996).

Groundwater Discharge Pathway

Based on potentiometric analysis, the following sources can contribute contamination to Wetland 18 through this pathway:

Discharge from Site 1. Contamination found in Site 1 groundwater validates this pathway.

August 31, 2000

Transport Within the Wetland

Surface Water/Sediment Migration Pathway

The configuration of wetland, along with landform analysis, indicates that surface water and sediment movement is towards Bayou Redoubt, and from there out towards Bayou Grande.

Therefore, both sediment and surface water contamination can be expected to remain mobile.

Sediment Leaching to Surface Water Pathway

Four inorganics, five pesticides, and one semivolatile (see Table 10-6-5) exceeded their respective SSV, but only one — chromium — exceeded its calculated SSL. The presence of arsenic and lead in surface water may be attributable to the sediment hosted in the wetland: chromium above its SSL certainly indicates that the sediment can leach this parameter to surface water at levels above standards. Iron in surface water may be related to groundwater discharge from Site 1, which has been shown to have high levels of iron. This pathway is considered valid and those contaminants

above SSLs can be expected to partition to surface water at levels above standards.

Transport From the Wetland

Surface water and sediment can be expected to move from the wetland into the Bayou Redoubt and Bayou Grande systems, with some back flushing into the wetland to be expected during high tides and storm surges.

10.6.4 Ecological Risk Assessment

HQs for Wetland 18 sediment samples are presented in Table 10-6-2. Phase IIA sediment sample results compared to the appropriate sediment benchmark levels revealed HQs above 1 for arsenic at three sample locations (1.16, 4.34, and 11.57 at locations 1801, 18A2, and 18B1). HQs were greater than 1 for lead at all five sample locations (2.10, 2.32, 1.50, 2.19, and 3.68 at locations 1801, 18A1, 18A2, 18A3, and 18B1). Copper and chromium each had HQs greater than 1 at 18A1 (1.21) and 18B1 (1.27) respectively. 4,4'- DDD, 4,4'-DDE, and 4,4'-DDT each had HQs above 1 at locations 18A1 (762.30, 130.43, and 1,008.40), 18A2 (40.16, 27.54, and

10-6-12

260.50), and 18A3 (13.11, 6.76, and 1.60). 4,4'-DDD and 4,4'-DDE also had HQs greater than 1 at location 1801 (122.95 and 72.46), while 4,4'-DDD and 4,4'-DDT had HQs above 1 at location 18B1 (229.51 and 1,512.61). Endrin (3.94), alpha-chlordane (7.06), and gamma-chlordane (5.59) had HQs greater than 1 at sample location 1801. Endrin ketone (1.97), and alpha-chlordane (2.82) also had HQs above 1 at location 18A2. The single naphthalene detection at sample location 18A2 also had a HQ above 1 (8.67). Phase IIA surface water results revealed HQs greater than 1 for aluminum (14.02), arsenic (1.37), chromium (1.42), iron (122.0) and lead (7.13) at location 18A2. Aluminum also had a HQ above 1 (2.72) at location 001W001801, while iron had a HQ above 1 (36.33) at location 18B1. HQs greater than 1 indicate a potential for excess risk; surface water iron was the greatest contributor of risk for this wetland.

Phase IIB/III

Based on Phase IIA data, Wetland 18 was classified in Group C and sampled in Phase IIB/III. Color-codes, groupings and rationale for classification are described in Section 7.

Conceptual Model

Wetland 18A begins as a groundwater seep that widens to become estuarine as it transitions to Wetland 18B. The open water portion of Wetland 18A is no deeper than one foot and has a maximum width of about 2 feet. Wetland 18B ranges from about 0 to 1 foot deep and has a maximum width of about 50 feet. Wetland 18 is surrounded by vegetation and is bordered by Site 1 to the east. This wetland supports fisheries, wading birds, benthic macroinvertebrates, and mammals, which are considered the primary habitat functional users. The relative abundance of vegetation in the area could serve as a source of habitat and cover for several species. Fish species and benthic macroinvertebrates have been observed in the extreme lower end of this wetland near Bayou Grande. Metals and pesticides are the primary contaminants of concern. Contaminant effects may occur either through direct exposure or bioaccumulative impacts. Therefore, impacts to wading birds, fish, benthic macroinvertebrates, and mammals are considered the most significant exposure routes. Because of the relatively large number of fish collected in this

wetland during Phase IIB/III over what was expected, fish were considered a more likely exposure route to piscivorous birds than via mammals. Because the most likely exposure route was considered via the food chain, surface water samples were not collected during Phase IIB/III. The conceptual model for Wetland 18 is shown on Figure 10-6-2.

Sampling Location Rationale

One Phase IIB/III sediment sample was collected at location 18B1 for toxicity analysis, sediment chemistry, TOC, grain size, benthic diversity, and tissue concentration (Figure 10-6-2). This sample location was selected because of the elevated Phase IIA pesticide concentrations in sediment which were considered representative of the elevated concentrations in the remainder of the wetland. In addition, this sample was located where Wetland 18 drains into Bayou Grande and had the greatest exposure to potential receptor species. Three composite grab samples for benthic diversity were collected within 10 feet of this sample location to account for spatial variability. Native foraging fish were also collected in the general area around Wetland 18B, as close to sample location B1 as possible. Phase IIB/III sampling locations and their associated sediment hazard indices, and Shannon-Weiner Diversity Indices are shown on Figure 10-6-3. The number and lengths of the fish collected at Wetland 18 and the reference Wetland 33 are presented in Table 10-6-6.

Table 10-6-6
Fish Species Collected from Wetland 18 and Reference Wetlands

Sample Location	Species	Number Collected	Length Range (millimeters)				
18B-1	Killifish (Fundulus grandis)	12	74-117				
33-01	Pinfish (Lagodon rhomboides)	7	55-71				
33-02	Pinfish (Lagodon rhomboides)	. 25	54-85				

Final Remedial Investigation Report NAS Pensacola Site 41 Section 10: Site-Specific Evaluations August 31, 2000

This page intentionally left blank.

Ecological Risk Evaluation

Risk in Wetland 18 was evaluated with respect to three assessment endpoints: 1) piscivorous bird health and reproduction, 2) survival, growth, and reproduction of macroinvertebrates associated with the benthic environment, and 3) protection of fish viability.

Piscivorous Bird Health and Reproduction:

The results of this model, as shown in Table 10-6-7, estimate excess risk posed by total DDT and PCBs in fish tissue collected at 18-BO1. Although mercury bioaccumulates, mercury was not detected in Wetland 18 sediment, therefore it was not included in this model. HQs estimated for heron exposure to total DDT in fish tissues from this sampling location are: 7.67 (SFF=1), 3.67 (SFF=0.49, based on the feeding territory in the fall) and 0.13 (SFF=0.02, based on the feeding territory in the winter). HQs for heron exposure to total PCBs in fish tissue were less than 1 for all SFFs.

Considering feeding territory in the model provides a more realistic exposure estimate for the heron. Using an SFF of 1 serves as a reference since it assumes that the heron spends 100% of its time feeding in Wetland 18B.

Table 10-6-7
Great Blue Heron HQ Calculations
Wetland 18B

SFF Value	Location	Parameter	Tissue Concentration ¹ (mg/kg)	Sediment Concentration ² (mg/kg)	PDE ³ (mg/kg-day)	NOAEL ⁴ (mg/kg-day)	LOAEL (mg/kg-day)	HQ⁵
1	18B-01	total DDT	0.129	0.152	0.023	0.003	0.028	7.67
0.02 - 0.49	18B-01	total DDT	0.129	0.152	0.0004 - 0.011	0.003	0.028	0.13 - 3.67
1	18B-01	total PCB	0.087	ND	0.015	0.003	1.8	0.83
0.02 - 0.49	18 B-0 1	total PCB	0.087	ND	0.0003 - 0.008	0.003	1.8	0.0017 - 0.044

Notes:

Whole body killifish or pinfish (wet weight).

= Samples from top 5 cm of sediment (wet weight).

3 = Potential Dietary Exposure: revised from model in SAP (E/A&H, 1997).

Effects Levels in Sample et al., 1996.

Hazard Quotient = (PDE)÷(NOAEL).

ND = Not detected.

NOAEL = No-observed-adverse-effects-level.

LOAEL = Lowest-observed-adverse-effects-level.

Section 10: Site-Specific Evaluations August 31, 2000

Survival and Growth of Macroinvertebrates Associated with the Benthic Environment:

As discussed in Section 7, this assessment endpoint was evaluated using the sediment quality triad

approach for chemistry, toxicity, and diversity analysis. Results are scored via the decision making

triad, and the overall condition of the wetland for this assessment endpoint is determined.

Sediment Chemistry

Table 10-6-8 compares detected Phase IIB/III sediment concentrations to benchmark levels, and

lists calculated HQs for each parameter. DDT and its metabolites are also compared to

basewide levels (see Section 6). Only the detected parameters with benchmark levels are presented

in Table 10-6-8. HQs were above 1 for DDD, DDE, and arsenic. However, DDD and DDE are

below their respective basewide levels (50 ppb and 40 ppb). Arsenic is naturally occurring in the

environment. Since arsenic is the only exceedance, a matrix score of "—" for sediment chemistry

is applied.

Sediment Toxicity

Toxicity tests were performed on the marine amphipod Leptocheirus plumulosus and the

marine polychaete Neanthes arenacoedentata, and neither test showed any acute or chronic effects.

Results are shown in Table 10-6-9. Survival for both organisms was 100% or above in sediments

collected at site 18B-1. Weight measurements of polychaetes recovered after 20 day exposures

to Site 18B-1 sediments (8.4 mg) nearly equaled the control organism weights (8.5 mg).

Application of these results to the decision making triad discussed in Section 7.14 revealed a triad

matrix score of "-" for the amphipod and polychaete tests.

10-6-20

Table 10-6-8 (1) Wetland 18 Phase IIB/III Sediment Concentrations Compared to Benchmark Levels

Sample Location Parameter		Detected Concentration	HQ	SBV - HQ Reference	
041M18B10	01				
4,4'-DDD (UG/KG)		36	1.22	29.51	b
4,4'-DDE (UG/KG)		6.1	2.07	2.95	ь
Arsenic (N	MG/KG)	13.8	7.24	1.91	a b
Chromium	(MG/KG)	3.6	52.3	0.07	a b
Copper (MG/KG)		1.7	18.7	0.09	аb
Lead (MG/KG)		5,9	30.2	0.20	a b
Zinc (MG/KG)		5.7 124		0.05	a b

⁽a) USEPA Screening Concentration for Sediment - EPA SSVs
(b) FDEP Sediment Quality Assessment Guidelines - FDEP SQAGs Some of the numbers in the table may vary because of rounding.

August 31, 2000

Table 10-6-9
Toxicity Test Results
Wetland 18 Sediment

	Leptocheirus	Neanthes		
Site	% Survival	% Survival	Weight (mg)	Triad Matrix Scoring
Control (negative)	99	100	8.5	
Wetland 18 (18-01)	100	100	8.4	

Note:

Benthic Diversity in Sediment

Sediment samples were also sorted for benthic diversity. Location 18-01 exhibited a lower diversity (2.36), when compared to other estuarine wetlands. A total of 43 organisms were collected and sorted into four dominant species. Common marsh representatives such as polychaete worms and corbiculid clams were found at this location. The highest number if individuals collected (22), was *Capitella capitata*, the polychaete worm which is commonly found in highly organic areas and areas suffering from human impacts. Two representatives of the earthworm family, *Lumbriculus*, were collected indicating the low salinity in this area. Although benthic diversity is lower than the reference wetlands, there is no indication of direct toxicity. Benthic diversity results and application to the toxicity test results are presented in Table 10-6-10. Application of these results to the decision making triad discussed Section 7.14 revealed a triad matrix score of "—" for the benthic diversity test.

Table 10-6-10

Benthic Diversity Results and Application to the Toxicity Test Results

Wetland 18 Sediment

Site	Shannon-Weiner Diversity	Pielou's Evenness	Margalef's Richness	Triad Matrix Scoring
Wetland 18 (18-01)	2:36	1.03%	#4.26.14 × 9.738 1 (A.1)	

^{* =} Statistically significant difference from control population.

Table 10-6-11 presents the interpretation of the triad analysis for the Wetland 18 Phase IIB/III sediment samples. Based on the results of the chemistry and toxicity data, condition 2 exists. This can now be applied to the Simplified Decision Flow Chart for Sediment, as presented in Figure 7-2.

Table 10-6-11
Triad Analysis Interpretation
Wetland 18 Sediment

Location	Sediment Chemistry	Toxicity Test	Benthic Assessment	Interpretation
Wetland 18	_	_		Strong evidence for the absence of pollution
<u> </u>		Also and a second second	The second of th	induced degradation.

Condition number 2 denotes that Wetland 18 sediments are acceptable and no further action is recommended for sediment for this wetland.

Protection of Fish Viability:

Protection of fish viability was evaluated using two lines of evidence for Wetland 18B. The first line of evidence, a direct comparison of tissue residue concentrations to toxic effects thresholds in Level 3 fish, shows that no one contaminant had an HQ above 1. Although mercury bioaccumulates, mercury was not detected in Wetland 18 sediment, therefore it was not included in this model. The comparison is provided in Table 10-6-12.

Table 10-6-12 Contaminant HQ Calculations from Fish Tissue Samples Wetland 18B

Level 3 Fish Tissue Conc (Fg/kg)	Level 3 Fish Tissue Conc. (mg/kg)	Screening Ecotoxicity Values (mg/kg	нQ
ND	ND	0.10 ¹	NA
61.0	0.061	0.10^{1}	0.61
68.0	0.068	0.10^{t}	0.68
1.40	0.0014	1.662	0.00084
:	Conc (Fg/kg) ND 61.0 68.0 1.40	Conc (Fg/kg) Conc. (mg/kg) ND ND 61.0 0.061 68.0 0.068 1.40 0.0014	Conc (Fg/kg) Conc. (mg/kg) Values (mg/kg) ND ND 0.10 ¹ 61.0 0.061 0.10 ¹ 68.0 0.068 0.10 ¹

Notes:

- 1 0.10 mg/kg NOED for mortality in the spiny dogfish, from Guarino, A.M, and S.T. Arnold (1979).
- 2 16.6 mg/kg LOED for mortality in the pinfish, from Parrish, P.R., Schimmel, Hanson, D. J., S.C., Patrick, J.M., and J. Forester (1976).
- 3 0.98 mg/kg NOED for mortality in the pinfish, from Duke, T.W., Lowe, J.I., and A.J. Wilson, Ir. (1970).

For the second line of evidence, risk to Level 4 fish were also evaluated. An HQ greater than 1 was calculated for Aroclor-1260 using an SFF of 1. Using an SFF of 0.000625, risks were not predicted to Level 4 fish from exposure to any chlorinated compounds. These results are shown on Table 10-6-13.

In evaluating risk to Level 4 fish using an SFF of 0.000625, risks were not predicted to level 4 fish from exposure to any chlorinated compound. Only one parameter (Aroclor-1260) had an HQ slightly above 1 using an SFF of 1 for the level 4 fish. These results are shown on Table 10-6-13.

10.6.5 Human Health Risk Assessment

10.6.5.1 Samples Included

Sediment

041M18A101, 041M18A201, 041M18A301, 041M18B101, 001M001801

Surface Water

041W18A201, 041W18B101, 001W001801

Fish Tissue

041J18B101

10.6.5.2 Current and Future Land Use

Wetland 18 is near a Boy Scout campground and family recreation area. Fishing and swimming could occur. More than 50% of the sediment at Wetland 18 is exposed for most of the year, so assuming sediment exposure would be similar to soil exposure is more representative for this wetland than many others. Dermal contact could be a significant exposure pathway and was included in this HHRA; however, game fish habitat is generally limited, so fishing would not be expected. The habitat could support recreational fish, so temporary exposure to fish larvae could occur before the species become too large and are forced to find deeper open water. Fishing is likely in the open water area near Wetland 18.

TABLE 10-6-13 OCCURRENCE, DISTRIBUTION, AND SELECTION OF CHEMICALS OF POTENTIAL CONCERN NAS PENSACOLA SITE 41

Scenario Timeframe: Current and

Future

Medium: Sediment

Exposure Medium: Sediment

Exposure Point: Wetland 18 Sediment

	Exposure Point: W	etland 18	Seamer	لكا														
		(1)		(1)							(2)	(3)	(4)		(5)			(6)
CAS Number	Chemical	Minimum Concentratio n	Minimum Qualifier	Maximum Concentration	Maximum Qualifier	Units	Lecation of Maximum Concentration	Detection Frequenc Y	Range of Detection Limits	MEAN	Concentration Used for Screening	Background Value	Adolescent Trespasser Screening Toxicity Value	Residential Soil RBC		Potential ARAR/TBC Source	COPC Flag	Rationale for Contaminan t Delection or Selection
106467	1,4-Dichlorobenzene	1100.0000	J	1100.0000	J	UG/KG	041M18A201	1 / 5	1900.00 - 3600.00	1100.00	1100	N/A	920000	27000	C	N/A	NO	BSL
78933	2-Butanone (MEK)	98.0000	J	120.0000	J	UG/KG	041M18B101	2 / 5	91.00 - 140.00	109.00	120	N/A	190000000	4700000	N	N/A	NO	BSL
72548	4,4'-DDD	16.0000	D	930.00		UG/KG	001M001801	5 / 5	NAV	285.00	930	N/A	92000	2700	c	N/A	NO	BSL
72559	4,4'-DDE	14.0000	J	270.0000	D	UG/KG	041M18A101	4 / 5	50.00 - 50.00	122.75	270	N/A	65000	1900	c	N/A	NO	BSL
50293	4,4'-DDT	1.9000	J	1800.0000	D	UG/KG	041M18A301	4 / 5	37.00 - 37.00	827.98	1800	N/A	65000	1900	c	N/A	NO	BSL
106445	4-Methylphenol (p-Crese	170.0000	J	330.0000	J	UG/KG	041M18A301	2 / 5	1900.00 - 3600.00	250.00	330	N/A	1600000	39000	N	N/A	NO	BSL
67641	Acetone	440.0000	L	750.0000		UG/KG	041M18A101	3 / 5	91.00 - 100.00	556.67	750	N/A	32000000	780000	N	N/A	NO	BSL
309002	Aldrin	3.7000		3.7000		UG/KG	041M18A201	1 / 5	0.82 - 24.00	3.70	3.7	N/A	1300	38	c	N/A	NO	BŞL
5103719	alpha-Chiordane	4.8000	J	12.0000	J	UG/KG	001M001801	2 / 5	0.82 - 24.00	8.40	12	N/A	63000	1800	C	N/A	NO	BŞL
7429905	Aluminum (Al)	1550.0000		11100.00		MG/KG	041M188101	5 / 5	NAV	6606.00	11100	N/A	320000	7800	N	N/A	NO	BSL
7440382	Arsenic (As)	2.9000	J	83.80		MG/KG	041M18A301	5 / 5	NAV	25.88	83.8	N/A	15	0.43	C	N/A	YES	ASL
7440393	Barium (Ba)	10.9000	J	35.90	1	MG/KG	001M001801	5 / 5	NAV	21.78	35.9	N/A	22000	550	N	N/A	NO	BSL
71432	Benzene	34.0000	J	50.0000	J	UG/KG	041M18A101	2 / 5	43.00 - 110.00	42.00	50	N/A	760000	22000	C	N/A	NO	BSL
7440417	Beryllium (Be)	0.7300	L	0.7300)	MG/KG	041M18B101	1 / 5	0.38 - 2.30	0.73	0.73	N/A	530	16	c	N/A	NO	BSL
319857	beta-BHC	1.3000	J	1.3000	J	UG/KG	041M18A201	1 / 5	0.82 - 24.00	1.30	1.3	N/A	12000	35 0	C	N/A	NO	BSL
7440702	Calcium (Ca)	228,0000	J	6840.00	J	MG/KG	041M18A101	5 / 5	NAV	3651.60	6840	N/A	N/A	N/A		N/A	NO	EN
108907	Chlorobenzena	46.0000	J	430.0000		UG/KG	041M18A201	2 / 5	43.00 - 110.00	238.00	430	N/A	6300000	160000	N	N/A	NO	BSL
7440473	Chromium (Cr)	5.8000		66.2000		MG/KG	041M18A201	4 / 5	11.10 - 11.10	21.80	66.2	N/A	1600	39	N	N/A	NO	BSL
7440508	Copper (Cu)	5.2000	J	22.6000	l	MG/KG	Q41M18A101	4 / 5	23.00 - 23.00	14.30	22.6	N/A	13000	310	N	N/A	NO	BSL
57125	Cyanide (CN)	8,8000	J	8.0000	J	MG/KG	041M18B101	1 / 5	3.70 - 5.70	8.80	8.8	N/A	6300	160	N	N/A	NO	BSL
84742	Di-n-butylphthalate	160,0000	J	430.0000	J	UG/KG	041M18A301	3 / 5	1900.00 - 3600.00	253.33	430	N/A	32000000	780000	N	N/A	NO	BSL
72208	Endrin	13.0000	J	13.0000	j	UG/KG	001M001801	1 / 5	1.70 - 50.00	13.00	13	N/A	95000	2300	N	N/A	NO	B5L
53494705	Endrin ketone	6,5000	1	6.5000	J	UG/KG	041M18A201	1 / 5	1.70 - 50.00	6.50	6.5	N/A	95000	2300	N	N/A	NO	BSL
5103742	gamma-Chlordane	9.5000	J	9.5000	J	UG/KG	001M001801	1 / 5	0.62 - 24.00	9.50	9.5	N/A	63000	1800	c	N/A	NO	BSL
7439896	Iron (Fe)	805,0000		128000.00		MG/KG	041M18A301	5 / 5	NAV	40681.00	128000	N/A	N/A	N/A	N.	N/A	NO	EN
7439921	Lead (Pb)	45.4000		111.00		MG/KG	041M18A301	5 / 5	NAV	71.16	111	N/A	400	400	0	OSWER	NO	BSL
7439954	Magnesium (Mg)	206.0000	J	3420.00		MG/KG	041M18A201	5 / 5	NAV	1395.40	3420	N/A	N/A	N/A		N/A	NO	EN
7439965	Manganese (Mn)	15.3000		1.05.00		MG/KG	041M18A301	5 / 5	NAV	55.04	105	N/A	15000	1100	N	N/A	NO	BSL
75092	Methylene chlonde	750.0000		750.0000		UG/KG	041M18A101	1 / 5	43.00 - 100.00	750.00	750	N/A	2900000	85000	c	N/A	NO	BSL
91203	Naphthalene	300.0000	J	300.0000	J		041M18A201		190.00 - 3600.00	300.00	300	N/A	13000000	310000	N	N/A	NO	BSL
7440097	Potassium (K)	151.0000	١١	846.0000	J		041M18B101		5440.00 - 5440.00	393.25	846	N/A	N/A	N/A	0	N/A	NO	EN
7782492	Selenium (Se)	2.2000	1	3.8000		MG/KG	041M18A301	3 / 5	1.70 - B.30	2.97	3.8	N/A	1600	39	N	N/A	NO	BSL
7440235	Sodium (Na)	153,0000	J	3300,00			001M001801	1	NAV	1002,40	3300	N/A	N/A	N/A		N/A	NO	EN
108883	Totuena	85.0000	J	220.0000	J		041M18A201	2 / 5	43.00 - 110.00	152.50	220	N/A	63000000	1600000	N	N/A	NO	85L
	Vanadium (V)	7.3000	J	50.9000	. !		041M18B101	4 / 5	16.00 - 16.00	18.85	50.9	N/A	2200	55	N	N/A	NO	BSL
7440666	Zinc (Zn)	6.7000	J	49.30	L	MG/KG	041M18A201	5 / 5	NAV	19.24	49.3	N/A	95000	2300	N	N/A	NO	BSL

(1) Minimum/maximum detected concentration

(2) Maximum concentration used as screening value.

(3) No background concentrations were calculated for this media.

(4) PRGs for site trespasser scenario calculated based on equations and parameters presented in Section 8 of this report.

(5) RBCs for residential scenario taken from Region III Risk-Based Concentration Tables, (USEPA, 1998).

(6) Rationale Codes Selection

Selection Above Screening Levels (ASL)

Detellon Reason: Below Screening Levels (BSL)

Background Levels (BKG)

No Toxicity Information (NTX)

No Toxicity Information (NTX)
Essential Nutrient (EN)

Definitions:

N/A = Not Applicable

NAV = Not Available

COPC = Chemical of Potential Concern

ARAR/TBC = Applicable or Relevant and Appropriate Requirement/ To Se Considered

J = Estimated Value

C ≈ Carcinogenic

N Noncarcinagenic

10.6.5.3 Sediment COPCs

As shown in Table 10-6-13, the following sediment COPC was identified:

Arsenic

10.6.5.4 Surface Water COPCs

As shown in Table 10-6-14, the following surface water COPC was identified:

Arsenic

10.6.5.5 Fish Tissue COPCs

As shown in Table 10-6-15, the following chemicals were identified as COPCs:

- 4,4'-DDD
- 4,4'-DDE
- PCB Aroclor-1260
- alpha-Chlordane

10.6.5.6 Risk Characterization

Sediment and Surface Water

As shown in Tables 10-6-16 through 10-6-20, arsenic is the only contributor to risk in sediment and surface water. Wetland 18 risk and hazard estimates for sediment and surface water are summarized on Table 10-6-20. The cumulative risk estimated for this wetland is 1.3E-5 and the HI was estimated to be 0.1. Arsenic was identified as a COC in sediment and surface water based on its contribution to the cumulative risk estimate for this wetland. Tables 10-6-16 through 10-6-19 detail cancer and noncancer hazard estimates for this wetland. Although exposure would likely be acute or subchronic, these hazard estimates were developed for completeness, and RGOs were developed below.

TABLE 10-6-14 OCCURRENCE, DISTRIBUTION, AND SELECTION OF CHEMICALS OF POTENTIAL CONCERN NAS PENSACOLA SITE 41

Timeframe: Current and Future Exposure Medium: Surface Water

Exposure Point: Wetland 18 Surface Water

		(1)		(1)						l	(2)	<u> </u>	(3)		(4)			(5)
CAS Number	Chemical	M inimum Concentratio n	Minimum Qualifier	Maximum Concentration	Maximum Qualifier	Units	Location of Maximum Concentration	Detection Frequency	Range of Detection Limits	Mean	Concentration Used for Screening	Backgroun d Value	Adolescent	Tap Water RBC	- 1	Potential ARAR/TB C Source	COPC Flag	Rationale for Contaminant Delection or Selection
106467	1,4-Dichlorobenzene	1.000		2.0000		UG/L	041W18A201	2 / 3	NAV	1.50	2	N/A	41	0.47	C	N/A	NO	BSL
7429905	Aluminum (AI)	119,000	J	1220,0000		UG/L	041W18A201	3 / 3	NAV	525.33	1220	N/A	120000	3700	N	N/A	NO	BSL
7440382	Arsenic (As)	68.300		68.3000		UG/L	041W18A201	1 / 3	NAV	68.30	68.3	N/A	5.6	0.045	c	N/A	YES	ASL
7440393	Barium (Ba)	26,200	J	26.2000	J	UG/L	041W18A201	1 / 3	NAV	26.20	26.2	N/A	8300	260	N	N/A	NO	BSL
71432	Benzene	1.000		5.0000		UG/L	041W18A201	2 / 3	NAV	3.00	5	N/A	91	0.36	C	N/A	NO	BSL
7440702	Calcium (Ca)	3060.000		9420.0000		UG/L	041W18A201	3 / 3	NAV	6746.67	9420	N/A	N/A	N/A	1	N/A	NO	EN
108907	Chiorobenzene	5.000		14.0000		UG/L	041W18A201	2 / 3	NAV	9.50	14	N/A	420	3.5	N	N/A	NO	BSL
7440473	Chromium (Cr)	15.600		15.6000		UG/L	041W18A201	1 / 3	NAV	15.60	15.6	N/A	360	11	N	N/A	NO	BSL
7439896	Iron (Fe)	848,000		122000.0000		UG/L	041W18B101	3 / 3	NAV	44582.67	122000	N/A	N/A	N/A	N	N/A	NO	EN
7439921	Lead (Pb)	12.200		12.2000		UG/L	041W18A201	1 / 3	NAV	12.20	12.2	N/A	15	15	N	TTAL	NO	BSL
7439954	Magnesium (Mg)	1110.000		7280.0000		UG/L	041W18B101	3 / 3	NAV	3413.33	7280	N/A	N/A	N/A		N/A	NO	EN
7439965	Manganese (Mn)	47.600		144.0000		UG/L	041W18A201	3 / 3	NAV	100.53	144	N/A	2400	73	N	N/A	NO	BSL
7440097	Potassium (K)	901.000		3600.0000	J	UG/L	041W18B101	3 / 3	NAV	2147.00	3600	N/A	N/A	N/A		N/A	NO	EN
7440235	Sodium (Na)	5340.000		48300.0000		UG/L	041W18B101	3 / 3	NAV	19933.33	48300	N/A	N/A	N/A	- 1	N/A	NO	EN
7440622	Vanadium (V)	10.000	J	10.0000	J	UG/L	041W18A201	1 / 3	NAV	10.00	10	N/A	830	26	N	N/A	NO	BSL

(1) Minimum/maximum detected concentration

(2) Maximum concentration used as screening value.

(3) RBCs for adolescent site trespasser scenario calculated using equations and parameters presented in Section 8 of this report.

(4) Tap water RBCs taken from Region III Risk-Based Concentration Tables, (USEPA, 1998).

(5) Rationale Codes

Selection Reason:

Above Screening Levels (ASL)

Deletion Reason:

Below Screening Levels (BSL)

Background Levels (BKG)

Essential Nutrient (EN)

Definitions: N/A = Not Applicable

NAV = Not Available

COPC = Chemical of Potential Concern

ARAR/TBC = Applicable or Releveant and Appropriate Requirement/ To Be Considered

J = Estimated Value

C = Carcinogenic

N = Noncarcinogenic

TABLE 10-6-15 OCCURRENCE, DISTRIBUTION, AND SELECTION OF CHEMICALS OF POTENTIAL CONCERN NAS PENSACOLA SITE 41

Timeframe: Current and Future

Exposure Medium: Fish

Exposure Point: Wetland 18 Fish

CAS Number	Chemical	(1) Minimum Concentration	Minimum Qualifier	(1) Maximum Concentratio n	Maximum Qualifier	Units	Location of Maximum Concentratio	Frequenc		MEAN	(2) Concentration Used for Screening		Subsistence	Potential ARAR/TE	COPC Flag	(6) Rationale for Contamina nt Delection
72548	4,4'-DDD	68		68		UG/KG	041J18B101	1 / 1	NAV	68	680	N/A	13.1 (N/A	YES	ASL
72559	4,4'-DDE	61		61		UG/KG	041J18B101	1 / 1	NAV	61	610	N/A	9.3 (N/A	YES	ASL
11096825	Aroclor-1260	87	J	87	J	UG/KG	041J18B101	1 / 1	NAV	87	609	N/A	1.6 (N/A	YES	ASL
5103719	alpha-Chiordan	1.4	J	1.4	J	UG/KG	041J18B101	1 / 1	NAV	1.4	14	N/A	9 (N/A	YES	ASL

(1) Minimum/maximum detected concentration

(2) Maximum concentration, adjusted by a trophic transfer coefficient, used as screening value.

(3) No background concentrations was calculated for this media.

(4) RBCS for subsistence fisher scenario taken from USEPA Region III Risk-Based Concentration Tables, 1998.

(6) Rationale Codes

Selection Reason: Above Screening Levels (ASL)

Deletion Reason: Below Screening Levels (BSL)

Background Levels (BKG) No Toxicity Information (NTX) Definitions: N/A = Not Applicable

COPC = Chemical of Potential Concern

ARAR/TBC = Applicable or Releveant and Appropriate Requirement/ To Be Considered

J = Estimated Value

C = Carcinogenic

N = Noncarcinogenic

TABL ± 10-6-16 CALCULATION OF CANCER RISKS SEDIMENT EXPOSURE NAS PENSACOLA SITE 41

Timeframe: Current and Future

Medium: Sediment

Exposure Medium: Sediment Exposure Point: Wetland 18

Receptor Population:

Trespasser

Exposure Route	Chemical of Potential Concern	Medium EPC Value	Medium EPC Units	Route EPC Value	EPC Selected for Hazard Calculation	Intake (Cancer)	Intake (Cancer) Units	Cancer Slope Factor	Slope Factor Units	Cancer Risk
Ingestion	Arsenic	83.8	MG/KG	N/A	М	3.79E-06	mg/kg-day	1.5	mg/kg-day)	6E-06
Dermal	Arsenic	83.8	MG/KG	N/A	М	1.55E-07	mg/kg-day	7.5	mg/kg-day)	1E-06
L				1		Ť	otal Risk All E	xposure Route	s/Pathways	7E-06

EPC = Exposure Point Concentration

MG/KG = Milligram per Kilogram

TABLE 10-6-17 CALCULATION OF HAZARD QUOTIENTS REASONABLE MAXIMUM EXPOSURE NAS PENSACOLA SITE 41

Timeframe: Current and Future

Medium: Sediment

Exposure Medium: Sediment Exposure Point: Wetland 18

Receptor Population:

Trespasser

							Intake			
	Chemical of	Medium	Medium		EPC Selected	Intake	(Non-		Reference	Hazard
Exposur	Potential	EPC	EPÇ	Route EPC	for Hazard	(Non-	Cancer)	Reference	Dose	Quotien
e Route	Concern	Value	Units	Value	Calculation	Cancer)	Units	Dose	Units	t
Ingestion	Arsenic	83.8	MG/KG	N/A	М	2.65E-05	mg/kg-day	3.00E-04	mg/kg-day	9E-02
Dermal	Arsenic	83.8	MG/KG	N/A	М	4.35E-07	mg/kg-day	6.00E-05	mg/kg-day	7E-03

Total Hazard Index Across All Exposure Routes/Pathways 1E-01

EPC = Exposure Point Concentration

MG/KG = Milligram per Kilogram

TABLE 10-6-18 CALCULATION OF CANCER RISKS SURFACE WATER EXPOSURE NAS PENSACOLA SITE 41

Timeframe: Current and Future

Medium: Surface Water

Exposure Medium: Surface Water Exposure Point: Wetland 18 Receptor Population: Trespasser

Receptor Age: Adolescent

Exposure Route	Chemical of Potential Concern	Medium EPC Value	Medium EPC Units	Route EPC Value	EPC Selected for Hazard Calculation	Intake (Cancer)	Intake (Cancer) Units	Cancer Slope Factor	Slope Factor Units	Cancer Risk
Ingestion	Arsenic	0.0683	MG/L	N/A	М	4.02E-06	mg/kg-day	1.5	mg/kg-day) [*]	6E-06
Dermal	Arsenic	0.0683	MG/L	N/A	М	8.35E-07	mg/kg-day	7.5	mg/kg-day)	4E-07
1									Total Risk	6E-06

EPC = Exposure Point Concentration

MG/L = Milligram per Liter

TABLE 10-6-19 CALCULATION OF HAZARD QUOTIENTS SURFACE WATER EXPOSURE NAS PENSACOLA SITE 41

Timeframe: Current and Future

Medium: Surface Water

Exposure Medium: Surface Water

Exposure Point: Wetland 18

Receptor Population: Trespasser

Receptor Age: Adolescent

Exposure Route	Potential Concern	Medium EPC Value	Medium EPC Units	Route EPC Value	EPC Selected for Hazard Calculation	Intake (Non-Cancer)	Intake (Non-Cancer) Units	Referenc e Dose	Reference Dose Units	Hazard Quotient
Ingestion	Arsenic	0.0683	MG/L	N/A	M	2.81E-05	mg/kg-day	3.00E-04	mg/kg-day	6E-03
Dermal	Arsenic	0.0683	MG/L	-	М	5.85E-06	mg/kg-day	6.00E-05	mg/kg-day	7E-03
								Total	Hazard Index	1E-02

EPC = Exposure Point Concentration

MG/L = Milligram per Liter

TABLE 10-6-20 RISK SUMMARY SEDIMENT AND SURFACE WATER EXPOSURE NAS PENSACOLA SITE 41

Timeframe: Current and Future

Receptor Population: Site

Trespasser

Medium	Exposure Medium	Exposure Point	Chemical	C.	arcinogenic Ri	sk	Chemical	Non-carcino Chemical		ırd Quotient	
				Ingestion	Dermal Contact	Total		Primary Target Organ	Ingestion	Dermal Contact	Total
Sediment	Sediment	Wetland 3	Arsenic	6E-06	1E-06	7E-06	Arsenic	skin	9E-02	7E-03	1E-01
			(Total)	6E-06	1E-06	7E-06	(Total)		9E-02	7E-03	1E-01
Surface Water	Surface Water	Wetland 3	Arsenic	6E-06	4E-07	6E-06	Arsenic	skin	6E-03	7E-03	1E-02
			(Total)	6E-06	4E-07	6E-06	(Total)		6E-03	7E-03	1E-02
			Total Risk Across	All Pathways		1E-05	Total H	azard Index Across All	Pathways		1E-01

August 31, 2000

Fish Tissue

Recreational Fishermen

For carcinogenic risks (Table 10-6-21), cumulative risk using the modified 95th percentile fish ingestion rates (4.3 g/day) is below the 1E-06 threshold. For noncarcinogenic effects

(Table 10-6-22), the calculated hazard index is below the threshold level of 1.

Subsistence Fishermen

For carcinogenic risks (Table 10-6-23), the cumulative risk for hypothetical subsistence fishermen

based on the modified 95% percentile fish ingestion rate (19.5 g/day) is below the 1E-06 threshold

level. For noncarcinogenic effects (Table 10-6-24), the calculated hazard index is below the

threshold level of 1.

A summary of the risk estimates for both the recreational and subsistence fishermen populations

is presented in Table 10-6-25.

10.6.5.7 Remedial Goal Options

RGOs were developed in accordance with USEPA Region IV Supplemental Guidance to RAGS

Bulletin 5, Remedial Options (USEPA, 1995). Because arsenic was identified as a COC for

surface water and sediment based only on cancer risk estimates, only risk based RGOs were

developed. As shown in Table 10-6-16, the sediment exposure point concentration of

83.8-mg/kg-day resulted in a risk estimate of 6.9E-6 for arsenic under an adolescent

trespasser scenario. Using a linear ratio, a target risk of 1E-6 would result from 12.24 mg/kg.

Therefore, 122.4 mg/kg and 1224 mg/kg represent target risks of 1E-5 and 1E-4, respectively.

RGOs for arsenic in surface water for the adolescent trespasser are 0.0113 mg/L, 0.113 mg/L,

and 1.13 mg/L for 1E-6, 1E-5, and 1E-4, respectively.

10-6-34

TABLE 10-6-21 CALCULATION OF CANCER RISKS RECREATIONAL FISH INGESTION NAS PENSACOLA SITE 41

Timeframe: Current and Future

Medium: Fish tissue

Exposure Route : Ingestion
Exposure Point: Wetland 18

Receptor Population: Recreational

Chemical of Potential Concern	Medium EPC Value ¹	Medium EPC Units	Intake (Cancer)	Intake (Cancer) Units	Oral Slope Factor	Slope Factor Units	Cancer Risk
4,4'-DDD	6.8E-02	mg/kg	5.5E-09	mg/kg-day	2.4E-01	(mg/kg-day) ⁻¹	1E-09
4,4'-DDE	6.1E-02	mg/kg	5.5E-09	mg/kg-day	3.4E-01	(mg/kg-day) ⁻¹	2E-09
Aroclor-1260	8.7E-02	mg/kg	8.1E-09	mg/kg-day	2.0E+00	(mg/kg-day) ⁻¹	2E-08
Chlordane	1.40E-03	mg/kg	6.9E-11	mg/kg-day	3.5E-01	(mg/kg-day) ⁻¹	2E-11
			·····		Total F	athway Risk	2E-08

. . ____

¹ For fish tissue calculations, the maximum detected concentration was used as the EPC.

² No risk can be calculated because slope factor does not exist and chemical is not considered carcinogenic.

TABLE 10-6-22 CALCULATION OF HAZARD QUOTIENTS RECREATIONAL FISH INGESTION NAS PENSACOLA SITE 41

Timeframe: Current and Future

Medium: Fish tissue

Exposure Route : Ingestion
Exposure Point: Wetland 18
Receptor Population: Recreational

Chemical of Potential Concern	Medium EPC Value ¹	Medium EPC Units	Intake (Noncarcinogenic)	Intake Units	Oral RfD	RfD Units	Hazard Quotient
4,4'-DDD ²	6.8E-02	mg/kg	1.3E-08	mg/kg-day	NA	mg/kg-day	NA
4,4'-DDE ²	6.1E-02	mg/kg	1.3E-08	mg/kg-day	NA	mg/kg-day	NA
Aroclor-1260 ²	8.7E-02	mg/kg	1.9E-08	mg/kg-day	NA	mg/kg-day	NA
Chlordane	1.40E-03	mg/kg	1.6E-10	mg/kg-day	5.0E-04	mg/kg-day	3E-07
					Tota	al Pathway HI	3E-07

¹ For fish tissue calculations, the maximum detected concentration was used as the EPC.

² Noncarcinogenic effects can not be determined due to the lack of an oral RfD.

TABLE 10-6-23 CALCULATION OF CANCER RISKS SUBSISTENCE FISH INGESTION NAS PENSACOLA SITE 41

Timeframe: Current and Future

Medium: Fish tissue

Exposure Route : Ingestion
Exposure Point: Wetland 18

Receptor Poplation: Hypothetical Subsistence

Chemical of Potential Concern	Medium EPC Value ¹	Medium EPC Units	Intake	Intake Units	Oral Slope Factor	Slope Factor Units	Cancer Risk
4,4'-DDD	6.8E-02	mg/kg	2.5E-08	mg/kg-day	2.4E-01	(mg/kg-day) ⁻¹	6E-09
4,4'-DDE	6.1E-02	mg/kg	2.5E-08	mg/kg-day	3.4E-01	(mg/kg-day) ⁻¹	9E-09
Aroclor-1260	8.7E-02	mg/kg	3.7E-08	mg/kg-day	2.0E+00	(mg/kg-day) ⁻¹	7E-08
Chlordane	1.40E-03	mg/kg	3.2E-10	mg/kg-day	3.5E-01	(mg/kg-day) ⁻¹	1E-10
					Total F	Pathway Risk	9E-08

¹ For fish tissue calculations, the maximum detected concentration was used as the EPC.

² No risk can be calculated because slope factor does not exist and chemical is not considered carcinogenic.

TABLE 10-6-24 CALCULATION OF HAZARD QUOTIENTS SUBSISTENCE FISH INGESTION NAS PENSACOLA SITE 41

Timeframe: Current and Future

Medium: Fish tissue

Exposure Route : Ingestion
Exposure Point: Wetland 18

Receptor Population: Hypothetical Subsistence

Chemical of Potential Concern	Medium EPC Value ¹	Medium EPC Units	Intake	Intake Units	Oral RfD	RfD Units	Hazard Quotient
4,4'-DDD ²	6.8E-02	mg/kg	5.9E-08	mg/kg-day	NA	mg/kg-day	NA
4,4'-DDE ²	6.1E-02	mg/kg	5.9E-08	mg/kg-day	NA	mg/kg-day	NA
Aroclor-1260 ²	8.7E-02	mg/kg	8.7E-08	mg/kg-day	NA	mg/kg-day	NA
Chlordane	1.40E-03	mg/kg	7.5E-10	mg/kg-day	5.0E-04	mg/kg-day	1E-06
		***************************************			Total	Pathway HI	1E-06

¹ For fish tissue calculations, the maximum detected concentration was used as the EPC.

² Noncarcinogenic effects can not be determined due to the lack of an oral RfD.

TABLL 10-6-25 RISK SUMMARY FISH TISSUE INGESTION NAS PENSACOLA SITE 41

Timeframe: Current and

Future

Medium: Fish tissue

Exposure Route : Ingestion

			Recreationa	l Fishermen	Subsistence	Fishermen
Chemical of Potential Concern	Medium EPC Value ¹	Medium EPC Units	Hazard Quotient	Cancer Risk	Hazard Quotient	Cancer Risk
4,4'-DDD	6.8E-02	mg/kg	NA	1E-09	NA	6E-09
4,4'-DDE	6.1E-02	mg/kg	NA	2E-09	NA	9E-09
Aroclor-1260	8.7E-02	mg/kg	NA	2E-08	NA	7E-08
Chlordane	1.40E-03	mg/kg	3E-07	2E-11	1E-06	1E-10
Cumulat	Cumulative HI / Cancer Risk			2E-08	1E-06	9E-08

N/A - Not applicable (value cannot be determined due to lack of toxicological reference information)

¹ For fish tissue calculations, the maximum detected concentration was used as the EPC.

Final Remedial Investigation Report NAS Pensacola Site 41 Section 10: Site-Specific Evaluations August 31, 2000

10.6.6 Conclusions and Recommendations

Wetland 18 was sampled in Phase IIB/III to represent the Group C wetlands. Phase IIB/III assessment endpoint and triad analyses revealed that sediment and surface water were acceptable at this wetlands. The HHRA identified arsenic as a COPC for sediment and surface, and several pesticides as fish tissue COPCs. However, the thick foliage surrounding the wetland and the potential for encountering poisonous snakes, such as the cottonmouth, are likely deterrents for most trespassers. The wetland also has no value for recreational fishing, and provides limited habitat for lower trophic level fish.

Because of the lack of excess ecological risk at Wetland 18, the restricted access to human trespassing within the area, and limited human health risk associated with fish consumption from this area, no further action is recommended for Wetland 18.

10.7 Wetland 10

10.7.1 Site Description

Wetland 10 lies at the southern end of Magazine Point. Parsons and Pruitt divided this water body into two parts, 10A and 10B (USEPA, 1991). Wetland 10A was classified as a palustrine emergent system, while Wetland 10B was designated an estuarine emergent system.

Wetland 10A is a man-made drainage ditch which receives storm water runoff from the northern part of Chevalier Field and the southern area of Magazine Point. Overgrown, with stagnant standing water, Wetland 10A is connected to Wetland 10B via a culvert which runs under a service road. Wetland 10B once had a connection to Pensacola Bay. A four foot high man-made sand berm, constructed since the Site 41 Phase IIA field work was performed in late 1995, now keeps Wetland 10B from being tidally influenced. Wetland 10B now drains by percolation to groundwater.

Wetlands 10A and B are surrounded by scattered pine trees and weedy shrubs. Various aquatic plants, including cattails (*Typha lattifolia*), duckweed (*Lemna*, sp.), and other aquatic weeds grow in Wetland 10A. The open water portion of Wetland 10 ranges from 1 to 4 feet in depth, and 12 to 20 feet in width. Sediment in both wetlands is very sandy, with TOC values below 1%.

IR sites potentially affecting Wetland 10 include Sites 32, 33, and 35 (OU 10). Site 32 is the former industrial waste sludge drying beds. Site 33 includes the wastewater treatment plant ponds (including the former surge pond, the stabilization pond, and the polishing pond). Site 35 includes the solid waste management units of the former Industrial Wastewater Treatment Plant (NEESA, 1983).

10-7-1

Final Remedial Investigation Report NAS Pensacola Site 41 Section 10: Site-Specific Evaluations August 31, 2000

10.7.2 Nature and Extent

The methods for evaluating nature and extent are presented in Section 6. Figure 10-7-1 denotes Phase IIA Wetland 10 sampling locations.

Sediment

Twenty-one metals were detected in Wetland 10 sediment samples. Five metals — cadmium (2.8 ppm, 34.6 ppm, and 1.7 ppm at locations 33M02, 33M04, and 10A3), chromium (79 ppm and 1,180 ppm at locations 33M02 and 33M04), copper (45.1 ppm at location 33M04), lead (161 ppm and 49.9 ppm at locations 33M04 and 10A3), and nickel (52.1 ppm at location 33M04) — exceeded sediment benchmark levels. Fourteen pesticides were detected in Wetland 10 sediment samples: 4,4'-DDT and its metabolites, aldrin, delta/gamma-BHC, endosulfan I. heptachlor, heptachlor epoxide, endrin, endrin aldehyde, dieldrin, and alpha/gamma-chlordane. 4,4'-DDE exceeded the basewide level (40 ppb) at location 33M02 (54 ppb). 4,4'-DDD (120 ppb), 4,4'-DDE (96 ppb) and 4,4'-DDT (48 ppb) exceeded basewide levels at location 33M03. No other pesticides exceeded its sediment benchmark level. Aroclor-1260 exceeded its sediment screening value (21.6 ppb) at location 33M01 (49 ppb). Sixteen SVOCs were detected in Wetland 10 sediment samples, including mostly high- and low-molecular weight PAHs. Four PAHs — acenaphthylene (33 ppb, and 32 ppb at locations 10A1 and 10A2); and benzo(a)anthracene (87 ppb), benzo(a)pyrene (110 ppb), and fluoranthene (140 ppb) at sample location 10A1 — exceeded sediment benchmark levels. No other SVOCs exceeded a sediment benchmark level. No VOCs were detected in Wetland 10 sediment samples.

Table 10-7-1 shows the Wetland 10 Phase IIA sediment sample results (frequency of detection, range of detected concentrations, and average detected concentration). Table 10-7-2, which lists only the parameters with benchmark levels, compares detected concentrations at each sample location to sediment benchmark levels, and lists calculated HQs for each parameter. The HQs will be further discussed in the ecological risk section.

Table 10-7-1
Phase IIA Detected Concentrations in Wetland 10 Sediments

Parameter	Frequency of Detection	Range of Detected Concentrations	Average Detected Concentration
Inorganics (mg/kg)			
Aluminum (Al)	m,	1100 - 8910	3714.29
Antimony (Sb)	1/7	0.19	0.19
Arsenic (As)	6/7	0.82 - 6.2	2.47
Barium (Ba)	7/7	1.6 - 15.1	6.29
Cadmium (Cd)	4/76	0,27,-34,6	9.84
Calcium (Ca)	7/7	155 - 3880	1395.01
Chromium (Cr)	7/7	4.9 - 1180	187.623
Cobalt (Co)	1/7	3.9	3.9
Copper (Cu)	5/7	2.4 - 45.1	13.88
Iron (Fe)	7/7	710 - 7420	2268.57
Lead (Pb)	7/1	5.3 - 161	35.01
Magnesium (Mg)	5/7	46.2 - 242	125.6
Manganese (Mn)	7/7	4.1 - 135	30.93
Nickel (Ni)	4/7	1 - 52.1	14.05
Potassium (K)	6/7	19.5 - 493	204.7
Selenium (Se)	1/7	0.2	0.2
Silver (Ag)	1/6	0.32	0.32
Sodium (Na)	4/7	35.2 - 482	186.44
Thallium (T))	1/6	15.	1.5
Vanadium (V)	3/7	4.6 - 16.4	9.31
Zinc (Zi)	7/7	6.7 - 115	33.97
Pesticides and PCBs (μg/kg)			
4,4'-DDE	6/7	0.25 - 96	31,93
4,4'-DDD	4/7	25 - 120	54.5
4,4'-DDT	6/7	0.25 - 48	11.93
Aldrin	2/7	0.078 - 0.12	0.099
alpha-Chlordane	6/7	0.13 - 0.96	0.32
Aroclor-1260	2/7	12 - 49	30.5
delta-BHC	3/7	0.38 - 0.88	0.56
Dieldrin	1/7	0.39	0.39
Endosulian (*)	3/7 F	0,13-0,21	0.16

Table 10-7-1
Phase IIA Detected Concentrations in Wetland 10 Sediments

Parameter	Frequency of Detection	Range of Detected Concentrations	Average Detected Concentration
Pesticides and PCBs (µg/kg) (Continued	1)		
Endrin aldehyde	, v	0.53	0.53
Endrin	2/7	0.41 - 2.3	1.36
gamma-BHC (Lindane)	211	0.074 - 0.12	0.097
gamma-Chlordane	3/7	0.27 - 0.82	0.54
Heptachlor	477	0.09 - 0.23	0.14
Heptachlor epoxide	3/7	0.1 - 0.84	0.35
SVOCs (µg/kg)			
1,2-Dichlorobenzene	1/7	28	28
1.4 Dichlorobenzene A	177	318	#231° - 1777
Acenaphthylene	2/7	32 - 33	32.5
Anthracene	177	22	22
Benzo(a)anthracene	3/7	27 - 87	61.67
Benzo(a)pyrene	377	27 - 110	75
Benzo(b)fluoranthene	2/7	150 - 190	170
Benzo(g,h,i)perylene	3/7	26 - 72	56,33
Benzo(k)fluoranthene	2/7	63 - 74	68.5
bis(2-Ethylhexyl)phthalate (BEHP)	10 m	52 ***	52
Butylbenzylphthalate	1/7	35	35
Chrysene	3/7	30 - 97	68.67
Fluoranthene	4/7	43 - 140	88.75
Indeno(1,2,3-cd)pyrene	3/7 (2)	24 - 72	54
Phenanthrene	2/7	22 - 23	22.5
Pyrene	3/7	39 - 110	79.3

Notes:

The total number of samples is reduced by the number of rejected samples. However, no positive results were rejected.

All results are in micrograms per kilogram ($\mu g/kg$) or parts per billion (ppb), except for inorganics which are in milligrams per kilogram (mg/kg) or parts per million.

Table 10-7-2 Wetland 10 Phase IIA Sediment Concentrations Compared to Benchmark Levels

Sample Location	Parameter	Detected Concentration	Sediment Benchmark Value (SBV)	НО	SBV Reference
None and	1000	6.78 - 70	P-145-6	-5-1	
NAMES AND			10.00	-	
22 Table 1		THE R. P. LEWIS CO., LANSING, MICH.		100	- 91
OF REAL PROPERTY.		41.60	100	0.46	- 20
Adjoint Libration	Marill	104.2	No.	100	
Section 1	200	100	59 (5)	TEACH!	
		257	110	100	-4
	20111111	44	264	4.50	- 20
-	mary Control	100000000000000000000000000000000000000	-this		-
-	1000 T	104007	17.7	0.00	-
and point?		1.44	44	100	1.03
(INCHPARE)		14	112011	100	-188
******	-	-	_		_
33M002001	rame:	ale I	100	44.00	
4,44000 (UG/		36	1.22	29 51	ь
4,4'-DDE (UG/		54 J	2.07	26.09	ь
4,4-DDT (UG/		8.8 J	1 19	7.39	
alpha-Chlordan		0.26 J	17	0 15	а
Arodor-1260 (12 1	21.6	0,58	b
Arsenic (MG/K		0,82 J	7,24	0.11	an
Cadmium (MG		2,8	0.65	1.12	6
Chromium (MC		79	52 9	1,51	ab
Copper (MG/K		9.3	18.7	9.80	ab
	indane) (UG/KG)	0 (2 J	0,32	0,38	Ü
gamma-Chlords		0.52 J	17	0.31	A
Lead (MG/KG)	4	9.3	30.2	0.18	3.6
Zinc (MG/KG)		22.3	11.24	0.16	ah
amount)		1000	m 1.2 x 3	170	
September Service		100		100	- 10
STREET, SQUARE, SALES	5-1-1	***	44	N. W.	100
10 POST (NAME)		1.47	1.00	M.H	100
April 1997	(400)	59(7)	100	1.4	
Charles Wes		1.75	1.40	100	14
Name (and other)		10 m	1.681	6.78.1	1
Jan Street		14	1.84	THE R. LEWIS CO., LANSING	10
-			1997	**	10.0

Some of the numbers in the table may vary because of rounding Basewide levels (detailed in Section 6) for DOT and its metabolites

Basewide level for 4,4'-DDE is 40 ppb

Basewide level for 4,4'-DDD is 50 ppb. Basewide level for 4,4'-DDT is 20 ppb.

⁽a) USEPA Screening Concentration for Sediment - EPA SSVs
(b) FDEP Sediment Quality Assessment Guidelines - FDEP SQAGs

Table 10-7-2 Wetland 10 Phase IIA Sediment Concentrations Compared to Benchmark Levels

Sample Location	Parameter	Detected Concentration	Sediment Benchmark Value (SBV)	на	SaV Reference
- Demokrati	COLUMN TO SERVICE AND ADDRESS OF THE PARTY O		- 200		
A COUNTY OF		The second	A-7.70	100.47	100
Married Street		(F) (F) (F)		2.15	
SACRET SAN			100	2.00	- 0
-	-		1000	9.59	- 1
The same		100000		246	- 44
-	2111	440		-	240
10000		THE RESERVE	ACA .	1.00	-
Section 1989			444	245	
1000		100		200	4.80
Time make		100	- 100	Sec.	1000
Charles a service	CORP. CO.		-00-7	1000	
1	March -	100		100	-
-	m title	100	1101	1000	- 60
Class record		100000	- 142	100	440
NAME AND ADDRESS OF		THE REST	100	0.48	148
-		PH 201	/19m	100	246
041M10A101					
CT. AND ST. CA. L.	· · · · · · · · · · · · · · · · · · ·	33.3	2.62	5:52	-
Acenaphihyler alpha-Chlordai		0.19 J	5.87 1.7	0.11	- 15
Anthracene (L		22 J	46.9	0.49	a 0
Arsenic (MG/)		1,2	7.24	0.17	de
	acene (UG/KG)	87	74.8	1.16	0
Benzo(a)pyren		110	88.8	1 24	
Chromium (M	and the second s	4.9	52.3	0.09	a b
Chrysene (UG		97	108.	0.90	
Copper (MG/		24	18.7	0.13	# D
Fluoranthene		140	113	1.24	ь
Lead (MG/KG		3.2	30.2	0.27	a b
Nickel (MG/K)		16.1	189	0.10	an
Phenanthrene	A	22.1	86 7	0.25	10
Pyrene (UG/K		110	153	0.72	b.
Zinc (MG/KG)		£.7	124	0.05	ab
HAMINER					
124000		and the	400	111	100
En COT MAN		D THE	10.00	110	
Name of Street	Change Co.	TUY	8.00		

(a) USEPA Screening Concentration for Sediment - EPA SSVs

(b) FDEP Sediment Quality Assessment Guidelines - FDEP SQAGs
Some of the numbers in the table may vary because of rounding. Basewide levels (detailed in Section 6) for DDT and its metacolities Basewide level for 4.4-DOE is 40 ppb. Basewide level for 4.4-DOD is 50 ppb.

Basewide level for 4.4'-DDT is 20 ppb.

Table 10-7-2 Wetland 10 Phase IIA Sediment Concentrations Compared to Benchmark Levels

Sample Location	Parameter	Detected Concentration	Sediment Benchmark Value (SBV)	на	SBV Reference
Annual States	NAME OF TAXABLE PARTY.		- Category	240	440
-	and making the	10.00	140	U.S.ASS	100
Manage	AND DESCRIPTION OF THE PERSON NAMED IN COLUMN TWO IN COLUM	TAC IN	80.	CAME	MICAS.
200		Marie	IM.	AMI	100
Dome &	~271	100	341 m	476	100
100	-		10000	945	
SHE WITH		~ 10	NAME OF TAXABLE PARTY.	Maria.	26
Second of	Service Contract Cont		190 (4	100	100
100		COLUMN TO SERVICE	00000	10.40	100
ALC: NAME		THE OWNER OF	D4	10.40	100
-Debe Treat		0.60	100	Desc.	100
(Approximate)		1140	DRV.	DOG.	100
-		100	12390	ALC: N	0.00
941M10A301					
4,4'-DDE (UG	(KG)	2.3	2.07	4-14	6
A,4-DDT (UG)	(KG)	0.45	1 19	0,21	0
alpha-Chlordai		0.45	1/2	0.09	a
Antimony (MC	VRG)	Lain	12	0.02	a
Arsenic (MG/F	(G)	1.7	7 24	0.23	a 0.
Benzo(a)anthra	icene (UG/KG)	27 J	748	0.36	b
Benzo(a)pyren	e (UG/KG)	27 J	38 6	0.30	b
	(lighthalate (BEHP) (UG/KG)	52 1	182	0.29	ы
Gadmium (MG	s/KG)	1.7	0.68	2.50	b
Chtomium (Mi	G/KG)	11.6	52,3	0.22	ab
Chrysene (UG	/KG)	30 J	108	0.28	ь
Copper (MG/M	(6)	7.4	187	0.40	ны
Fluoranthene	(UG/KG)	62	114	0.55	h
Lead (MG/KG		49.9 J	30.2	1.65	a tu
Nickel (MG/K)	\$)	15 4	159	0.09	ab
Phenanthrene	(UG/KG)	23 .1	86.7	0.27	b
Pyrene (MG/K	G)	39 1	158	0.25	h
Zinc (MG/KG)		39.6	124	0.32	ab

⁽a) USEPA Screening Concentration for Sediment - EPA SSVs
(b) FDEP Sediment Quality Assessment Guidelines - FDEP SQAGa
Some of the numbers in the table may vary because of rounding
Basewide levels (detailed in Section 6) for DDT and its metabolites Basewide level for 4.4'-DDE is 40 ppb. Basewide level for 4.4'-DDD is 50 ppb. Basewide level for 4.4'-DDT is 20 ppb.

Final Remedial Investigation Report NAS Pensacola Site 41 Section 10: Site-Specific Evaluations August 31, 2000

Surface Water

Twelve metals were detected in Wetland 10 surface water samples. Aluminum exceeded its criteria at all four locations (1,280 ppb, 953 ppb, 696 ppb, and 737 ppb at locations 33W01, 33W02, 33W03 and 33W04). Cadmium (5.2 ppb), iron (5,110 ppb), and lead (2.4 ppb) exceeded the water quality criteria at location 33W01. Iron (1,090 ppb) also exceeded its criteria at location 33W02. Eight pesticides were detected in Wetland 10 surface water samples, none of which exceeded their criteria. No PCBs or SVOCs were detected in surface water at Wetland 10. Two VOCs, toluene and xylene were detected below their surface water criteria.

Table 10-7-3 shows the Wetland 10 Phase IIA surface water sample results (frequency of detection, range of detected concentrations, and average detected concentration). Table 10-7-4 compares detected concentrations at each sample location to surface water quality criteria and lists calculated HQs for each parameter. Parameters with no water quality criteria are not listed in Table 10-7-4. The HQs will be further discussed ecological risk section.

Table 10-7-3

Phase IIA Detected Concentrations in Wetland 10 Surface Water

Parameter	Frequency of Detection	Range of Detected Concentrations	Average Detected Concentration
Inorganics (µg/L)			
Aluminum (AI)	4/4	696 - 1280	916.5
Barium (Ba)	4/4	11.9 - 16.1	13.375
Cådmium (Cd)	1/4	5.2	5.2
Calcium (Ca)	4/4	12900 - 14500	13575
Chromium (Cr)	1/4	10.8	10.8. 10.8.
Iron (Fe)	4/4	808 - 5110	1954
Lead (Pb)	1/4	2.4	2,4
Magnesium (Mg)	4/4	2950 - 5470	4597.5
Manganese (Mn)	4/4	11.3 - 280	87.3
Silver (Ag)	1/4	24500	24500
Sodium (Na)	4/4	5050 - 24500	17887.5
Zinc (Zn)	4/4	29 - 39.2	36.05
Pesticides (µg/L)			
4,4'-DDD	2/4.	0.041 - 0.11	0.0755
4,4'-DDE	4/4	0.0021 - 0.045	0.018
4,4:-DDT	2/4	0.008 - 0.047	0.0275
Heptachlor	1/4	0.0014	0.0014
Heptachlor epoxide	1/4	0.0013	0.0013
alpha-BHC	2/4	0.0027 - 0.0043	0.0035
alpha-Chlordane	1/4	0.0013	0,0013
gamma-Chlordane	2/4	0.003 - 0.0034	0.0032
VOCs (μg/L)			
Toluene	1/4	. Huthard (2) and was kind	2
Xylene (Total)	3/4	1 - 2	1.67

Note:

All results are in micrograms per liter ($\mu g/L$) or parts per billion (ppb).

10.7.3 Fate and Transport

Pathways evaluated for wetland-specific fate and transport correlate with those identified in the conceptual model presented in Section 9: surface water/sediment transport into the wetland; groundwater discharge into the wetland; sediment/surface water transport within the wetland; sediment leaching to surface water within the wetland; and surface water/sediment transport from the wetland. Because sediment transport and storm water runoff data is lacking, many evaluations are qualitative in nature. The method of evaluating leaching from sediment to surface water was

Table 10-7-4 (1) Wetland 10 Phase IIA Surface Water Concentrations Compared to Water Quality Criteria

Sample Location	Parameter	UOM	Detected Concentration	Water Quality Criteria	на	Criteria Reference	
TV-T-T-	Butween	W 7	La Brade	(R) 10%	7		
Mindon 107		STANCE OF	St. Sherring	In own to	TO A PERMIT	- 100	
1000		0.00	DA:	STATE OF THE PARTY NAMED IN	ATTEM	. (20)	
personal states		E AMO	D.Oak	1 344	ANK	1200	
***		844	UMBA"	Date	Alterial.	99.5	
-		944.5	TMA	TANK.	844	WY	
-		(SM1)	196	1725	14091	- 100	
Arrive Co.		DAY:	-91		High	. 10	
033W002002	Freshwater	-					
alpha-BHC	4	UG/L	0.0043	500.0	0,00001		
Aluminum		LIG/L	953.0	87.0	10.95402	a	
Chromium		LIG/L	10.8	11.0	0,98182	a b	
Iron		UG/L	1,090.0	1,000.0	1,09	ab	
Toluene		LIG/L	2.0	175.0	0.01143	a	
Zinc		UG/L	39.2	70.2	0.5584	ab	
Comment of	Thomas !						
1000	1000000		Commercial Co.		S. Carrell		
Andrews.		-	Ten. (I		- 100	100	
Service:		100	945	900	16.	100	
Annual way	200011	100	(Aprelia)	Total I	1000	100	
140		117611	2016	1999	144	190	
		-	100	184	140	100	
033W004002	Freshwater						
Atuminum	7.3 - 81-31-6150,40	UG/L	737.0	87.0	8.47126	ā	
gamma-Chlordani	B	UG/L	0.003	0.0043	0.69767	ab	
Iron		UG/L	808.0	1,000 0	808.0	ab	
Zina		UG/L	29.0	70.2	0.41311	ab	
		2.00	1.31			7.634	

Notes.

(a) USEPA Water Quality Criteria (1995)

(b) FDEP Class III Water Quality Criteria (1996)

Some of the numbers in the table may vary because of rounding.

presented in Section 9. Table 10-7-5 presents those contaminants present in sediment above benchmark levels and their calculated SSLs. Contaminants present in surface water above water quality criteria are presented in Table 10-7-4.

Table 10-7-5
Calculated Sediment Screening Values for Wetland 10

Parameter	USEPA or FDEP Surface Water Standard	Kd	SSL DF = 100	Maximum Concentration Detected	Leaching Potential DF = 100
Inorganics	(ppb)		(ppm)	(ppm)	
Çadmium.	0:774*5	7.5E+01	* 5.82	34.6	YES
Chromium	11 a, b	1.9E+01	21.1	1180	YES
Copper	7.8° . b	4.3E+02	335 .5	45.1	NO ∮
Lead	1.71 a, b	9E+02	153.9	161	YES
Nickel	1045	6.5E+01	677.	52.1	NO.*
Organics	(ppb)		(ppb)	(ppb)	
4,4 DDE	10.5	1,69E+04	1.77E+0 7	96	NO∑ ÷`
4,4 DDD	0.0064 *	3.78E+03	2.42E+03	120	NO
4,4 DDT	0.001 a b	9.95E+03	9.95E+02	48	NO
Acenaphthylene	0.031 b	11.74	36.81	33	NO
Total PCBs*	0.014 a.b	11.68	16.54	49	YES
Benzo(a)anthracene	0.031 ^b	1.5E+03	4.65E+03	87	NO
Вепло(а)рутеле	0.031 ^b	3.87E+03	1.2E +04	110	NO
Fluoranthene	39.8 °	4.05E+02	1.61E+06	140	NO

Notes:

Kd for organics calculated using foc of 0.00379 (numerical average of all sediment samples).

Kds are from: USEPA, 1996b (first preference); Superfund Chemical Data Matrix (USEPA, 1996c) (second preference); Texas Risk Reduction Program Concept Document 2, Volume 1, Appendix VII, 1996 (third preference); TERRA Model, Oak Ridge National Laboratory, 1984 (fourth preference — primary reference for inorganics).

Kd = normalized partitioning coefficient.

SSL = sediment screening level.

DF = dilution factor.

USEPA Freshwater Surface Water Chronic Screening Value (1995a).

b = FDEP Class III Water Quality Criteria (1996).

Transport into the Wetland

Surface Water/Sediment Pathway

Based on landform and watershed analysis, the following sources can contribute contamination to Wetland 10 through this pathway:

^{* =} based on Aroclor-1260

August 31, 2000

• Potential storm water runoff and sediment entrainment from Sites UST P (13 500-gallon

aviation gasoline tanks and pipeline associated with the former Chevalier field), UST K (a

500-gallon fuel oil tank associated with the former Building 3810), UST L (two 8,000-gallon

diesel tanks associated with former NADEP Building 3644), Sites 32, 33, 35 and 13, the

bilge water plant, and the northern portions of Chevalier Field. During periods of high tide

and storm surge, there is a direct surface water drainage through a tidal inlet that enters the

wetland from Pensacola Bay to the east. There is also a direct surface water connection to

Wetland 12.

Sediment contaminants above benchmark levels (see Table 10-7-2) validate this sediment transport

pathway, and by inference surface water as well. Additionally, four inorganics were present in

surface water above criteria, further validating the pathway.

Groundwater Discharge Pathway

Based on potentiometric analysis, the primary potential source that would directly contribute

contamination to Wetland 10 through this pathway are UST sites K, P, and L. Contamination

found in groundwater at these sites validates this pathway.

Transport within the Wetland

Surface Water/Sediment Migration Pathway

The configuration of the wetland, along with landform analysis, indicates that the surface water

and sediment transport will occur to the east through a small tidal inlet connecting the wetland with

Pensacola Bay. During periods of very high tides or storm surges some back flushing of

surface water will occur within the wetland. Surface water and sediment can therefore be

considered to be mobile, and the pathway valid for this wetland.

10-7-14

Sediment Leaching to Surface Water Pathway

Eight organics — three pesticides, PCBs, and four semivolatiles — and five inorganics, exceeded their benchmark levels. Three inorganics and PCBs exceeded their calculated SSL (see Table 10-7-5). Notably, two of the inorganics (cadmium and lead) were present in surface water above criteria suggesting a potential for leaching from sediment. The source for contaminants in sediment is likely associated with storm water runoff from asphalted surfaces around former Chevalier Field and possibly the nearby UST sites. Pesticide occurrence is likely a residual from routine applications. However, some measure of the lead concentration in surface water is likely due to partitioning from sediment. Because parameters were detected in sediment above its SSLs in conjunction with its exceedance in surface water, the sediment leaching pathway is considered valid for this wetland.

Transport from the Wetland

Surface water and sediment from Wetland 10 can be expected to move towards the east into the Pensacola Bay system. Therefore sediment and surface water contamination can be expected to be mobile and not remain within the wetland.

10.7.4 Ecological Risk Assessment

HQs for Wetland 10 sediment samples are presented in Table 10-7-2. Phase IIA sediment results compared to the appropriate sediment benchmark levels revealed a HQ above 1 for cadmium (4.12, 50.88, and 2.50 at locations 33M02, 33M04, and 10A3), chromium (1.51 and 22.56 at locations 33M02 and 33M04), copper (2.41 at location 33M04), lead (5.33 and 1.65 at locations 33M04 and 10A3), and nickel (3.28 at location 33M04). 4,4'-DDD, 4,4'-DDE, and 4,4'-DDT had HQs greater than 1 at sample locations 33M01 (30.33, 10.14, and 5.21), 33M02 (29.51, 26.09, and 7.39), and 33M03 (98.36, 46.38, and 40.34). 4,4'-DDE also had a HQ greater than 1at sample locations 33M04 (8.70) and 10A3 (1.11); while 4,4'-DDT had a HQ above 1 at location 33M04 (6.55). Aroclor-1260 had a HQ greater than 1 at

August 31, 2000

location 33M01 (2.27). Four PAHs had HQs greater than 1 — acenaphthylene (5.62, and 5.45

at locations 10A1 and 10A2); and benzo(a)anthracene (1.16), benzo(a)pyrene (1.24), and

fluoranthene (1.24) at sample location 10A1. Phase IIA surface water results revealed HOs

greater than 1 for aluminum (14.71, 10.95, 8.0, and 8.47 at locations 33W01, 33W02, 33W03,

and 33W04). HQs were also greater than 1 at sample location 33W01 for cadmium (6.72),

iron (5.11), and lead (1.40). The HQ was also greater than 1 for iron (1.09) at

sample location 33W02. HQs greater than 1 indicate a potential for excess risk.

Wetland 10 was classified in Group D (all wetlands in the group appear as man-made drainage

ditches and have limited ecological receptors) and was not studied further in Phase IIB/III. Color-

codes, groupings and rationale for classification are described in Section 7.

10.7.5 Human Health Risk Assessment

10.7.5.1 Samples Included

Sediment

041M10A101, 041M10A201, 041M10A301, 033M001001, 033M002001, 033M003001,

033M004001

Surface Water

033W001002, 033W002002, 033W003002, 033W004002

10.7.5.2 Current and Future Land Use

Wetland 10 lies north of the NATTC at NAS Pensacola, at the southern end of Magazine Point.

It is surrounded by a wooded area, the Bilge Water Plant of the waste water treatment plant, and

a fenced compound that formerly held a Whirl Stand used by the former NADEP. The

Magazine Point area is posted as a restricted location that is patrolled by base police. Routine

grounds maintenance activities periodically performed to control weeds and brush. There is no

recreational or fishing use of this area.

10-7-16

10.7.5.3 Fish Tissue COPCs

No fish tissue data were available for this wetland, and this exposure pathway would likely be incomplete; therefore, no COPCs were identified.

10.7.5.4 Sediment COPCs

As shown in Table 10-7-6, no sediment COPCs were identified.

10.7.5.5 Surface Water COPCs

As shown in Table 10-7-7, no surface water COPCs were identified.

10.7.5.6 Risk Summary

No COPCs were identified following the screening comparisons described in Section 8 and presented above. As a result, no formal human health risk assessment was conducted for Wetland 10.

10.7.6 Conclusions and Recommendations

Wetland 10 is a channelized drainage ditch without a viable aquatic community. In addition, this wetland is not considered a significant source of food or habitat. Therefore, as proposed in the approved RI/FS SAP Addendum, (EnSafe, 1997), this wetland was eliminated for further risk characterization. Since no COPCs were identified for Wetland 10, no formal HHRA was conducted. Because no ecological or human health risks are present at Wetland 10, no further action is recommended for this wetland.

TABLE 10-7-6 OCCURRENCE, DISTRIBUTION, AND SELECTION OF CHEMICALS OF POTENTIAL CONCERN NAS PENSACOLA SITE 41

Scenario Timeframe - Current and Future - Medium: Soil - Exposure Medium: Sediment - Exposure Point: - Wedand 10 Sediment

F	ſ	(1)	l Transfer	(1)				1			(2)	(3)	(4)	i	(5)			(6)
CAS Number	Chemical	Minimum Concentration	Minimum Qualifier	Maximum Concumbation	Maximum Qualifier	Units	Location of Maximum Concentration	Detection Frequency	Range of Detection Limits	Mean	Concentration Used for Screening	Background Value	Adolescent Site Trespasser PRG	Residential Soil RBC	``	Potential ARAR/TBC Source	COPC Fing	Rationals for Contaminent Delection or Selection
95501	1,2-Dichlorobenzene	0.0280	J	0.0280	J	MG/KG	041M10A301	1 / 7	0.40 - 0.43	0.028	0.028	N/A	28000	2300	N	N/A	NO	BSL
106467	1,4-Dichlorobenzene	0.0310	J.	0.0310	l i	MG/KG	041M10A301	1 / 7	0.40 - 0.43	0.031	0.031	N/A	92	2,7	С	N/A	NO	BSL
72548	4,4'-DDD	0.0250	J	0.1200	J	MG/KG	033M001001	4 / 7	0.00021 - 0.00021	0.055	0.12	N/A	92	2.7	С	N/A	NO	BSL
72559	4,4'-DDE	0.0003	J	0.0960	J	MG/KG	033M002001	5 / 7	0.00021 ~ 0.00021	0.032	0.096	N/A	65	1.9	C	N/A	NO	BSL
50293	4,4'-DDT	0.0003	J	0.0480	اد	MG/KG	033M003001	6 / 7	0.00021 - 0.00021	0,012	0.048	N/A	65	1.9	C	N/A	NO	BSL
208968	Acenaphthylene	0.0320	1	0.0330	J	MG/KG	041M10A101	2 / 7	0.04 - 0.43	0.033	0.033	N/A	9500	230	N	N/A	NO	BSL
309002	Aldrin	0.000078	J	0.0001	J	MG/KG	033M003001	2 / 7	0.0001 - 0.0023	0.00010	0.00012	N/A	1.3	0.038	c	N/A	NO	BSL
5103719	alpha-Chlordane	0.00013	1	0.0010	J	MG/KG	033M001001	6 / 7	0.0001 - 0.0001	0.00032	0.00096	N/A	6,3	1.8	С	N/A	NO	BSL
7429905 120127	Aluminum (Al)	1100.0000	J	8910,00	1 . 1	MG/KG	041M10A101	8 / 8	NAV	3816.25	8910	N/A	320000	7800	N	N/A	NO	BSL
7440360	Anthracene Antimony (Sb)	0.0220 0.1900	J	0.0220	ı L	MG/KG	041M10A101	1 / 7	0.04 - 0.43	0.02	0.022	N/A	95000	2300	N	N/A	NO	BSL
11096825	Aractor-1260	0.1900	٦	0.19 0.0490	'	MG/KG	041M10A101	7 / 7	0.19 - 15.20	0.19	0.19	N/A	130	3.1	N	N/A	NO	BSL
7440382	Arsenic (As)	0.8200	_		, ,	MG/KG	033M001001		0.0021 - 0.0430	0.03	0.049	N/A	11	0.32	C	N/A	NO	BSL
7440393	Berium (Ba)	1,6000	ر ز	6,20 15,10	J	MG/KG MG/KG	033M004001 033M003001	6 / 8	1.00 - 1.40 7.90 - 7.90	2.47	6.20	N/A	15	0.43	С	N/A	NO	BSL
56553	Benzo(a)anthracene	0.0270	j	0.0870	'	MG/KG	033M003001			6.29	15.1	N/A	22000	550	N	N/A	NO	BSL
50328	Benzo(a)pyrene	0.0270	را	0.0870	1	MG/KG		1	0.41 ~ 0.43	0,06	0.087	N/A	30 3	0.88	c	N/A	NO	BSL
205992	Benzo(b)fluoranthene	0.0270		0.1100		MG/KG	041M10A101 041M10A101	3 / 7	0.41 - 0.43 0.04 - 0.43	0.08	0.11	N/A N/A	30	0.088	c	N/A	NO	BSL
191242	Benzo(g,h,i)perylene	0.0260	ر ا	0.1300		MG/KG	041M10A101	2 / 7	0.44 - 0.43	0.17 0.06	0.19 0.072		9500	88,0	C	N/A N/A	NO	BSL
207089	Benzo(k)fluoranthene	0.0630	'	0.0720		MG/KG	041M10A201	2 / 7	0.04 - 0.43	11	0.072	N/A	300	230	C		NO	BSL BSL
117817	bis(2-Ethylhexyl)phthalate (BEHP)	0.0520	J	0.0520	J	MG/KG	041M10A301	1 / 7	0.04 - 0.43	0.07 0.05	0.052	N/A N/A	1.6	8,8 46	0	N/A N/A	NO NO	BSL
856B7	Butylbenzylohthaiate	0.0350	J	0.0350	ازا	MG/KG	041M10A301	1 / 7	0.14 - 0.41	0.03	0.032	N/A	63000	1600	N	N/A	NO	BSL
7440439	Cadmium (Cd)	0.2700	i	34.60	'	MG/KG	041M10A201	4 / 8	0.14 - 0.41	9.84	34.6	N/A	320	7.8	N	N/A	NO	BSL
7440702	Calcium (Ca)	155,0000		3880.00		MG/KG	041M10A201	8 / 8	0.20 9 1.30 NAV	1243.88	3880	N/A	N/A	N/A	. "	N/A	NO	EN
7440473	Chromium (Cr)	4.9000		1180.00		MG/KG	033M002001	7 / 8		187.63	1180	N/A	1600	23	N	N/A	NO	BSL
218019	Chrysene	0.0300	1	0.0970		MG/KG	041M10A101	3 / 7	0.41 - 0.43	0.07	0.1	N/A	3000	88	c	N/A	NO	BSL
7440484	Coball (Co)	3.9000	1	3,90		MG/KG	041M10A201	1 / 8	0.19 - 3.20	3,90	3.9	N/A	19000	470	N	N/A	NO	BSL
744050B	Copper (Cu)	2.4000	J	45,10		MG/KG	033M002001	6 / 8	6.40 - 6.60	11.97	45.1	N/A	13000	310	N	N/A	NO	BSL
319868	detta-BHC	0.00038	j	0.0009	ایا	MG/KG	033M002001	3 / 7	0.00010 - 0.00220	0.00056	0.00088	N/A	12	0.35	c	N/A	NO	BSL
60571	Dieldrin	0.00039	j	0.0004	J	MG/KG	033M004001	1 / 7	0.00021 - 0.00440	0.00039	0.00039	N/A	1.4	0.04	c	N/A	NO	BSL
959988	Endosulfan I	0.00013	J	0.0002	J	мс/кс	033M003001	3 / 7	0.00021 - 0.00230	0.00016	0.00021	N/A	1900	47	N	N/A	NO	BSL
72208	Endrin	0.00041	J	0.0023	J	мсжс	033M003001	2 / 7	0.00021 - 0.00440	0.00136	0.0023	N/A	95	2.3	N	N/A	NO	BSL
7421934	Endrin aldehyde	0.00053	J	0.0005	J	MG/KG	033M004001	1 / 7	0.00021 - 0.00440	0.00053	0.00053	N/A	95	2,3	N	N/A	NO	BSL
206440	Fluoranthene	0,0430	J	0.1400		MG/KG	041M10A301	4 / 7	0.41 - 0.43	0.08875	0.14	N/A	13	310	N	N/A	NO	BSL
58899	gamma-BHC (Lindane)	0.000074	J	0.0001	J	MG/KG	033M001001	2 / 7	0.00010 ~ 0.00220	0.00010	0.00012	N/A	17	0.49	c	N/A	NO	BSL
5103742	gamma-Chiordane	0.00027	j	0.0008	J	MG/KG	033M002001	3 / 7	0.00010 ~ 0.00210	0.00054	0.00082	N/A	6.3	1.8	С	N/A	NO	BSL
78448	Heptachior	0.000099	l '	0.0002	J	MG/KG	033M004001	4 / 7	0,00010 - 0,00010	0.00014	0.00023	N/A	4.9	0.14	С	N/A	NO	BSL
1024573	Heptachlor epoxide	0.0001	J.	0.0008	J	MG/KG	033M002001	3 / 7	0.0001 - 0.0022	0.00035	0.00084	N/A	2.4	0.07	С	N/A	NO	BSL
193395	Indeno(1,2,3-cd)pyrene	0.0240	J	0.0720		MG/KG	041M10A201	3 / 7	0.41 - 0.43	0.05400	0.072	N/A	30	0.88	С	N/A	NO	BSL
7439896	iron (Fe)	710.0	l	7420.00		MG/KG	033M003001	8 / 8	NAV	2290.00	7420	N/A	N/A	N/A		N/A	NO	EN
7439921	Lead (Pb)	5.3		161.00		MG/KG	033M004001	8 / 8	NAV	31.56	161	N/A	400	400	N	OSWER	NO	BSL
7439954	Magnesium (Mg)	45.2000	J	242.00	ı	MG/KG	041M10A101	6 / 8	140.00 - 143.00	116.28	242	N/A	N/A	N/A	Ė	N/A	NO	EN
7439965	Manganese (Mn)	4.1000		135.00		MG/KG	033M002001	8 / 8	NAV	29.80	135	N/A	15000	1100	N	N/A	NO	BSL
7440020	Nickel (Ni)	1	J	52.10		MG/KG	041M10A201	5 / 8	9.70 - 10.10	11.54	52.1	N/A	6300	150	N	N/A	NO	BSL
85018	Phenanthrene	0.0220	J	0.0230	J	MG/KG	041M10A301	2 / 7	40.00 - 430.00	0.02	0.023	N/A	9500	230	N	N/A	NO	BSL
7440097	Potassium (K)	19.5000	J	165.00	J	MG/KG	041M10A301	4 / 8	1010.00 - 1050.00	61.05	165	N/A	N/A	N/A		N/A	NO	EN
129000	Pyrene	0.0390	J	0.1100		MG/KG	041M10A301	3 / 7	410.00 - 430.00	0.08	0.11	N/A	9500	230	N	N/A	NO	BSL
7782492	Selenium (Se)	0.2000	J	0.20	J	MG/KG	041M10A301	1 / 8	0.18 - 1.10	0.20	0.2	N/A	1600	39	N	N/A	NO	EN
7440224	Silver (Ag)	0.3200	J	0.32	J	MG/KG	041M10A101	1 / 8	0.25 - 3.60	0.32	0.32	N/A	1600	39	N	N/A	NO	BSL
7440235 7440280	Sodium (Na)	35.2000	J	482.00	J	MG/KG	041M10A201	5 / 8	2.40 - 30.50	186.44	482	N/A	N/A	N/A		N/A	NO	EN
7440280	Thallium (Ti) Vanadium (V)	1,5000	J	1.50	1	MG/KG	041M10A201	1 / 8	0.18 ~ 0.79	1.50	1.5	N/A	22	0.55	N	N/A	NO	BSL
7440622	Zinc (Zn)	4.6000 6.7000		16.40		MG/KG	041M10A201	4 / 8	3.80 - 4.00	8.98	16,4	N/A	2200	55	N	N/A	NO	BSL
(Line (211)	0.7000		115.00		MG/KG	033M003001	8 / 8	NAV	30.63	115	N/A	95000	2300	N	N/A	NO	BSL

⁽¹⁾ Minimum/maximum detected concentration

(6) Rationale Codes Selection Reason:

Deletion Reason:

Above Screening Levels (ASL) Below Screening Levels (BSL) Background Levels (BKG) No Toxicity Information (NTX) Essential Nutrient (EN)

Definitions:

N/A = Not Applicable

NAV = Not Available

COPC = Chemical of Polantial Concern

ARAR/TBC = Applicable or Releveant and Appropriate Requirement/ To Be Considered

OSWER = Office of Solid Waste and Emergency Response

J = Estimated Value

C = Carcinogenic

N Noncertinogenic

⁽²⁾ Maximum concentration used as screening value.

⁽³⁾ Background values were not developed for this media.

⁽⁴⁾ PROs for site trespasser scenario calculated based on equations and parameters presented in Section 8 of this report.

⁽⁵⁾ Residential soil RBCs presented in Region III Risk-Based Concentration Tables, (USEPA, 1998).

TABLE 10-7-7 OCCURRENCE, DISTRIBUTION, AND SELECTION OF CHEMICALS OF POTENTIAL CONCERN NAS PENSACOLA SITE 41

Scenario Timeframe: Current and Future

Medium: Surface Water Exposure Medium: Surface Water

Exposure Point: Welland 10 Surface Water

		(1)		(1)						1	(2)		(3)	(4)			(5)
CAS Number	Chemical	Minimum Concentration	Minimum Qualifier	Maximum Concentration	Maximum Qualifier	Units	Location of Maximum Concentration	Detection Frequency	Range of Detection Limits	Mean	Concentration Used for Screening	Background Value	Adolescent Site Trespasser PRG	Tap Water RBC	Potential ARAR/TBC Source	COPC Flag	Rationale for Contaminant Delection or Selection
	4,4'-DDD	0.041	J	0.1100	J	UG/L	033W003002	2 / 4	NAV	0.08	0.11	N/A	0.6	0.28 C	N/A	NO	BSL
72559	4,4'-DDE	0.002	J	0.0450	J	UG/L	033W003002	4 / 4	N,AV	0.02	0.05	N/A	0.5	0.20 C	N/A	NO.	BSL
	4.4'-DDT	800.0	J	0.0470	J	UGAL	033W003002	2 / 4	NAV	0.03	0.05	N/A	0.28	0.20 C	N/A	NO	BSL
B - 1	Aluminum (AI)	696.000		1280,0000		UGAL	033W001002	4 / 4	NAV	916.50	1280	N/A	120000	3700 N	N/A	NO	BSL
	Barium (Ba)	11.900	J	16.1000	Ĺ	UG/L	033W001002	4 / 4	NAV	13.38	16.1	N/A	8300	260 N	N/A	NO	BSL
	Cadmium (Cd)	5.200		5.2000		UG/L	033W001002	1 / 4	NAV	5.20	5.2	N/A	60	1.8 N	N/A	NO	BSL
19 3	Calcium (Ca)	12900.000		14500.0000		UG/L	033W002002	4 / 4	NAV	13575.00	14500	N/A	N/A	N/A	N/A	NO	EN
я ≀	Chromium (Cr)	10.800		10.8000		UG/L	033W002002	1 / 4	NAV	10.80	10.8	N/A	360	11 N	N/A	NO.	BSL
1	Heptachlor	0.001		0.0014	J	UGAL	033W001002	1 / 4	NAV	0.00	0.0014	N/A	0.68	0.0023 C	N/A	NO	BSL
	Heptachlor epoxide	0.001		0.0013	J	UG/L	033W003002	1 / 4	NAV	0.00	0.0013	N/A	0.078	0.0012 C	N/A	NO	BSL
7439896	Iron (Fe)	808.000		5110.0000		UG/L	033W001002	4 / 4	NAV	1954.00	5110	N/A	N/A	N/A	N/A	NO	EN
	Lead (Pb)	2.400	J	2.4000		UG/L	033W001002	1 / 4	NAV	2.40	2.40	N/A	15	15	TTAL	NO	BSL
	Magnesium (Mg)	2950.000	J	5470.0000	1	UG/L	033W002002	4 / 4	NAV	4597.50	5470	N/A	N/A	N/A	N/A	NO	EN
	Manganese (Mn)	11,300	J	280.0000		UG/L	033W001002	4 / 4	NAV	87.30	280	N/A	2400	73 N	N/A	NO	BSL
u :	Silver (Ag)	24500,000		24500 0000		UG/L	033W002002	1 / 4	NAV	24500.00	24500	N/A	600	18 N	N/A	NO	BSL
R 1	Sodium (Na)	5050.000		24500.0000		U G/L	033W002002	4 / 4	NAV	17887.50	24500	N/A	N/A	N/A	N/A	NO	EN
B 1	Toluene	2.000	J	2.0000	J	UG/L	033W002002	1 / 4	NAV	2.00	2	N/A	3800	75 N	N/A	NO	BSL
	Xylene (Total)	1.000	J	2,0000	J	UG/L	033W004002	3 / 4	NAV	1.67	2	N/A	19000	1200 N	N/A	NO	BSL
7440568		29.000		39.2000		UG/L	033W002002	4 / 4	NAV	36.05	39.2	N/A	36000	1100 N	N/A	NO	BSL
	alpha-BHC	0.0027		0.0043	J	UG/L	033W002002	2 / 4	NAV	0.00	0.0043	N/A	0.3	0.011 C	N/A	NO	BSL
5103719	alpha-Chiordane	0.0013	J	0.0013	J	UG/L	033W003002	1 / 4	NAV	0.00	0.0013	N/A	2.1	0.19 C	N/A	NO	BSL
5103742	gamma-Chlordane	0.0030		0.0034	ز	UG/L	033W001002	2 / 4	NAV	0,00	0.0034	N/A	2.1	0.19 C	N/A	NO	BSL

(1) Minimuns/maximum detected concentration

(2) Maximum concentration used as screening value.

(3) PRGs for adolescent sits trespasser scenario calculated using equations and parameters presented in Section 8 of this report.

(4) Tap water RBCs presented in Region III Risk-Based Concentration Tables, (USEPA, 1998).

(5) Rationale Codes

Selection Reason: Above Screening Levels (ASL) Deletion Reason: Below Screening Levels (BSL) Background Levels (BKG)

Essential Nutrient (EN)

Definitions: N/A = Not Applicable

NAV = Not Avaitable

COPC = Chemical of Potential Concern

ARAR/TBC = Applicable or Releveant and Appropriate Requirement/ To Be Considered

TTAL = Treatment technique action level

J = Estimated Value C = Carcinogenic

N = Noncarcinogenic

Final Remedial Investigation Report NAS Pensacola Site 41 Section 10: Site-Specific Evaluations August 31, 2000

This page intentionally left blank.

10.8 Wetland 12

10.8.1 Site Description

Wetland 12 is south of OU 10, at the base of Magazine Point. Wetland 12 is a freshwater forested

wetland, surrounded by pine trees, and primarily fed by rainfall and surface runoff from the

surrounding area. Wetland 12 drains surface water into Wetland 10A. Parsons and Pruitt

described Wetland 12 as a palustrine forested scrub-shrub system (USEPA, 1991).

Wetland 12's open water, 1 to 2 feet in depth, occurs in a sandy depression, and is filled with

cattails (Typha latifolia). The surrounding edges of this system support pine trees, and the weedy

legume, rattlebox (Sesbania sp.). Sediment in Wetland 12 is very sandy, with TOC values to 4%.

IR sites potentially affecting Wetland 12 include Sites 32, 33, and 35 of OU 10. Site 32 is the

former industrial waste sludge drying beds. Site 33 includes the wastewater treatment plant ponds

(including the former surge pond, the stabilization pond, and the polishing pond). Site 35 includes

the solid waste management units of the former Industrial Wastewater Treatment Plant

(NEESA, 1983). Wetland 12 also received a spill from the bilge water plant in 1992, with the

effects still visible in 1994 and 1995.

10.8.2 Nature and Extent

Sediment

The methods for evaluating nature and extent are presented in Section 6. Figure 10-8-1 denotes

the Phase IIA Wetland 12 sampling locations.

Sixteen metals were detected in Wetland 12 sediment samples. No metals exceeded a sediment

benchmark level. Eight pesticides were detected in Wetland 12 sediment samples: 4,4'-DDE,

beta/delta-BHC, dieldrin, endosulfan I, endosulfan sulfate, endrin aldehyde, and endrin ketone.

Endrin ketone exceeded its benchmark level (3.3 ppm) at sample location 1201 (13 ppm). No

10-8-1

August 31, 2000

other pesticides exceeded its sediment benchmark level, and no PCBs were detected at Wetland 12.

Four PAHs — 2-methylnaphthalene (7,100 ppb), fluorene (1,300 ppb), naphthalene (1,300 ppb)

and phenanthrene (2,500 ppb) — exceeded sediment benchmark levels at sample location 1202.

Methylene chloride, a common laboratory contaminant, was the only VOC detected in Wetland 12

sediment samples.

Table 10-8-1 shows the Wetland 12 Phase IIA sediment sample results (frequency of detection,

range of detected concentrations, and average detected concentration). Table 10-8-2 compares

detected concentrations at each sample location to sediment benchmark levels, and lists calculated

HQs for each parameter. Only the parameters with benchmark levels are presented in

Table 10-8-2. The HQs will be further discussed in the ecological risk section.

Surface Water

Ten metals were detected in the Wetland 12 surface water samples. Iron (1,150 ppb) and thallium

(12.2 ppb) exceeded their water quality criteria at location 1201. No pesticides or PCBs were

detected in Wetland 12 surface water. The only SVOC detection was di-n-butylphthalate, below

the applicable criteria. No VOCs were detected in Wetland 12 surface water.

Table 10-8-3 shows the Wetland 12 Phase IIA surface water sample results (frequency of

detection, range of detected concentrations, and average detected concentration). Table 10-8-4

compares detected concentrations at each sample location to surface water quality criteria, and lists

calculated HQs for each parameter. The HQs will be further discussed ecological risk section.

10.8.3 Fate and Transport

Pathways evaluated for wetland-specific fate and transport correlate with those identified in the

conceptual model presented in Section 9: surface water/sediment transport into the wetland;

groundwater discharge into the wetland; sediment/surface water transport within the wetland;

10-8-2

Table 10-8-1
Phase IIA Detected Concentrations in Wetland 12 Sediments

Parameter	Frequency of Detection	Range of Detected Concentrations	Average Detected Concentration
Inorganics (mg/kg)			
Aluminum (Al)	2/2	593-3070	1831.5
Arsenic (As)	1/2	0.24	0.24
Barium (Ba)	2/2	0.86-3.1	1.98
Beryllium (Be)	1/2	0.12	0.12
Calcium (Ca)	2/2	1290-1950	1620
Chromium (Cr)	2/2	2.1-4.8	3.45
Copper (Cu)	2/2	0.67-2.9	1.79
Iron (Fe)	2/2	367-484	425.5
Lead (Pb)	2/2	5.1-27.1	16.1
Magnesium (Mg)	2/2	103-468	2 85 .5
Manganese (Mn)	2/2	2.9-7.6	5.25
Potassium (K)	2/2	26.2-138	82.1
Selenium (Se)	1/2	0.43	0.43
Sodium (Na)	2/2	229-1840	1034.5
Vanadium (V)	2/2	1.3-6.6	3.95
Zinc (Zn)	2/2	2.3-3	2.65
Pesticides and PCBs (μg/kg)			
4,4'-DUE	1/2	0.97	0.97
beta-BHC	1/2	0.89	0.89
delta-BHC	1/2	1.1	1.1
Dieldrin	1/2	0.31	0.31
Endosulfan I	2/2	0.4-1.2	0.8
Endosulfan sulfate	1/2	3.2	3.2
Endrin ketone	1/2	13	13
Endrin aldehyde	1/2	0.28	0.28
SVOCs (μg/kg)			
2-Methylnaphthalene	1/2	7100	7100
Fluorene	1/2	1300	1300
Naphthalene	1/2	1300	1300
Phenanthrene	1/2	2500	2500
VOCs (μg/kg)			
Methylene chloride	1/2	1300	1300

Note:

All results are in micrograms per kilogram (μ g/kg) or parts per billion (ppb), except for metals which are in milligrams per kilogram (mg/kg) or parts per million (ppm).

Table 10-8-2 Wetland 12 Phase IIA Sediment Concentrations Compared to Benchmark Levels

Sample Location	Farameter	Detected Concentration	Sediment Benchmark Value (SBV)	но	SBV Řeterence
OCCUPATION.	UP COME	9000	NAME OF TAXABLE PARTY.	300	E-F
-		- Sec. 1997	THE REAL PROPERTY.	O Charles	100
- Coult William		10.00	100	100	246
1 Propint Association	CARL CO.	9 40	100	Lea.	- 1
Last month		A Comment	40	4.14	44
300		2.01	170	146	14
041M120201					
2-Methylnapht	halane (UG/KG)	7160	202	A57 49	40
4,4'-DDE (UG	/KG)	0.97	2,07	5.47	- 30.
Arsunia (MG/I	(G)	024 1	7.24	0.03	a b
Chromium (M	g/kg)	4.8 4	52.3	0.09	a ta
Copper (MG/)	(G)	2.9	18.7	D 16	ab
Dieletin (US/	(G)	0.31 7	0.72	0.43	В
Endrin aldehyd	de (UG/KG)	0.28 1	3.3	I) 08	a
Fluorene (UG	(KG)	1300	21.2	61 32	b
Lead (MG/KG	()	27.1	30,2	0.90	a b.
Naphthalene	(UG/KG)	1300	34,6	37,57	· B.
Phenanthrena	(UG/KG)	2800	86 T	28,84	6
ZIRE (MG/KG)		3	124	0.02	à A

Notes:

⁽a) LISEPA Screening Concentration for Sediment - EPA SSVs (b) FDEP Sediment Quality Assessment Guidelines - FDEP SQAGs Some of the numbers in the table may vary because of founding Basewide levels (detailed in Seution 6) for DDT and its metabolites Basewide level for 4,4'-DDE is 40 ppb Basewide level for 4,4'-DDD is 50 upb Basewide level for 4,4'-DDT is 20 ppb.

Table 10-8-3
Phase IIA Detected Concentrations in Wetland 12 Surface Water

Parameter	Frequency of Detection	Range of Detected Concentrations	Average Detected Concentration
Inorganics (μg/L)			
Calcium (Ca)	1/1	23000	23000
Chromium (Cr)	1/1	8.1	8.1
Iron (Fe)	1/1	1150	1150
Lead (Pb)	1/1	1.2	1.2
Magnesium (Mg)	1/1	38400	38400
Manganese (Mn)	1/1	47.9	47.9
Potassium (K)	-1/1	24100	24100
Sodium (Na)	1/1	541000	541000
Thallium (TI)	1/1	12.2	12.2
Zinc (Zn)	1/1	7.8	7.8
SVOCs (μg/L)	WWW.		
Di-n-butylphthalate	1/1	1	

Note:

All results are in micrograms per liter (μ g/L) or parts per billion (ppb).

sediment leaching to surface water within the wetland; and surface water/sediment transport from the wetland. Because sediment transport and storm water runoff data is lacking, many evaluations are qualitative in nature. The method of evaluating leaching from sediment to surface water was presented in Section 9. Table 10-8-5 presents those contaminants present in sediment above benchmark levels and their calculated SSLs. Contaminants present in surface water above water quality criteria are presented in Table 10-8-4.

Transport into the Wetland

Surface Water/Sediment Pathway

Based on landform and watershed analysis, the following sources can contribute contamination to Wetland 12 through this pathway:

• Potential storm water runoff and sediment entrainment from Sites 32,33,35, 13, and UST sites L (two 8,000-gallon diesel tanks associated with former NADEP Building 3644), and K (a 500-gallon fuel oil tank associated with the former Building 3810), the Bilge Water Plant, and northern portions of Chevalier Field. This wetland also has a direct connection to Wetland 10, which is directly connected to Pensacola Bay and may experience back flushing during storm surges or excessively high tides.

Table 10-8-4 (1) Wetland 12 Phase IIA Surface Water Concentrations Compared to Water Quality Criteria

Sample Location	Parameter	UOM	Detected Concentration	Water Quality Criteria	НQ	Criteria Reference
041W120101	Freshwater					
Chromium		UG/L	8.1	11.0	0.73636	a b
Di-n-butylphthalal	te	UG/L	1.0	3.0	0.33333	b
Iron		UG/L	1,150.0	1,000.0	1.15	аb
Lead		UG/L	1.2	1.71	0.70175	аb
Thallium		UG/L	12.2	4.0	3.05	a
Zinc		U G/L	7.8	70.2	0.11111	a b

Notes:

 ⁽a) USEPA Water Quality Criteria (1995)
 (b) FDEP Class III Water Quality Criteria (1996)

Table 10-8-5
Calculated Sediment Screening Values for Wetland 12

Parameter	USEPA or FDEP Surface Water Standard	Kd	SSL DF = 100	Maximum Concentration Detected	Leaching Potential DF = 100
Organics (ppb)					
2 -methylnapthalene	ŇA	1.8E+02	NA	7,100	NA.
Fluorene	14,000 ^b	3.31E+02	4.69E+08	1,300	NO
Napthalene	62 ^a	4.8E+01	2.97E+05	1,300	NO
Phenanthrene	0.031 ^b	7.2E+02	2.24E+03	2,500	YES

Notes:

Kd for organics calculated using foc of. 024 (numerical average of all sediment samples).

Kds are from: USEPA, 1996b (first preference); Superfund Chemical Data Matrix (USEPA, 1996c) (second preference); Texas Risk Reduction Program Concept Document 2, Volume 1, Appendix VII, 1996 (third preference); TERRA Model, Oak Ridge National Laboratory, 1984 (fourth preference — primary reference for inorganics).

Kd = normalized partitioning coefficient.

SSL = sediment screening level.

DF = dilution factor.

a = USEPA Freshwater Surface Water Chronic Screening Value (1995a).

b = FDEP Class III Water Quality Criteria (1996).

Sediment contaminants above benchmark levels (see Table 10-8-2) validate this sediment transport pathway, and by inference surface water as well. Additionally, two inorganics were present in surface water above standards that were not detected in sediment, further validating the pathway.

Groundwater Discharge Pathway

Based on potentiometric analysis, the primary potential sources that would directly contribute contamination to Wetland 1through this pathway are the UST sites L and K. Contamination found in groundwater at these sites validates this pathway.

Transport within the Wetland

Surface Water/Sediment Migration Pathway

The configuration of the wetland, along with landform analysis, indicates that surface water and sediment transport will occur to the south into Wetland 10 and from there into Pensacola Bay.

August 31, 2000

During periods of very high tides or storm surges some back flushing of surface water will occur

within Wetland 10, and potentially affect Wetland 12. Surface water and sediment can therefore

be considered to be mobile, and the pathway valid for this wetland.

Sediment Leaching to Surface Water Pathway

Four semivolatiles exceeded their sediment benchmark values (see Table 10-8-2), but only one —

phenanthrene — exceeded its calculated SSL (see Table 10-8-5). Phenanthrene was not present

in the corresponding surface water, however, indicating a low potential for this pathway. In

surface water, iron and thallium were present above standards; these are attributable to the

surface water/groundwater discharge pathway. Because phenanthrene was detected in sediment

above its SSL, the pathway is considered valid, but the potential for that constituent to partition

to surface water is low.

Transport from the Wetland

Surface water and sediment from Wetland 12 can be expected to move into Wetland 10 and

eventually into Pensacola Bay. Therefore sediment and surface water contamination can be

expected to be mobile and not remain within the wetland.

10.8.4 Ecological Risk Assessment

HQs for Wetland 12 sediment samples are presented in Table 10-8-2. Phase IIA sediment sample

results compared to the appropriate sediment benchmark levels revealed HQs above 1 for endrin

ketone at sample location 1201 (3.94). Four PAHs had HQs above 1 at sample location 1202,

including 2-methylnaphthalene (351.49), fluorene (61.32), naphthalene (37.57), and

phenanthrene (28.84). Phase IIA surface water results revealed HQs greater than 1 for

iron (1.15), and thallium (3.05). HQs greater than one indicate a potential for excess risk.

10-8-10

August 31, 2000

Wetland 12 was not assessed during the Phase IIB/III ecological risk appraisals at Site 41. investigation.

10.8.5 Human Health Risk Assessment

10.8.5.1 Samples Included

Sediment

041M120101, 041M0120201

Surface Water

041W120101

10.8.5.2 Current and Future Land Use

Wetland 12 lies in a wooded zone north of the NATTC at NAS Pensacola, at the southern end of Magazine Point. Wetland 10 is connected to Wetland 12 to the south. The Bilge Water Plant of the waste water treatment plant is east. The Magazine Point area is posted as a restricted location that is patrolled by base police. Routine grounds maintenance activities are periodically performed to control weeds and brush. There is no recreational or fishing use of this area.

10.8.5.3 Fish Tissue COPCs

No fish tissue data were available for this wetland, and this exposure pathway would likely be incomplete; therefore, no COPCs were identified.

10.8.5.4 Sediment COPCs

As shown in Table 10-8-6, no sediment COPCs were identified.

10.8.5.5 Surface Water COPCs

As shown in Table 10-8-7, the following surface water COPC was identified:

Thallium

TABLE 10-8-6 OCCURRENCE, DISTRIBUTION, AND SELECTION OF CHEMICALS OF POTENTIAL CONCERN NAS PENSACOLA SITE 41

Scenerio Timetreme: Current and Future Medium: Soil Exposure Medium: Sediment

C N/A NO N/A NO N/A N/A NO N/A NO	N C N	1.9	6300 65.03	N/A		l		Frequency	Maximum Concentration	Units	Maximum Qualifier	Maximum Concentration	Minimum Qualifier	Minimum Concentration		CAS Number
N N/A NO C N/A NO N N/A NO	N		1 65.03		7.10	7.1000	4,10000 - 4,10000	1 / 2	041M120201	MG/KG		7.1000		7.1000	2-Methylnaphthalene	91576
C N/A NO N/A NO		` -	1 00,00	N/A	0.0010	0.0010	0.00021 - 0.00021	1 / 2	041M120201	MG/KG	1 '	0.0010		0.0010	4,4'-DDE	72559
N N/A NO		7800	320000	N/A	3070.00	1831.50	NAV	2 / 2	041M120101	MG/KG	i '	3070,0000		593.0000	Aluminum (Al)	7429905
	C	0.43	15	N/A	0.24	0.24	0.17 - 0.17	1 / 2	041M120201	MG/KG)	0.2400	J	0.2400	Arsenic (As)	7440382
ALL NIA L NIA L	N	550	22000	N/A	3.10	1.98	NAV	2 / 2	041M120201	MG/KG	J	3.1000	J	0,8600	Barium (Ba)	7440393
A I NO I	N	16	630	N/A	0.12	0.12	0.08 - 0.08	1 / 2	041M1202D1	MG/KG	J	0.1200	J	0.1200	Beryllium (Be)	7440417
C N/A NO	c l	0.35	12	N/A	0.0009	0.0009	0.00016 - 0.00016	1 / 2	041M120101	MG/KG	J	0.0009	J	0.0009	beta-BHC	319857
N/A NO	1	N/A	N/A	N/A	1950.00	1620.00	NAV	2 / 2	041M120201	MG/KG	1	1950.0000	J	1290.0000	Calcium (Ca)	7440702
I ON AVA I NO	N	23	1600	N/A	4.80	3.45	NAV	2 / 2	041M120101	MG/KG	J	4,8000		2.1000	Chromium (Cr)	7440473
N NA NO	N	310	13000	N/A	2.90	1.79	NAV	2 / 2	041M120101	MG/KG	1 '	2.9000 .	J	0.6700	Copper (Cu)	7440508
	c l		12	N/A	0.0011	0,0011	0.00016 - 0.00016	1 / 2	041M120101	MG/KG	J	0.0011	J	0.0011	delta-BHC	319868
	c l		1.4	N/A	0.0003	0.0003	0.00021 - 0.00021	1 / 2	041M120201	MG/KG	J	0.0003	J	0.0003	Dieldrin	60571
	N	47	1900	N/A	0.0012	0.0008	NAV	2 / 2	041M120101	MG/KG	ا ر ا	0.0012	J	0.0004	Endosulfan I	959988
	N		1900	N/A	0.0032	0.0032	0.00021 - 0.00021	1 / 2	041M120201	MG/KG	ارا	0.0032	J	0.0032	Endosulfan sulfate	1031078
	N		95	N/A	0.0003	0.0003	0.00021 - 0.00021	1 / 2	041M120201	MG/KG	j	0.0003	J	0.0003	Endrin aldehyde	7421934
	ΝI		95	N/A	0.0130	0.0130	0.00032 - 0.00032	1 / 2	041M120101	MG/KG	DJ	0.0130	La	0.0130	Endrin ketone	53494705
. ,	N		13000	N/A	1.30	1,3000	2.00000 - 2.00000	1 / 2	041M120201	MG/KG		1,3000		1.3000	Fluorene	86737
N/A NO	"	N/A	N/A	N/A	484.00	425.50	NAV 2.55555	2 / 2	041M120101	MG/KG	1 7	484,0000		367,0000	Iron (Fe)	7439896
1 1 1	N		400	N/A	27.10	16.10	NAV	2 / 2	041M120201	MG/KG	1 '	27.1000		5,1000	Lead (Pb)	7439921
	~	N/A	N/A	N/A	458.00	285.50	NAV	2 / 2	041M120101	MG/KG	ا ر ا	468.0000	L	103,0000	Magnesium (Mg)	7439954
N/A NO	N		15000	N/A	7,60	5.25	NAV	2 / 2	041M120201	MG/KG	, ,	7.6000		2,9000	Manganese (Mn)	7439965
	c		2900	N/A	1.30	1,3000	1.90000 - 1.90000	1 / 2	D41M120201	MG/KG	J	1,3000		1.3000	Methylene chloride	75092
1	N		13000	N/A N/A	1.30	1.3000	4.10000 - 4.10000	1 / 2	041M120201	MG/KG		1.3000	ľ	1.3000	Naphthalene	91203
						8			i .		1 '				1 .	
	N				1						1 '	ı	ı	1		
1 1411								1 1 2			1 , '			1	1 1	
	N				1	и		1 1 2		, ,	1 ' '				1 1 1	
N/A NO	1					11			ł	- 1	i '		1		, ,	
			1 1		1	R	1			1 1	1 '		,			
2 2 2	N N N N N N N N N N N N N N N N N N N	230 N/A 39 N/A 55 2300	9500 N/A 1800 N/A 2200 95000	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	2.50 138.00 0.43 1840.00 6.60 3.00	2,5000 82,10 0,43 1034,50 3,95 2,65	4.10000 - 4.10000 NAV 0.25 - 0.25 NAV NAV NAV	1 / 2 2 / 2 1 / 2 2 / 2 2 / 2	041M120201 041M120101 041M120201 041M120201 041M120101	MG/KG MG/KG MG/KG MG/KG MG/KG MG/KG	J	2,5000 138,0000 0,4300 1840,0000 6,6000 3,0000	J J J	2,5000 26,2000 0,4300 229,0000 1,3000 2,3000	Phenanthrene Potassium (K) Selenium (Se) Sodium (Na) Vanadium (V) Zinc (Zn) aximum detected concentration oncentration used as screening value values were not developed for this et trespasser scenario calculated b	2) Maximum co 3) Background 4) PRGs for sit

TABLE 10-8-7 OCCURRENCE, DISTRIBUTION, AND SELECTION OF CHEMICALS OF POTENTIAL CONCERN NAS PENSACOLA SITE 41

Scenario Timeframe: Current and Future Medium: Surface Water

Exposure Medium: Surface Water Exposure Point: Wetland 12 Surface Water

CAS Number	Chemical	(1) Minimum Concentration	Minimum Qualifier	(1) Maximum Concentration	Maximum Qualifier	Units	Location of Maximum Concentration	Detection Frequency	Range of Detection Limits	Mean	(2) Concentration Used for Screening	Background Value	(3) Adolescent Site Trespasser PRG	Tap Water RBC	Potent ARAR/ Sour	BC COPC Flag	Delection or Selection
7440702	Calcium (Ca)	23000.000	0	23000.0000	0	UG/L	041W120101	1 / 1	NAV	23000.00	23000	N/A	N/A	N/A	N/A	NO	EN
7440473	Chromium (Cr)	8.100	J	B.1000	J	UG/L	041W120101	1 / 1	NAV	8.10	8.1	N/A	360	11	N N/A	NO	BSL
84742	Di-n-butyiphthalate	1.000	J	1,0000	J	UG/L	041W120101	1 / 1	NAV	1,00	1	N/A	480	370	N N/A	NO	BSL
7439896	Iron (Fe)	1150.000	0	1150.0000	0	UG/L	041W120101	1 / 1	NAV	1150.00	1150	N/A	N/A	N/A	N/A	NO	EN
7439921	Lead (Pb)	1.200	J	1,2000	j	UG/L	041W120101	1 / 1	NAV	1.20	1,2	N/A	15	15	TTA	L NO	BSL
7439954	Magnesium (Mg)	38400.000	0	38400.0000	0	UG/L	041W120101	1 / 1	NAV	38400.00	38400	N/A	N/A	N/A	N/A	NO	EN
7439965	Manganese (Mn)	47,900	0	47.9000	0	UG/L	041W120101	1 / 1	NAV	47.90	47.9	N/A	2400	73	N N/A	NO	BSL
7440097	Potassium (K)	24100.000	0	24100.0000	0	UG/L	041W120101	1 / 1	NAV	24100.00	24100	N/A	N/A	N/A	N/A	NO	EN
7440235	Sodium (Na)	541000,000	0	541000.0000	0	UG/L	041W120101	1 / 1	NAV	541000.00	541000	N/A	N/A	N/A	N/A	NO	EN
7440280	Thallium (TI)	12.200	0	12.2000	0	UG/L	041W120101	1 / 1	NAV	12.20	12.2	N/A	8.3	0.26	N N/A	YES	ASL
7440666	Zinc (Zn)	7.800	j	7.8000	J	UG/L	041W120101	1 / 1	NAV	7.60	7.8	N/A	36000	1100	N N/A	NO	BSL

(1) Minimum/maximum detected concentration

(2) Maximum concentration used as acreening value.

(3) PRGs for adolescent sits trespasser scenario calculated using equations and parameters presented in Section 5 of this report.

(4) Tep water RBCs presented in Region III Risk-Based Concentration Tables, (USEPA, 1998).

(5) Rationale Codes

Selection Reason: Above Screening Levels (ASL)

Deletion Reason: Below Screening Levels (BSL)

Background Levels (BKG) Essential Nutrient (EN) No Toxicity Information (NTX)

Definitions: N/A = Not Applicable

NAV = Not Available

COPC = Chemical of Potential Concern

ARAR/TBC = Applicable or Releveant and Appropriate Requirement/ To Be Considered

TTAL = Treatment technique action level

J = Estimated Value

C = Carcinogenic

N = Noncarcinogenic

Section 10: Site-Specific Evaluations August 31, 2000

10.8.5.6 Risk Characterization

As shown in Table 10-8-8, thallium is the only contributor to hazard index estimates for the

surface water pathway under the adolescent trespasser scenario. The hazard index was estimated

to be 0.15. As discussed in Section 8 a COC was considered to be a constituent that contributed

to a pathway of concern that exceeded unity (one), as a result, thallium was not considered a COC.

10.8.5.7 Remedial Goal Options

No COCs were identified for Wetland 12, and as a result, no RGOs were calculated.

10.8.6 Conclusions and Recommendations

Because of the lack of ecological receptors at Wetland 12, no Phase IIB/III ecological risk

appraisal was conducted at Wetland 12.

The HHRA found no sediment COPCs at Wetland 12. Thallium was considered a surface water

COPC; however the hazard index was estimated to be 0.15, and thallium was therefore not

considered a COC. No RGOs were therefore calculated for this wetland.

A concern at Wetland 12 is the 1991 spill from the adjacent bilge-water plant, in which

petroleum-bilge water was spilled into this wetland. As documented in the September 19 and

20, 1996 Partnering Meeting Minutes, Wetland 12 is referred to the State of Florida's petroleum

program.

10-8-14

TABLE 10-8-8 RME CALCULATION OF NON-CANCER HAZARDS REASONABLE MAXIMUM EXPOSURE NAS PENSACOLA SITE 41

Scenario: Timeframe: Current and Future

Medium: Surface Water

Exposure Medium: Surface Water Exposure Point: Wetland 12 Receptor Population: Trespasser Receptor Age: Adolescent

Exposure Route Ingestion	Chemical of Potential Concern Thallium	Medium EPC Value 0.0122		Route EPC Value N/A	EPC Selected for Hazard Calculation M	Intake (Non-Cancer) 5.02E-06	Intake (Non-Cancer) Units mg/kg-day	Reference Dose 7.00E-05	Reference Dose Units mg/kg-day	Hazard Quotient 0.072
Dermal	Thallium	0.0122	MG/L		M	1.04E-06	mg/kg-day	1.40E-05	mg/kg-day	0.074
								Tota	al Hazard Index	0.15

EPC = Exposure Point Concentration

MG/L = Milligram per Liter

M = Medium-specific EPC selected for risk calculation.

Final Remedial Investigation Report NAS Pensacola Site 41 Section 10: Site-Specific Evaluations August 31, 2000

This page intentionally left blank.

10.9 WETLAND 1

10.9.1 Site Description

Wetland 1 is north of Taylor Road, near Site 1, and southeast of Site 16. It is fed by surface water

runoff from the Site 1 area. Portions of this wetland are depressions that are only saturated during

the rainy season. A drainage ditch flows from the Wetland 1 area to the northwest, which

eventually intersects with and drains into Wetland W2. This ditch is about 3 feet deep and has a

maximum width of about 20 feet.

Parsons and Pruitt identified Wetland 1 as a palustrine, forested system which is dominated by

slash pine (Pinus elliotti) (USEPA, 1991). Sediment in the wetland is variable in its TOC content,

with levels up to 15%.

The IR sites potentially affecting Wetland 1 are Sites 1 and 16. Site 1 (Sanitary Landfill) was used

from the mid-1950s until 1976 as the predominant disposal site for all solid wastes generated on

the base. Site 16 (Brush Disposal Site) has been used for disposal of brush from pruning and

tree trimming since the late 1960s (NEESA, 1983).

10.9.2 Nature and Extent

The methods for evaluating nature and extent are presented in Section 6. Figure 10-9-1 denotes

Phase IIA Wetland 1 sampling locations.

Sediment

Twenty-one metals were detected in Wetland 1 sediment samples. Six of these — cadmium

(1.2 ppm and 2 ppm at locations 0102 and 0104), chromium (57.7 ppm at location 0102),

copper (22.3 ppm and 31.8 ppm at locations 0102 and 0104), lead (87.3 ppm, 48.8 ppm, and

153 ppm at locations 0101, 0103, and 0104), mercury (0.25 ppm, 0.17 ppm, and 0.20 ppm at

locations 0102, 0103, and 0104), and zinc (294 ppm at location 0104) — exceeded sediment

10-9-1

Final Remedial Investigation Report NAS Pensacola Site 41 Section 10: Site-Specific Evaluations August 31, 2000

benchmark levels. Nine pesticides were detected in Wetland 1 sediment samples, including 4.4'-DDT and its metabolites, alpha/gamma-chlordane, dieldrin, endosulfan sulfate, endrin aldehyde, and methoxychlor. 4,4'-DDT and its metabolites were below basewide levels (described in Section 6). Dieldrin exceeded its sediment benchmark level (0.72 ppb) at locations 0001 (3.7 ppb) and 0102 (6.9 ppb). Alpha-chlordane exceeded its sediment criteria (1.7 ppb) at locations 0102 (2.7 ppb) and 0104 (6.2 ppb). Gamma-chlordane also exceeded its sediment criteria (1.7 ppb) at locations 0102 (1.9 ppb), 0103 (3.3 ppb), and 0104 (9.5 ppb). The PCB Aroclor-1260 was also detected in Wetland 1 sediment samples. Two of three Aroclor-1260 detections (110 ppb/140 ppb at locations 0103/0104, respectively) exceeded its sediment benchmark criteria (21.6 ppb). Thirteen SVOCs were detected in Wetland 1 sediment samples, including 12 high- and low-molecular weight PAHs, and one phthalate ester. Several PAHs exceeded benchmark criteria at sample location 0103: benzo(a)anthracene (420 ppb), benzo(a)pyrene (480 ppb), chrysene (530 ppb), fluoranthene (1,200 ppb), phenanthrene (420 ppb), and pyrene (930 ppb). PAHs also exceeded benchmark levels at sample location 0104, including anthracene (990 ppb), benzo(a)anthracene (3,800 ppb), benzo(a)pyrene (4,300 ppb), chrysene (4,200 ppb), fluoranthene (7,200 ppb), phenanthrene (4,000 ppb), and pyrene (6,200 ppb). Bis(2-ethylhexyl)phthalate also exceeded its benchmark level (182 ppb) at locations 0102 (260 ppb), 0103 (680 ppb), and 0104 (3,500 ppb). Two VOCs detected were 2-butanone and acetone (a common laboratory contaminant).

Table 10-9-1 shows the Wetland 1 Phase IIA sediment sample results (frequency of detection, range of detected concentrations, and average detected concentration). Table 10-9-2 compares detected concentrations at each sample location to sediment benchmark levels, and lists calculated HQs for each parameter. Only detected parameters with benchmark levels are presented in Table 10-9-2. The HQs will be further discussed in the ecological risk section (Section 10.9.4).

Table 10-9-1
Phase IIA Detected Concentrations in Wetland 1 Sediments

Parameter	Frequency of Detection	Range of Detected Concentrations	Average Detected Concentration
Inorganics (mg/kg)			
Aluminum (Al)	5/5	1510 - 27800	8052
Antimony (Sb)	2/5	0.47 - 3.1	1.79
'Arsenic (As)	4/5	0.4 - 2.5	1.4 6 [] .] h
Barium (Ba)	5/5	3.7 - 73.9	22.42
Beryllium (Be)	2/5	0.11 - 0.7 5	0.43
Cadmium (Cd)	3/5	0.53 - 2	1.24
Calcium (Ca) **	5/5	327/3/2390	10541 🛵 🔆
Chromium (Cr)	5/5	1.5 - 57.7	20.82
Cobalt:(Co)	3/5	0.4-1.8	1.06
Copper (Cu)	5/5	1.1 - 31.8	15.92
Iron (Fe)	57 5	484 - 6150	2564.8
Lead (Pb)	5/5	1.8 - 153	62.58
Magnesium (Mg)	5/5	75.9 - 621	244 18.
Manganese (Mn)	5/5	3.7 - 17.8	9.44
Mercury (Hg)	4/5	0.07 ≈ 0.25	0.17
Nickel (Ni)	4/5	0.8 - 8	5.05
Potassium (K)	4/5	28 - 309	114.55
Selenium (Se)	1/5	1.3	1.3
Sodium (Na)	3/5	33 - 204	111.33.
Vanadium (V)	5/5	2.3 - 35.3	10.98
Zinc (Zn)	5/5	2,2 - 294	93.34
Pesticides and PCBs (µg/kg)			
4,4'-DDD	4/5	3.1 - 25	10:25
4,4'-DDE	4/5	0.48 - 8.6	4.85
4,4 DDT - 1	4/5	1.17-,10	* 3437 3455
alpha-Chlordane	3/5	1.1 - 6.2	3.33
Accord 260	数据 47 2 3/5	1-12 / A72 (30 V)	

Table 10-9-1
Phase IIA Detected Concentrations in Wetland 1 Sediments

Parameter	Frequency of Detection	Range of Detected Concentrations	Average Detected Concentration
Pesticides and PCBs (µg/kg)			
Dieldrin	25 T	3.7 - 6.9	53
Endosulfan sulfate	2/5	0.45 - 1.6	1.03
Endrin aldehyde	1/5		1 /3 # 75.45
gamma-Chlordane	3/5	1.9 - 9.5	4.9
Methoxychlor	¥ 1/5	6.6	6.6
SVOCs (μg/kg)			
Anihracene	- Post	÷	990** /55.7454
Benzo(a)anthracene	2/5	420 - 3800	2110
Benzo(a)pyrene	2/5	480 - 4300	2390
Benzo(b)fluoranthene	2/5	600 - 5400	3000
Benzo(g,h,i)perylene	2/5	250 - 1900	1075
Benzo(k)fluoranthene	2/5	220 - 1700	960
bis(2-Ethylhexyl)phthalate (BEHP)	4/5	41 - 3500	1120.25
Carbazole	1/5	880	880
Chrysene	2/5	530 - 4200	2365
Fluoranthene	2/5	1200 - 7200	4200
Indeno(1,2,3-cd)pyrene	2/5	220 - 2000	1110
Phenanthrene	2/5	420 - 4000	2210
Pyrene	2/5	930 - 6200	3565
VOCs (μg/kg)			
2-Butanone (MEK)	1/5	110	110
Асетопе	1/5	250	250

Note:

All results are in micrograms per kilogram ($\mu g/kg$) or parts per billion (ppb), except for metals which are in milligrams per kilogram (mg/kg) or parts per million (ppm).

Table 10-9-2 Wetland 1 Phase IIA Sediment Concentrations Compared to Benchmark Levels

Sample Location P	arameter	Selected Concentration	Sédiment Benchmark Value (SBV)	На	SBV Reference
ALTERNATION	R 2012 14	5 (15)	F SCORE	ENG-	100
Older Dec- at	8001.2		44000	1000	-
DESCRIPTION OF	15 W.T	-	KI II KARI	1000000	1000
1940 (COMp. 1)	DECREE S		11100000		-
Company and Company				MILES NA	-
200,000		4000			m were
PM-1400 III		10.10			_
					-
200		TOO ME	y (100 <u>0</u> 0)	355	William
UA1M910401					
Arsenio (MG/KG)		2.5	7.24	0.35	a b
bis(2-Etnylhexyl)pnthal	ate (BEHP) (UG/KO		182	0.23	.0
Chromium (MG/KG)		1.5	52 3	0.03	a b
Copper (MG/KG)		J. V. F.	18.7	0.06	ab
Lead (MG/KG)		87.3	30,2	2.89	a 6
Mercury (MG/KG)		0.07 .1	6.13	0.54	36
Nickel (MG/KG)		D.A. J	15.9	0.05	ab
Tine (MG/K3)		2.2	374	0.01	aA.
April 1995					
ARREST		1000		-	LITTLE SERVICE
ALC: N		100000		100	1000
Market III		10000	41/20/00		1000
1000000		CKAR		1000	
1000000		10000		1000	
(SEE 2007)		0.000	1000000		mw.
100,700,3	4000		1000	-	UMA IN
Laboratory of the Control of the Con	2000	12/08/09	e accesso		1000
100000000000000000000000000000000000000		-100000	0.55500		100
10000			1000		22.0
		1000	116/11		
No. of Concession, Name of Street, or other Persons, Name of Street, or other Persons, Name of Street, Name of		O. K. Line		Section 1981	A 1980 A
The second of the		11102/SE-		mar.	Section 1
William Street		15	7.975		Broken C
Author			- 100	Contract of the last	10.0
Control Control		#1526w	- CHARLES	11/5	10000
- PROJECT 10					- 20

(a) USEPA Screening Concentration for Sediment - EPA SSVs

(b) FDEP Segiment Quality Assessment Guidelines - FDEP SQAGs Some of the numbers in the table may vary because of rounding Basewide levels (detailed in Section 6) for DOT and its instabolites Basewide level for 4,4'-DDE is 40 ppb. Basewide level for 4,4'-DDD is 50 ppb.

Basewide level for 4,4'-DDT is 20 ppb.

Table 10-9-2
Wetland 1
Phase IIA Sediment Concentrations Compared to Benchmark Levels

Sediment Benchmark Value Sample Detected SBV (SBV) HQ Location Parameter Concentration Reference 041M010301 1.22 4,4'-DDD (UG/KG) 5 DJ 4.10 0.48 J 2.07 4.4'-DDE (UG/KG) 0.23 1.4 J 4,4'-DDT (UG/KG) 1.19 1.18 alpha-Chlordane (UG/KG) 1.1 J 1.7 0.65 Aroclor-1260 (UG/KG) 110 DJ 21.6 5.09 Arsenic (MG/KG) 0.4 J 7.24 0.06 a b 420 J Benzo(a)anthracene (UG/KG) 74.8 5.61 480 Benzo(a)pyrene (UG/KG) 88.8 5.41 b bis(2-Ethylhexyl)phthalate (BEHP) (UG/KG) 680. J 182 3.74 Cadmium (MG/KG) 0.53 0.68 0.78 9.8 52.3 Chromium (MG/KG) 0.19 a b Chrysene (UG/KG) 530 108 4.91 18.3 18.7 Copper (MG/KG) 0.98 a b Endrin aldehyde (UG/KG) 1.5 J 3.3 0.45 1200 Fluoranthene (UG/KG) 113 10.62 b gamma-Chlordane (UG/KG) 3,3 DJ 1.7 1.94 Lead (MG/KG) 48.8 30.2 1.62 a b Mercury (MG/KG) 0.17 0.13 1.31 a b Nickel (MG/KG) 3,9 15.9 0.25 a b Phenanthrene (UG/KG) 420 J 86.7 4.84 Pyrene (UG/KG) 930 153 6.08 Þ Zinc (MG/KG) 69.1 124 0.56 041M010401 4,4'-DDD (UG/KG) 25 DJ 20.49 1.22 b 4,4'-DDE (UG/KG) 4.5 DJ 2.07 2.17 b 4,4'-DDT (UG/KG) 10 DJ 1.19 8.40 b alpha-Chlordane (UG/KG) 6.2 DJ 1.7 3.65 990 J Anthracene (UG/KG) 46.9 21.11 b Antimony (MG/KG) 0.47 J 12 0.04 а Aroclor-1260 (UG/KG) 140 DJ 21.6 6.48 b Arsenic (MG/KG) 2.5 7.24 0.35 a b Benzo(a)anthracene (UG/KG) 3800 74.8 50.80 b Benzo(a)pyrene (UG/KG) 4300 88.8 48.42 b bis(2-Ethylhexyl)phthalate (BEHP) (UG/KG) 3500 J 182 19.23 b 2 Cadmium (MG/KG) 0.68 2.94 b Chromium (MG/KG) 27.3 52.3 0.52 a b 4200 Chrysene (UG/KG) 108 38.89 b

Notes:

Basewide levels (detailed in Section 6) for DDT and its metabolites

Basewide level for 4,4'-DDE is 40 ppb.

Basewide level for 4,4'-DDD is 50 ppb.

Basewide level for 4,4'-DDT is 20 ppb.

⁽a) USEPA Screening Concentration for Sediment - EPA SSVs

⁽b) FDEP Sediment Quality Assessment Guidelines - FDEP SQAGs Some of the numbers in the table may vary because of rounding.

Table 10-9-2
Wetland 1
Phase IIA Sediment Concentrations Compared to Benchmark Levels

Sample Location	Parameter	Detected Concentration	Sediment Benchmark Value (SBV)	НQ	SBV Reference
Copper (MG/F	(G)	31.8	18.7	1.70	a b
Fluoranthene	(UG/KG)	7200	113	63.72	b
gamma-Chloro	lane (UG/KG)	9.5 DJ	1.7	5.59	а
Lead (MG/KG)	153	30.2	5.07	a b
Mercury (MG/	KG)	0.2	0.13	1.54	аb
Nickel (MG/K	G)	7.5	15.9	0.47	аb
Phenanthrene	(UG/KG)	4000	86.7	46.14	b
Pyrene (UG/K	(G)	6200	153	40.52	b
Zinc (MG/KG)	•	294	124	2. 3 7	аb

Notes

⁽a) USEPA Screening Concentration for Sediment - EPA SSVs

⁽b) FDEP Sediment Quality Assessment Guidelines - FDEP SQAGs Some of the numbers in the table may vary because of rounding. Basewide levels (detailed in Section 6) for DDT and its metabolites Basewide level for 4,4'-DDE is 40 ppb. Basewide level for 4,4'-DDD is 50 ppb. Basewide level for 4,4'-DDT is 20 ppb.

Surface Water

Fourteen metals were detected in Wetland 1 surface water samples. Aluminum (2,120 ppb), chromium (13.5 ppb), iron (3,540 ppb), and lead (6 ppb) exceeded their water quality criteria at location 1W01. No pesticides, PCBs, or SVOCs were detected in Wetland 1 surface water. The only VOC detected was 2-butanone. No surface water quality criteria exists for 2-butanone.

Table 10-9-3 shows the Wetland 1 Phase IIA surface water sample results (frequency of detection, range of detected concentrations, and average detected concentration). Table 10-9-4 compares detected concentrations at each sample location to surface water quality criteria and lists calculated HQs for each parameter. Only parameters with water quality criteria are presented in Table 10-9-4. The HQs will be further discussed ecological risk section (Section 10.9.4).

Table 10-9-3
Phase IIA Detected Concentrations in Wetland 1 Surface Water

Parameter	Frequency of Detection	Range of Detected Concentrations	Average Detected Concentration
Inorganics (μg/L)			
Altiminum (Al)	1/2	2120	2120
Arsenic (As)	1/2	3.4	3.4
Barium (Ba)	an, r uma z j 2/2 i ji u	10.8 - 32.1	21:45
Calcium (Ca)	2/2	11700 - 30700	21200
Chromium (Cr)			13.5
Copper (Cu)	1/2	7.5	7.5
Iron (Fe)	2/2	302 - 3540	1921
Lead (Pb)	1/2	6	6
Magnesium (Mg)	. 2/2	2140 - 2560	2350
Manganese (Mn)	2/2	17.4-143	80.2
Potassium (K)	2/2	1040 - 2300	1670
Inorganics (µg/L)			
Sodium (Na)	2/2	5510 - 7370	6440
Vanadium (V)	1/2	10.2	10.2
Zinc (Zn)	* 2/2·	19,3 - 39,7	29.5
VOCs (μg/L)			
2-Butanone (MEK)	1/2-	e constant 2	2 2 2

Note:

All results are in micrograms per liter $(\mu g/L)$ or parts per billion (ppb).

Table 10-9-4 (1) Wetland 1 Phase IIA Surface Water Concentrations Compared to Water Quality Criteria

Notes:

USEPA Water Quality Criteria (1995)
 FDEP Class III Water Quality Criteria (1996)
 Some of the numbers in the table may very because of rounding.

10.9.3 Fate and Transport

Pathways evaluated for wetland-specific fate and transport correlate with those identified in the conceptual model presented in Section 9: surface water/sediment transport into the wetland; groundwater discharge into the wetland; sediment/surface water transport within the wetland; sediment leaching to surface water within the wetland; and surface water/sediment transport from the wetland. Because sediment transport and storm water runoff data are lacking, the evaluation is qualitative in nature. The method of evaluating leaching from sediment to surface water was presented in Section 9. Table 10-9-5 presents those contaminants present in sediment above benchmark levels and their calculated SSLs. Detected contaminants present in surface water above water quality criteria are presented in Table 10-9-4.

Transport into the Wetland

Surface Water/Sediment Pathway

Based on landform and watershed analysis, the following sources can contribute contamination to Wetland 1 through this pathway:

• Potential storm water runoff and sediment entrainment from Sites 1 and 16. Wetland 1 also has a direct connection with Wetland W2, which can be tidally influenced.

Table 10-9-5
Calculated Sediment Screening Values for Wetland 1

Parameter	USEPA or FDEP Surface Water Standard	Kd	SSL DF = 100	Maximum Concentration Detected	Leaching Potential DF = 100
Inorganics	(ppb)		(ррт)	(ppm)	
Cadmium	0.774 ^{n. b}	7. 5E +01	5.82	2	NO:
Chromium	11 *. 5	1.9E+01	21.04	57.7	YES
Coppers	7,8	4.3E+02	335,5	31;8	NO⊯ :
Lead	1.71 * . b	9E+02	153.9	153	NO
Mercury #	€;	## 5.2E +01. · ;	· 0,063	A 2 1023 x 15	T. YESTE
Zinc	70.2 a, b	6.2E+01	436.17	294	NO

Table 10-9-5
Calculated Sediment Screening Values for Wetland 1

Parameter	USEPA or FDEP Surface Water Standard	Kd	SSL DF = 100	Maximum Concentration Detected	Leaching Potential DF = 100
Organics	(ppb)		(ppb)	(ppb)	
4,4'-DDE	10.5	2.41E+05	2.53E+08	8,6	NO
4,4'-DDD	0.0064 *	5.4E+04	3.46E+02	25	NO
4,4'-DDT	0.001 a b	1.42E+05	1.42E+04	10	NO
Dieldrin	0.0019 a, b	1.16E+03	220.15	6.9	NO
Anthracene	110,000 b	1.59E+03	1.75E+10	990	NO
Total PCBs*	0.014 a, b	1.67E+04	2.34E+04	140	NO
Benzo(a)anthracene	0.031 b	2.15E+04	6.65E+04	3,800	NO
Benzo(a)pyrene	0.031 b	5.52E+04	1.71E+05	4,300	NO
Chlordane (alpha and gamma)	0.004 ^{a, b}	6.48E+3	2.59E+03	6.2	NO
Chrysene	0.031 b	2.15E+04	6.65E+04	4,200	NO
Fluoranthene	39.8	5.78E+03	2.3E+04	7,200	NO
Phenanthrene	0.031 6	1.63E+03	5053	4,000	NO
Pyrene	11,000 b	5.65E+03	6.22E+09	6,2000	NO
Bis(2-ethylhexyl)phthalate	0.3 ª	8.16E+05	2.45E+08	3,500	NO

Notes:

Kd for organics calculated using foc of 0.054 (numerical average of all sediment samples).

Kds are from: USEPA, 1996b (first preference); Superfund Chemical Data Matrix(USEPA, 1996c) (second preference); Texas Risk Reduction Program Concept Document 2, Volume 1, Appendix VII, 1996 (third preference); TERRA Model, Oak Ridge National Laboratory, 1984 (fourth preference — primary reference for inorganics).

based on Aroclor-1260.

Kd = normalized partitioning coefficient.

SSL = sediment screening level.

DF = dilution factor.

USEPA Freshwater Surface Water Chronic Screening Value (1995a).

b = FDEP Class III Water Quality Criteria (1996).

The presence of sediment contaminants above benchmark screening levels (see Table 10-9-5) validates the sediment transport pathway and by inference the surface water pathway. Additionally, there were three inorganics present in surface water above water quality criteria, further validating the pathway.

NAS Pensacola Site 41

Section 10: Site-Specific Evaluations

August 31, 2000

Groundwater Discharge Pathway

Based on potentiometric analysis, the primary potential sources that would directly contribute

contamination to Wetland 1 through this pathway are Sites 1 and 16, and potentially further

upgradient Sites 7, 17, and UST 26 (a jet fuel tank of unknown size/quantity). Groundwater at

Site 1 has been shown to be contaminated, therefore the pathway is considered valid.

Transport within the Wetland

Surface Water/Sediment Migration Pathway

The configuration of the wetland, along with landform analysis, indicates that the surface water

and sediment transport will occur to the west to Wetland W2, and from there to Bayou Redoubt.

During periods of very high tides or storm surges some back flushing of surface water will occur

within Wetland W2, and potentially affect Wetland 1. Surface water and sediment can therefore

be considered to be mobile, and the pathway valid for this wetland.

Sediment Leaching to Surface Water Pathway

Six organics — four pesticides, PCBs, and eight semivolatiles — and thirteen inorganics exceeded

their benchmark screening level (see Table 10-9-5), but only two — chromium and mercury —

exceeded its calculated SSL (see Table 10-9-5). Mercury was not present in the corresponding

surface water samples, however, indicating a low potential for this pathway for this constituent.

Chromium was present in the corresponding surface water, suggesting a high potential for this

pathway with respect to this parameter. In surface water, aluminum, chromium, copper, lead, and

iron were present above water quality criteria; these are attributable to the

surface water/groundwater discharge pathway. Because mercury and chromium were detected in

sediment above their SSLs, the pathway is considered valid, and the presence of chromium above

standards in surface water suggests the pathway may also be significant.

10-9-14

Transport from the Wetland

Transport of surface water and sediment from Wetland 1 can be expected to occur towards the west into Wetland W2 and eventually into Bayou Redoubt. Therefore sediment and surface water contamination can be expected to be mobile and not remain within the wetland.

10.9.4 Ecological Risk Assessment

HOs for Wetland 1 sediment samples are presented in Table 10-9-2. Phase IIA sediment sample results compared to the appropriate sediment benchmark levels revealed HQs above 1 for cadmium (1.76 and 2.94 at locations 0102 and 0104), chromium (1.10 at location 0102), copper (1.19 and 1.70 at locations 0102 and 0104), lead (2.89, 1.62, and 5.07 at locations 0101, 0103, and 0104), mercury (1.92, 1.31, and 1.54 at locations 0102, 0103, and 0104), and zinc (2.37 at location 0104), 4,4'-DDD, 4,4'-DDE, and 4,4'-DDT had HOs greater than 1 at location 0001 (2.54, 2.80, and 1.01), and location 0104 (20.49, 2.17, and 8.40). 4,4'-DDD, and 4.4'-DDE had HOs greater than 1 at location 0102 (6.48 and 4.15), while 4.4'-DDD and DDT had HQs above 1 at location 0103 (4.10 and 1.18). As noted in the Nature and Extent discussion. the concentrations of 4,4'-DDT and its metabolites were below basewide levels. Dieldrin had a HQ greater than 1 at locations 0001 (5.14) and 0102 (9.58). Alpha-chlordane had a HQ greater than 1 at locations 0102 (1.59) and 0104 (3.65). The HQ for gamma-chlordane was above 1 at locations 0102 (1.12), 0103 (1.94), and 0104 (5.59). Two of three Aroclor-1260 detections (5.09/6.48 at locations 0103/0104, respectively) had HQs above 1. Several PAHs had HQs greater than 1 at sample location 0103: benzo(a)anthracene (5.61), benzo(a)pyrene (5.41), chrysene (4.91), fluoranthene (10.62), phenanthrene (4.84), and pyrene (6.08). HQs were also greater than 1 for PAHs at sample location 0104, including anthracene (21.1), benzo(a)anthracene (50.80), benzo(a)pyrene (48.42), chrysene (38.89), fluoranthene (63.72), phenanthrene (46.14), and pyrene (40.52). Bis(2-ethylhexyl)phthalate also had a HQ above 1 at locations 0102 (1.43), 0103 (3.74), and 0104 (19.23). Phase IIA surface water results revealed HOs greater than 1 for aluminum (24.37), chromium (1.23), iron (3.54), and lead (3.51). HQs greater than 1 indicate a potential for excess risk.

August 31, 2000

Wetland 1 was classified in Group D (all wetlands in this group appear as man-made drainage

ditches and have limited ecological receptors) and was not studied further in Phase IIB/III.

Color-codes, groupings and rationale for classification are described in Section 7.

10.9.5 Human Health Risk Assessment

10.9.5.1 Samples Included

Sediment

001M000101, 041M010101, 041M010201, 041M010301, 041M010401

Surface Water

001W000101, 041W010301

10.9.5.2 Current and Future Land Use

Wetland 1 is within the Site 1 landfill area, and is cordoned off from the public. Access roads are

restricted by locked gates, and signs warn trespassers away from the area. Though a nature trail

does traverse the northern part of Site 1, a thickly wooded zone would have to be crossed to access

the Wetland 1 area. Future land use of Site 1 is speculative, and may include expansion of the

A.C. Read Golf Course or the cemetery near Wetland 1. However, in accordance with the

Land Use Control Agreement, intrusive activities are not permitted in Site 1 without approval from

the NAS Pensacola Environmental Office (EnSafe, 1998).

10.9.5.3 Fish Tissue COPCs

No fish tissue data were available for this wetland, and this exposure pathway would likely be

incomplete; therefore, no COPCs were identified.

10.9.5.4 Sediment COPCs

As shown in Table 10-9-6, the following sediment COPC was identified:

Benzo(a)pyrene

10-9-16

10.9.5.5 Surface Water COPCs

As shown in Table 10-9-7, no surface water COPCs were identified:

10.9.5.6 Risk Characterization

Exposure Point Concentrations

The risk associated with exposure to benzo(a)pyrene concentrations in sediment was evaluated by calculating the benzo(a)pyrene equivalent concentration using TEFs provided by USEPA Region 4 (see Section 8 of this report). The exposure point concentration used to evaluate risk for Wetland 1 sediment was calculated by adding all of the TEF adjusted maximum reported concentrations for the seven carcinogenic PAHs (benzo(a)pyrene, benzo(a)anthracene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene, dibenz(a,h)anthracene, and indeno(1,2,3-cd)pyrene). The sediment sample reporting the maximum carcinogenic PAHs was 041M010401. The resulting EPC was calculated to be 5.99 mg/kg for benzo(a)pyrene equivalents.

Adolescent Trespasser

As shown in Table 10-9-8, benzo(a)pyrene equivalents were the only contributor to risk estimates for the sediment pathways under the adolescent trespasser scenario. The cumulative risk estimated for this wetland is 2.1E-6. As a result, benzo(a)pyrene equivalents were identified as COCs for sediment based on contribution to the cumulative risk estimate for this wetland.

10.9.5.7 Remedial Goal Options

RGOs were developed in accordance with USEPA Region IV Supplemental Guidance to RAGS Bulletin 5, Remedial Options (USEPA, 1996a). Benzo(a)pyrene equivalents were identified as COCs for sediment at Wetland 1. Because benzo(a)pyrene equivalents were identified as COCs for sediment based on cancer risk estimates, only risk based RGOs were developed.

TABLE 10-9-6 OCCURRENCE, DISTRIBUTION, AND SELECTION OF CHEMICALS OF POTENTIAL CONCERN NAS PENSACOLA SITE 41

_			_	7											-			
CAS Number	Chemical	(1) Minimum Concentration	Minimum Qualifier	Maximum Concentration	Maximum Qualifier	Units	Location of Maximum Concentration	Detection Frequency	Range of Detection Limits	Mean	Concentration Used for Screening	(3) Background Value	(4) Adolescent Sits Tresposser PRG	(5) Residential Soil RBC		Potential ARAR/TBC Source	COPC Flag	(6) Retionale for Conternitant Delection or Selection
	2-Butanone (MEK)	0.1100	J	0.1100	J	MG/KG	041M010201	1 / 5	0.013 - 0.020	0.110	0.11	N/A	190000		NT	N/A	NO	BSL
T2548	4,4'-DDD	0.0031	J	0.0250	DJ	MC/KG	041M010101	4 / 5	0.00023 - 0.00023	0.010	0.03	N/A	92		c	N/A	NO.	BSL
	4,4'-DDE	0.0005	ر	0.0086	J	MG/KG	041M010201	4 / 5	0.00023 - 0.00023	0.005	0.01	N/A	65	1.9	C	N/A	NO	BSL
	4,4'-DDT	0.0011	J	0.0100	J	MG/KG	041M010401	4 / 5	0.00023 - 0.00023	0.003	0.01	N/A	65	1.9	c	N/A	NO	BSL
67641	Aceione	0.2500		0.2500		MG/KG	D41M010201	1 / 5	0.014 - 0.072	0.250	0.25	N/A	320000		N	N/A	NO	BSL
120127	Anthracene	0.9900	J	0.9900		MG/KG	D41M010401	1 / 5	0.045 - 0.640	0.990	0.90	N/A	95000	2300	N	N/A	NO	BSL
7440360	Antimony (Sb)	0.4700	J	3.1000		MG/KG	041M010101	2 / 5	0.14 - 12.90	1.79	3.10	N/A	130	3,1	N	N/A	NO	BŞL
11096825	Aroclor-1260	0.0077		0.1400		MG/KG	D41M010401	3 / 5	0.002 - 0.064	0.086	0.14	N/A	11	0.32	c	N/A	NO	BŞL
7440382	Arsenic (As)	0,4000		2.5000		MG/KG	041M010301	4 / 5	1.20 - 1.20	1.46	2.50	N/A	15	0,43	c	N/A	NO	BSL
9 1	Benzo(a)anthracene	0.4200	J.	3.8000		MG/KG	041M010301	2 / 5	0.045 - 0.640	2.110	3.80	N/A	30	0.88	cl	N/A	NO :	8şL
	Benzo(a)pyrene	0.4800		4.3000		MG/KG	D41M010301	2 / 5	0.045 - 0.640	2.390	4.30	N/A	3	0.088	c	N/A	YES	ASL
H 3	Benzo(b)fluoranthene	0.6000	J	5.4000	ום	MG/KG	041M010301	2 / 5	0.045 - 0.640	3.000	5.40	N/A	30	0.88	c	N/A	NO	BSL
	Benzo(g,h,i)perylene	0.2500		1.9000		MG/KG	041M010301	2 / 5	0.045 - 0.640	1.075	1.90	N/A	300000	230	N	N/A	NO	BSL
207089	Benzo(k)fluoranthene	0.2200	J	1.7000	ום	MG/KG	041M010301	2 / 5	0.045 - 0.640	0.960	1.70	N/A	300	8.8	c	N/A	NO	BSL
	Beryllium (Ba)	0.1100	J	0.7500	רם	MG/KG	041M010401	2 / 5	0.07 - 0.47	0.43	0.75	N/A	630	16	c	N/A	NO	BSL
7440439	Cadmium (Cd)	0.5300	J	2.0000		MG/KG	041M010201	3 / 5	0.15 - 1.50	1.24	2.00	N/A	320	7.8	N	N/A	NO	BSL
85745	Carbazole	0.8800	ا ا	0.8800	J	MG/KG	D41M010401	1 / 5	0.450 - 4,200	0.880	0.88	N/A	1100	3.2	c	N/A	NO	BSL
218019	Chrysene	0.5300	}	4.2000		MG/KG	041M010401	2 / 5	0.045 - 0.640	2.365	4.20	N/A	3000	88	c	N/A	NO	BSL
7440484	Cobell (Co)	0.4000	J	1.8000	J	MG/KG	041M010301	3 / 5	0,15 - 1.80	1.08	1.80	N/A	19000	470	N	N/A	NO	BSL
60571	Dieldrin	0.0037	1	0.0069	ום	MG/KG	041M010301	2 / 5	0.00021 - 0.00027	0.005	0.01	N/A	1.4	0.04	c	N/A	NO	BSL
1031070	Endosulfan sulfate	0.0005	J	0.0016	נם	MG/KG	041M010101	2 / 5	0.00023 - 0.0064	0.001	0.0018	N/A	1900	47	N	N/A	NO	BSL
7421934	Endrin aldehyde	0.0015	J	0.0015	J	MG/KG	041M010201	1 / 5	0.00023 - 0.0064	0.002	0.0015	N/A	95	2.3	N	N/A	NO	BSL
208440	Fluoranthene	1.2000	J	7.2000		MG/KG	041M010401	2 / 5	0.045 - 0.640	4.200	7.20	N/A	13000	310	N	N/A	NO	BSL
193395	Indeno(1,2,3-cd)pyrene	0.2200	J	2.0000		MG/KG	041M010301	2 / 5	0.045 - 0,640	1.110	2.00	N/A	30	0.58	c	N/A	NO	8SL
7440020	Nickel (NI)	0.8000	J	8.0000	J	MG/KG	041M010201	4 / 5	17.10 - 17.10	0.17	8.00	N/A	6300	160	N	N/A	NO	BSL
85018	Phenanthrene	0.4200	J	4.0000		MG/KG	D41M010301	2 / 5	0.045 - 0.640	0.007	4,00	N/A	9500	230	N	N/A	NO	BSL
7440097	Polassium (K)	28.0000	J	309.0000		MG/KG	041M010301	4 / 5	1090.00 - 1090.00	5.05	309.00	N/A	N/A	N/A		N/A	NO	EN
129000	Pyrene	0.9300		8.2000		MG/KG	041M010301	2 / 5	0.045 - 0.640	2.210	6.20	N/A	9500	230	N	N/A	NO	BSL
7782492	Selenium (Sa)	1,3000	١	1.3000	J	MG/KG	041M010101	1 / 5	0.27 - 1.70	114.55	1.30	N/A	1600	39	N	N/A	NO	BSL
7440235	Sodium (Na)	33.0000	}	204,0000		MG/KG	041M010401	3 / 5	15.00 - 17.50	3565.00	204.00	N/A	N/A	N/A		N/A	NO	EN
5103719	alpha-Chiordane	0.0011	1	0.0062		MG/KG	041M010301	3 / 5	0.00011 ~ 0.003	0.001	0.01	N/A	63	1.8	N	N/A	NO	BSL
117817	bis(Z-Ethythoxyl)phthalate (8EHP)	0.0410	J	3.5000		MG/KG	D41M010101	4 / 5	0.640 - 0.640	0.111	3.50	N/A	1600	46	С	N/A	NO	BSL
5103742	gamma-Chiordane	1.9000	j	9.5000	ı	MG/KG	041M010301	3 / 5	0.00011 - 0.003	0.003	9,50	N/A	63	1.8	c	N/A	NO	BSL
7429905	Aluminum (Al)	1510.0000	J	27800.0000	١	MG/KG	041M010101	5 / 5	NAV	8052.00	27800.00	N/A	320000	7800	N	N/A	NO	BSL
7440393	Banum (Ba)	3.7000	J	73.9000		MG/KG	041M010101	5 / 5	NAV	22.42	73.90	N/A	22000	550	N	N/A	NO	BSL
7440702	Calcium (Ca)	327.0000	J	2390.0000	J	MG/KG	D41M010401	5 / 5	NAV	1054.00	2390.00	N/A	N/A	N/A		N/A	NO	EN
7440473	Chromium (Cr)	1,5000		57.7000		MG/KG	041M010201	5 / 5	NAV	20.82	57.70	N/A	1690	23	N	N/A	NO	BSL
7440508	Copper (Cu)	1.1000	J	31.8000		MG/KG	041M010401	5 / 5	NAV	15.92	31.80	N/A	13000		N	N/A	NO	BSL
7439898	Iron (Fe)	484.0000		6150.0000		MG/KG	041M010401	5 / 5	NAV	2584.80	8150.00	N/A	N/A	N/A	- 1	N/A	NO	EN
7439921	Lead (Pb)	1.8000		153.0000		MG/KG	041M010401	5 / 5	NAV	62.58	153.00	N/A	400	400	N	OSWER	NO	BSL
	Magnesium (Mg)	75.9000	J	521.0000	J	MG/KG	041M010301	5 / 5	NAV	244.18	621.00	N/A	N/A	N/A	- 1	N/A	NO	EN
	Manganese (Mn)	3.7000		17.8000		MG/KG	001M000101	5 / 5	NAV .	9.44	17.60	N/A	15000		N	N/A	NO	BSL
7440522	Vanadium (V)	2,3000	١	35.3000		MG/KG	001M000101	5 / 5	NAV	10.98	35.30	N/A	2200	55	N	N/A	NO	BSL
7440666	Zinc (Zn)	2.2000		294.0000		MG/KG	001M000101	5 / 5	NAV	93.34	294.00	N/A	95000		N	N/A	NO	BSL

NIA = Not Applicable NAV = Not Areilable

NAV = Not Avasables
COPC = Chemical of Potantial Concern

ARAR/TBC = Applicable or Relevant and Appropriate Requirement/ To Be Considered
OSIMER = Office of Solid Wests and Emergency Response

J = Estimated Value
C = Carcinogenic

⁽¹⁾ Minimum/maximum detected concentration
(2) Maximum concentration used as accessing value.
(3) Background values serie not developed for this mode.
(4) PROs for side threspecses construct calculated based on equations and parameters presented in Section 8 of the report.
(5) Residential and RSCs presented in Region III Risk-Based Concentration Tables, (USEPA, 1998).
(8) Rationals Codes

Salection Reason: Below Screening Levisis (ASL)

Defetion Reason: Below Screening Levisis (ASL)

No Toziari Information (NTX)

Essential Nutrient (EN)

TALL 10-9-7 OCCURRENCE, DISTRIBUTION, AND SELECTION OF CHEMICALS OF POTENTIAL CONCERN NAS PENSACOLA SITE 41

Scenario Timeframe: Current and Future

Medium: Surface Water Exposure Medium: Surface Water Exposure Point: Wetland 1 Surface Water

		(1)		(1)						1	(2)		(3)	(4)			(5)
CAS Number	Chemical	Minimum Concentration	Minimum Qualifier	Maximum Concentration	Maximum Qualifier	Units	Location of Maximum Concentration	Detection Frequency	Range of Detection Limit	Mean	Concentration Used for Screening	Background Value	Adolescent Site Trespasser PRG	Tap Water RBC	Potential ARAR/TBC Source	COPC Flag	Rationale for Contaminant Delection or Selection
78933	2-Butanone (MEK)	2.000	J	2.0000		UG/L	041W010301	1 / 2	NAV	2.00	2	N/A	110000	190 N	N/A	NO	BSL
7429905	Aluminum (Al)	2120.000	0	2120.0000		UGAL	001W000101	1 / 2	NAV	2120.00	2120	N/A	120000	3700 N	N/A	NO	BSL
7440382	Arsenic (As)	3.400	0	3.4000		UG/L	001W000101	1 / 2	NAV	3.40	3.4	N/A	5.6	0.045 C	N/A	NO	BSL
7440393	Barium (Ba)	10.800	J	32.1000		UGAL	001W000101	2 / 2	NAV	21.45	32.1	N/A	8300	260 N	N/A	NO	BSL
7440702	Calcium (Ca)	11700.000		30700.0000		UGAL	041W010301	2 / 2	NAV	21200.00	30700	N/A	N/A	N/A	N/A	NO	EN
7440473	Chromium (Cr)	13.500		13.5000		UG/L	001W000101	1 / 2	NAV	13.50	13.5	N/A	360	11 N	N/A	NO	BSL
7440508	Copper (Cu)	7.500		7.5000		UG/L	001W000101	1 / 2	NAV	7.50	7.5	N/A	4800	150 N	N/A	NO	BSL
7439896	Iron (Fe)	302.000		3540,0000		UG/L	001W000101	2 / 2	NAV	1921.00	3540	N/A	N/A	N/A	N/A	NO	EN
7439921	Lead (Pb)	6.000	J	6.0000		UGAL	001W000101	1 / 2	NAV	6.00	6	N/A	15	15	TTAL	NO	BSL
7439954	Magnesium (Mg)	2140.000	0	2560,0000	J	UGAL	041W010301	2 / 2	NAV	2350.00	2560	N/A	N/A	N/A	N/A	NO	EN
7439965	Manganese (Mn)	17.400	0	143.0000	1	UG/L	001W000101	2 / 2	NAV	80,20	143	N/A	2400	73 N	N/A	NO	BSL
7440097	Potassium (K)	1040.000	0	2300.0000	J	UG/L	041W010301	2 / 2	NAV	1670.00	2300	N/A	N/A	N/A	N/A	NO	EN
7440235	Sodium (Na)	5510.000	0	7370.0000		UG/L	041W010301	2 / 2	NAV	6440.00	7370	N/A	N/A	N/A	N/A	NO	EN
7440622	Vanadium (V)	10.200		10.2000	ļ	UG/L	0010000101	1 / 2	NAV	10.20	10.2	N/A	830	26 N	N/A	NO	BSL
7440666	Zinc (Zn)	19.300	J	39.7000		UG/L	001W000101	2 / 2	NAV	29.50	39.7	N/A	36000	1100 N	N/A	NO	BSL

(1) Minimum/maximum detected concentration

(2) Maximum concentration used as screening value.

(3) PRGs for adolescent site trespasser scenario calculated using equations and parameters presented in Section 8 of this report.

(4) Tap water RBCs presented in Region III Risk-Based Concentration Tables, (USEPA, 1998).

(5) Rationals Codes

Selection Reason: Above Screening Levels (ASL)

Deletion Reason: Below Screening Levels (BSL) Background Levels (BKG)

Essential Nutrient (EN) No Toxicity Information (NTX)

Definitions: N/A = Not Applicable

NAV = Not Available

COPC = Chemical of Potential Concern

ARAR/TBC = Applicable or Relevant and Appropriate Requirement/ To Be Considered

TTAL = Treatment technique ection level

J = Estimated Value

C = Carcinogenic

N = Noncarcinogenic

TABLE 10-9-8 CALCULATION OF CANCER RISKS REASONABLE MAXIMUM EXPOSURE NAS PENSACOLA SITE 41

Scenario: Timeframe: Current Medium: Sediment

Exposure Medium: Sediment Exposure Point: Wetland 1 Receptor Population: Trespasser Receptor Age: Adolescent

	Exposure Route	Chemical of Potential Concern	Medium EPC Value	Medium EPC Units	Route EPC Value	EPC Selected for Hazard Calculation	Intake (Cancer)	Intake (Cancer) Units	Cancer Slope Factor	Slope Factor Units	Cancer Risk
Dermal Benzo(a)pyrene equivalents 5.99 MG/KG N/A M 1.11E-08 mg/kg-day 14.6 (mg/kg-day) ⁻¹ 1.62E-	Ingestion	Benzo(a)pyrene equivalents	5.99	MG/KG	N/A	М	2.71E-07	mg/kg-day	7.3	(mg/kg-day) ⁻¹	1.98E-06
	Dermal	Benzo(a)pyrene equivalents	5.99	MG/KG	N/A	М	1.11E-08	mg/kg-day	14.6	(mg/kg-day) ⁻¹	1.62E-07

Total Risk All Exposure Routes/Pathways 2.14E-06

EPC = Exposure Point Concentration

MG/KG = Milligram per Kilogram

M = Medium-specific EPC selected for risk calculation.

10.10 WETLAND 15

10.10.1 Site Description

Wetland 15 is on the shore of Bayou Grande, between Wetland 4D and the NAS Pensacola picnic grounds. This wetland is bordered by the A.C. Read golf course to the south, east, and west.

Parsons and Pruitt (USEPA, 1991) described this area as an estuarine emergent system, predominantly containing black needlerush (*Juncus roemerianus*). The vegetation surrounding Wetland 15 includes shrubs such as wax myrtle (*Myrica cerifera*). Surface water runoff from the golf course discharges from Wetland 15 into Bayou Grande through a drainage channel about 3 feet wide. The wetland is tidally influenced from Bayou Grande through the same channel. The open water portion of the wetland ranges from one to about three feet in depth and has a maximum width of about 150 feet. Sediment in the wetland is highly organic, with TOC detected at up to 40%.

The IR site potentially affecting Wetland 15 is Site 1. Site 1 (Sanitary Landfill) was used from the mid-1950s until 1976 as the predominant disposal site for all solid wastes generated on the base (NEESA, 1983). Although located at the northernmost tip of Site 1, watershed analysis performed at NAS Pensacola using GPS data revealed that this wetland is not suspected of being impacted by this site.

10.10.2 Nature and Extent

The methods for evaluating nature and extent are presented in Section 6. Figure 10-10-1 denotes Phase IIA Wetland 15 sampling locations.

Final Remedial Investigation Report NAS Pensacola Site 41 Section 10: Site-Specific Evaluations August 31, 2000

Sediment

Nineteen metals were detected in Wetland 15 sediment samples. Three metals, including arsenic (15.2 ppm and 141 ppm at locations 1502 and 1503), copper (20.2 ppm and 18.9 ppm at locations 1502 and 1503), and lead (39.7 ppm, 211 ppm, and 174 ppm at locations 1501, 1502, and 1503) exceeded sediment benchmark levels at Wetland 15. Eleven pesticides were detected in Wetland 15 sediment samples, including 4,4'-DDT and its metabolites, beta/delta-BHC, endosulfan I, endrin, endrin aldehyde, endrin ketone, heptachlor, and alpha-chlordane. 4,4'-DDD/DDE, each exceeded basewide levels and sediment benchmark values at locations 1501 (85 ppb/340 ppb), 1502 (62 ppb/110 ppb), and 1503 (200 ppb/69 ppb). Basewide levels are discussed in Section 6. 4,4'-DDD/DDE exceeded sediment benchmark values but were below basewide levels at location 1504 (1.3 ppb/10 ppb). 4,4'-DDT exceeded sediment benckmark values but was below basewide levels at locations 1501 (9.9 ppb), 1502 (4.3 ppb), and 1503 (16 ppb). Endrin exceeded its sediment screening level (3.3 ppb) at location 1502 (16 ppb). Endrin aldehyde exceeded its sediment screening level (3.3 ppb) at location 1501 (7.3 ppb). The PCB Aroclor-1260 was also detected, exceeding the sediment screening level (21.6 ppb) at locations 1502 (24 ppb) and 1503 (32 ppb). Eleven SVOCs were detected in Wetland 15 sediment samples. Two PAHs exceeded sediment benchmark levels, including fluoranthene (200 ppb, 240 ppb, and 190 ppb at locations 1501, 1502, and 1503) and pyrene (210 ppb and 180 ppb at locations 1502 and 1503). Bis(2-ethylhexyl)phthalate was detected above its screening level (182 ppb) at locations 1501 (230 ppb), 1502 (490 ppb), and 1504 (220 ppb). Three VOCs, including 2-butanone, acetone, and methylene chloride were also detected in Wetland 15 sediments but were below sediment benckmark values. Acetone and methylene chloride are common laboratory contaminants.

Table 10-10-1 shows the Wetland 15 Phase IIA sediment sample results (frequency of detection, range of detected concentrations, and average detected concentration). Table 10-10-2 compares detected concentrations at each sample location to sediment benchmark levels, and lists calculated HQs for each parameter. The HQs will be further discussed in the ecological risk section (Section 10.13.4). Only the parameters with benchmark levels are presented in Table 10-13-2.

Table 10-10-1
Phase IIA Detected Concentrations in Wetland 15 Sediments

Parameter	Frequency of Detection	Range of Detected Concentrations	Average Detected Concentration
Inorganics (mg/kg)			
Aluminum (Al)	4/4	7810 - 15800	10235
Antimony (Sb)	1/4	6	6
Arsenic (As)	4/4	2.5 = 141	40.88
Barium (Ba)	4/4	6.2 - 40.9	25.9
Beryllium (Be)	1/4	0.34	0.34
Calcium (Ca)	4/4	3010 - 11300	7205
Chromium (Cr)	4/4	14.3 - 45.7	29.63
Cobalt (Co)	1/4	1.5	1.5
Copper (Cu)	4/4	5.5 - 20.2	13.28
Iron (Fe)	4/4	11200 - 22300	70975
Lead (Pb)	4/4	20.7 - 211	111.35
Magnesium (Mg)	4/4	912 - 4980	2575
Manganese (Mn)	4/4	47.7 - 520	204.65
Nickel (Ni)	2/4	5.6 - 12.4	9
Potassium (K)	4/4	310 - 1460	807.75
Sclenium (Se)	3/4	0.93 - 2.7	1.74
Sodium (Na)	4/4	206 - 1420	6526.5
Vanadium (V)	4/4	10.5 - 36	21.65
Zinc (Zn)	4/4	23.5 - 83.6	48.33
Pesticides and PCBs (µg/kg)			
4,4'-DDD	4/4	13 - 200	87.08
4,4'-DDT	3/4	4.3 - 16	10.07
4,4'-DDE	4/4	10 - 340	132.25
alpha-Chlordane	1/4	1.4	1.4
Aroclor-1260	3/4	14 - 32	23.33
beta-BHC	2/4	0.94 - 1.4	1.17
delta-BHC	1/4	5,5	5.5
Endosulfan [1/4	1.7	1.7
Endrin Ketonel 2014 1914	4 14 14 14 14 14 14 14 14 14 14 14 14 14		1.67.85 6 .4-119.3- 3 -4.
Endrin aldehyde	2/4	1.3 - 7.3	4.3
Endrin	3/4	1.5 - 16	6.67
Heptachlor	1/4	1.1	1.1

Table 10-10-1
Phase IIA Detected Concentrations in Wetland 15 Sediments

Parameter	Frequency of Detection	Range of Detected Concentrations	Average Detected Concentration
SVOCs (μg/kg)			
2-Methylphenol (o-Cresol)	1/ 4 ²⁴	330	330
2,2'-oxybis(1-Chloropropane)	1/4	82	82
2,4-Dimethylphenol	1/4	630	630
4-Methylphenol (p-Cresol)	1/4	4800	4800
Benzo(a)pyrene	1/4	59	59
Benzo(b)fluoranthene	3/4	79 - 250	176.33
bis(2-Ethylhexyl)phthalate (BEHP)	3/4	220 - 490	313.33
Di-n-butylphthalate	3/4	130 - 250	190
Fluoranthene	4/4	94 - 240	181
Phenol	1/4	280	280
Pyrene	3/4	120 - 210	170
VOCs (μg/kg)			
2-Butanone (MEK)	1/3	350	350
Acetone	2/3	130 - 1400	765
Methylene chloride	1/3	34	34

Notes:

The number of samples has been decreased by the number of rejected samples. However, note that no positive results rejected. All results are in micrograms per kilogram ($\mu g/kg$) or parts per billion (ppb), excepts for metals which are in milligrams per kilogram (mg/kg) or parts per million (ppm).

Surface Water

Twenty-one metals were detected in Wetland 15 surface water samples. Ten metals, including aluminum (213,000 ppb), arsenic (68.8 ppb), beryllium (3.2 ppb), chromium (327 ppb), copper (191 ppb), iron (715,000 ppb), lead (801 ppb), mercury (0.94 ppb), nickel (103 ppb), and zinc (1,010 ppb) exceeded saltwater surface water criteria at location 1501. Copper (4 ppb), iron (8,300 ppb), and lead (22.5 ppb) exceeded surface water criteria at location 1502. One pesticide, 4,4'-DDE, was detected in Wetland 15 surface water below its surface water criteria. No PCBs or SVOCs were detected in surface water at Wetland 15. No VOCs were detected in Wetland 15 surface water samples.

Table 10-10-2 Wetland 15 Phase IIA Sediment Concentrations Compared to Benchmark Levels

Sample Location	Parameter	Detected Concentration	Sadiment Benchmark Value (SBV)	на	SBV Reference
haven driver			-		0000
and the same of	22	100	100		
200	_	755	100	10000	
100000		7777	100	177.00	
A 100		12.0	100	-	
-	COMIS .	75.5	100		- 6
amed here		115		- 22	100
Park Street	Charles Service Services	2556		11.550	
	-	400	264	300	
-	-		70	155	
		1.00	15		-
-	- Comp	100.0	100	100	
Commen	page 1	100 40	100		
-	NAME:	AND THE REAL PROPERTY.	110		275
Care Militar			-		144
-			-		244
DA1M150201					
4,4' DDD (UG	/KG)	es pu	1.22	50.8%	ion
4 4 HOUR (UIS		11g DJ	2.07	53.14	131
44-DDT (UG	-2-100	434	110	54.61	tr
alpha-Chlorda		14 7	17	0.82	4
Anumony (Mc		5.0	12	0.50	44
Araclor 1280		24 1	216	3.44	ir
Alsenic (MG/		15.2	7 24	2 (0	a b
	yl)phihalais (BBHF) (U(3/KG)	450 1	182	2.69	tx.
Chiamlum (M	Fr. C. Land Co. Co. Co. Co. Co. Co. Co. Co. Co. Co.	45.7 1	52.3	0.87	a ta
Copper (MC/F		20 A	18 7	7.08	a D
Endrin (UG/K		16.1	3.3	4.65	a
Fluoranthena	The state of the s	240 J	118	212	la-
Lead (MG/KG		371	36.2	5.99	a b
Nickel (MG/K)		124 1	15,8	9.78	ab
Pyrene (UO/A		210 1	153	1.37	la:
Zine (MG/RG)		50.9	124	0.48	45
041M150301					E. 点 物性。2
4.4'-DDD (UG	(C)	200, 01	9.93	107.00	
COLOR STATE TO TAKE	100	CONTRACTOR OF THE PARTY OF THE	1,22 2,07	163.93 33.33	li. B
4.4.00E (UG		69 DJ	PROPERTY AND ADDRESS OF THE PARTY OF THE PAR	THE RESERVE OF STREET STREET, STREET	о 5
4,4 DDT (UG		16 J	1/19	13.45	
Argelor-1260	(newa)	32.1	21.6	1.48	

Basewide level for 4.4 -DDT is 20 ppb.

Notes:
(a) USEPA Screening Concentration for Sediment - EPA SSVs
Outplus Accessment Guidelines - FDEP SQ (a) USEPA Screening Concentration for Sediment - EPA SSVs
(b) FDEP Sediment Quality Assessment Guidelines - FDEP SQAGs Some of the numbers in the table may vary because of rounding, Basewide levels (detailed in Section 5) for DDT and its metabolities Basewide level for 4.4-DDF is 40 ppb.
Basewide level for 4.4-DDD is 50 ppb.

Table 10-10-2

Wetland 15.
Phase IIA Sediment Concentrations Compared to Benchmark Levels

Sample Location	Parameter	Detected Concentration	Sediment Benchmark Value (SBV)	HQ	SBV Raference
-	90	100	- (W.	79.00	100
/ Harrison	-	10.75		1111	11
100.00		91	200	100	36
1 householder	a married and a second	100		- 100	
Township	-	44.4	1100		
TAMO (MICHOL)		190	10,443	1,00	441
Page Allies		1464	790	17.00	
200		Part .	- N	Sec. 1	+4-
041M150401					
4.4'-DDD (UG	KG)	1.9 0	1 22	1.07	1.0
4.4"-DDE (UG	(KG)	10.0	2.07	4 83	D
Arsenic (MG//	(G)	25	7.24	0.35	a-tx
Beron(a)pyren	e (UG/KC)	59 J	68.8	0.66	12
bis(2-Ethylhex	vi)phinalate (BEHP) (UG/KG)	220 1	182	1-21	- 10
Chromium (M	GIKG)	50.8 4	58.3	0.40	att
Couper (MG/k	(G)	5.5 4	18.7	0.23	ab
Endrin (UG/KI	3)	1.5.4	3.3	0.45	nd.
Fluoranthene	(UG/KG)	94 1	112	0.63	6
Lead (MG/KG	1	20.7	30.2	0.69	a to
Nickel (MG/K)	3)	5.6 1	16:0	0.35	a to
Pyrene (UG/K	(G)	120	153	0.78	ts.
Zinc (MGAG)		23.5	124	0.19	atu

Notes:

⁽a) USEPA Screening Concentration for Sudiment - EPA SSVs

⁽b) FDEP Sediment Quality Assessment Guidelines - FDEP SOAGs Some of the numbers in the table may vary because of rounding. Basewide levels (detailed in Section 6) for DDT and its metabolites Basewide level for 4,4-DDF is 40 ppc.

Hissewide level for 4,4-DDT is 50 ppb.

Basewide level for 4,4-DDT is 20 ppb.

Table 10-10-3 shows the Wetland 15 Phase IIA surface water sample results (frequency of detection, range of detected concentrations, and average detected concentration). Table 10-10-4 compares detected concentrations at each sample location to surface water quality criteria and lists calculated HQs for each parameter. Only detected parameters with quality criteria are presented in Table 10-10-4. The HQs will be further discussed in the ecological risk section.

Table 10-10-3
Phase IIA Detected Concentrations in Wetland 15 Surface Water

Parameter	Frequency of Detection	Range of Detected Concentrations	Average Detected Concentration
Inorganics (μg/L)			
Aluminum (Al)	2/2	934 - 213000	106967
Antimony (Sb)	1/2	32.4	32.4
Arsenic (As)	2/2	4.5 - 68.8	36.65
Barium (Ba)	2/2	34.7 - 642	338.35
Beryllium (Be)	1/2	3.2	3.2
Calcium (Ca)	2/2	87100 - 178000	132550
Chromium (Cr)	1/2	327	327
Cobalt (Co)	1/2	23.5	23.5
Copper (Cu)	2/2	4 - 191	97.5
Iron (Fe)	2/2	8300 - 715000	361650
Lead (Pb)	2/2	22.5 - 801	411.75
Magnesium (Mg)	2/2	34600 - 63700	49150
Manganese (Mn)	2/2	121 - 1640	880.5
Mercury (Hg)	1/2	0.94	0.94
Nickel (Ni)	1/2	103	103
Potassium (K)	2/2	11400 - 16000	13700
Selenium (Se)	1/2	16.3	16.3
Sodium (Na)	2/2	141000 - 174000	157500
Thallium (Tl)	1/2	3.2	3.2
Vanadium (V)	2/2	2 - 337	169.5
Zinc (Zn)	2/2	12.7 - 1010	511.35
Pesticides and PCBs (µg/L)			
4,4'-DDE	1/2	0.0630	0.0630

Note:

All results are in micrograms per liter (μ g/L) or parts per billion (ppb).

Table 10-10-4 (1) Wetland 15 Phase IIA Surface Water Concentrations Compared to Water Quality Criteria

Sample Location	Parameter	NOM	Detected Concentration	Water Quality Criteria	НО	Criteria Reference
ALIVE NAME.	Salaries	100	na Rosa I		700	-3
Assessed		460	COLUMN TO A STATE OF THE PARTY.	TOWN.	1544.5	1.8
Assertage, 11		mag.C	10.4	AMA	There's	10. XIII
April 1		Total .	.444	144.0	Jan 14	CNE
Access		mad.	34		(Septite)	
Comme.		met.	465	94.	1444	11.040
- Inter-		L AME	Att.	34	34460	10.440
Jan.		1,700	That is	164	1,140,4000	- 15
100		1009	100	- H	- promoti,	-
Bearing		1996	100	464	200	**
Mine.		100	was.	199.	Name of	
Commercial Commercial		1000	181	944	1,279.6	1.8
M		146			-	
041W150201	Saltwater		_	_		
MurtimulA		UG/L	384 U	1,600 0	D 62267	h
Arsema		UCL	4.5	36 0	IJ 125	a
Copper		UG/L	40	2,9	1.37931	ab
Iron		UG/L	83000	0.00€	27 66667	ь
Lead		UG/L	225	5.6	4.01786	là.
Thalliam		UG/L	3.2	€3	1) 50794	h
Zing		UGA	127	86.0	0.14767	a.b.

Notes
(a) USEPA Water Quality Criteria (1995)
(b) FDEP Class III Water Quality Criteria (1996)
Some of the numbers in the table may vary because of rounding

10.10.3 Fate and Transport

The pathways evaluated for the wetland specific fate and transport correlate to those identified in the conceptual model presented in Section 9. These pathways include: surface water/sediment transport into the wetland; groundwater discharge into the wetland; sediment/surface water transport within the wetland; sediment leaching to surface water within the wetland; and surface water/sediment transport from the wetland. Sediment transport and storm water runoff data are lacking, thus this evaluation is qualitative in nature. The method of evaluation of the leaching from sediment to surface water was presented in Section 9. Table 10-10-5 presents those contaminants present in sediment above benchmark levels and their calculated SSLs. Contaminants present in surface water above water quality criteria are presented on Table 10-10-4.

Transport into the Wetland

Surface Water/Sediment Pathway

Based on landform and watershed analysis, the following sources can contribute contamination to Wetland 15 through this pathway:

• Potential storm water runoff and sediment entrainment from Site 1, and the nearby area of the NAS golf course. During periods of high tide and storm surge, there is a direct surface water drainage through a tidal inlet that enters the wetland as well.

Table 10-10-5
Calculated Sediment Screening Values for Wetland 15

USEPA or

Parameter	FDEP Surface Water Standard	Kd	SSL DF = 100	Maximum Concentration Detected	Leaching Potential DF = 100
Inorganics (ppb)	(ppb)		(ppm)	(ppm)	
Arsenice #12.4 ****	36 7	£. 12.9B+01	i	14114.	
Copper	2.9 a.b	4.3E+02	125	20.2	NO
Lead	5.6 b	9E+02	504	211	NO

Table 10-10-5
Calculated Sediment Screening Values for Wetland 15

Parameter	USEPA or FDEP Surface Water Standard	Kd	SSL DF = 100	Maximum Concentration Detected	Leaching Potential DF = 100
Organics	(ppb)		(ppb)	(ppb)	
4,4 DDE	0.14 *	8.68E+05	1.22E+07	340	NO
4,4 DDD	0.025 a	1.94E+05	4.85E+05	200	NO
4,4 DDT	0.001 a, b	5.1E+05	5.1E+04	16	NO
Endrin	0.0023 ^{a, b}	2.38E+03	547	16	NO
Inorganics (ppb)	(ppb)		(ррт)	(ppm)	
Fluoranthene	1.6 "	2.08E+04	3.33E+06	240	NO
Pyrene	11,000 b	2.03E+04	2.23E+10	210	NO
Bis(2-ethylhexyl)phthalate	NA	2.93E+06	NA	490	NA

Notes:

Kd for organics calculated using foc of 0.194 (numerical average of all sediment samples).

Kds are from: USEPA, 1996b (first preference); Superfund Chemical Data Matrix (USEPA, 1996c) (second preference); Texas Risk Reduction Program Concept Document 2, Volume 1, Appendix VII, 1996 (third preference); TERRA Model, Oak Ridge National Laboratory, 1984 (fourth preference — primary reference for inorganics).

Kd = normalized partitioning coefficient.

SSL = sediment screening level.

DF = dilution factor.

a = USEPA Saltwater Surface Water Chronic Screening Criteria (1995a)

b = FDEP Class II Water Quality Criteria (1996)

The presence of sediment contaminants above benchmark levels (see Table 10-10-5) validates the sediment transport pathway and by inference the surface water pathway.

Additionally, there were ten inorganics present in surface water above water quality criteria, further validating the pathway.

Groundwater Discharge Pathway

Based on potentiometric analysis, the primary potential source that would directly contribute contamination to Wetland 15 through this pathway is Site 1, and potentially contaminated groundwater underlying the golf course. Groundwater at Site 1 has been shown to be contaminated, therefore the pathway is considered valid.

Transport within the Wetland

Surface Water/Sediment Migration Pathway

The configuration of the wetland, along with land form analysis, indicates that the surface water and sediment transport will occur to the north through a small tidal inlet connecting the wetland with Bayou Grande. It is conceivable that during periods of very high tides or storm surges that some back flushing of surface water will occur within the wetland. Surface water and sediment can therefore be considered to be mobile, and the pathway valid for this wetland.

Sediment Leaching to Surface Water Pathway

Seven organics — four pesticides and three semivolatiles — and three inorganics, exceeded their sediment benchmark levels, but only one inorganic exceeded its calculated SSL (see Table 10-10-5). Notably, only inorganics were present in surface water above water quality criteria. The source of semivolatiles in sediment may have been airborne, given their typical low mobility and the lack of a direct source of semivolatiles near the wetland. Pesticide occurrence, given the proximity to the golf course and the historical application of pesticides, is not unexpected. Ten inorganics were present in surface water above water quality criteria, including the three that exceeded their benchmark levels and the one inorganic which exceeded its SSL. The source for most inorganics is likely related to the surface water and/or groundwater pathway, with the exception of arsenic, copper, and lead, which may be contributed from the sediment as well. Because one inorganic was detected in sediment above its SSL in conjunction with the three inorganic exceedances in surface water, the sediment leaching pathway is considered valid for this wetland.

Transport from the Wetland

Transport of surface water and sediment from Wetland 15 can be expected to occur towards the north into the Bayou Grande system. Therefore sediment and surface water contamination can be expected to be mobile and not remain within the wetland.

10.10.4 Ecological Risk Assessment

HQs for Wetland 15 sediment samples are presented in Table 10-10-2. Phase IIA sediment sample results compared to the appropriate sediment benchmark levels revealed HQs above 1 for arsenic (2.10 and 19.48 at locations 1502 and 1503), copper (1.08 and 1.01 at locations 1502 and 1503), and lead (1.31, 6.99, and 5.76 at locations 1501, 1502, and 1503). HQs also were greater than 1 for 4,4'-DDD/DDE at locations 1501 (68.97/164.25), 1502 (50.82/53.14), 1503 (163.93/33.33), and 1504 (1.07/4.83). The HQ for 4,4'-DDT was above 1 at locations 1501 (8.32), 1502 (3.61), and 1503 (13.45). The HQs for endrin at location 1502 (4.85) and endrin aldehyde at location 1501 (2.21) were also above 1. The PCB Aroclor-1260 also had an HQ above 1 at locations 1502 (1.11) and 1503 (1.48). HQs were also greater than 1 for the PAHs fluoranthene (1.77, 2.12, and 1.68 at locations 1501, 1502, and 1503) and pyrene (1.37 and 1.18 at locations 1502 and 1503); as well as the phthalate ester bis(2-ethylhexyl)phthalate (1.26, 2.69, and 1.21 at locations 1501, 1502, and 1504).

Phase IIA surface water results revealed HQs greater than 1 for aluminum (142.0), arsenic (1.91), beryllium (24.62), chromium (6.54), copper (65.86), iron (2,383.33), lead (143.04), mercury (37.6), nickel (12.41), and zinc (11.74) at location 1501. HQs were also above 1 for copper (1.38), iron (27.67), and lead (4.02) at location 1502. HQs greater than one indicate a potential for excess risk. High entained sediment of the sample likely contributed to the exceedances.

Wetland 15 was classified in Group C and was not sampled in Phase IIB based on Phase IIA data. Wetlands 18 and 16 were chosen to represent Group C because they had the highest levels of contamination in comparison to the other Group C Wetlands.

Risk in Wetland 16 was evaluated with respect to one assessment endpoint, survival, growth, and

reproduction of macroinvertebrates associated with the benthic environment. Decision making

triad results for Phase IIB/III Wetland 16 sediment analytical results (condition number 2)

indicated that Wetland 16 sediment was acceptable and no further action was recommended for

this medium.

Risk in Wetland 18 assessment endpoints were piscivorous bird health and reproduction; survival,

growth, and reproduction of macroinvertebrates associated with the benthic environment; and

protection of fish viability. Decision making triad results for Wetland 18 Phase IIB/III

sediment and surface water analytical results (both condition number 3) indicated that Wetland 18

sediment and surface water were acceptable and no further action was recommended for either

media at Wetland 18.

10.10.5 Human Health Risk Assessment

10.10.5.1 Samples Included

Sediment

041M15A101, 041M15A201, 041M15M301, 041M15M401

Surface Water

041W150101, 041W150201

10.10.5.2 Current and Future Land Use

This wetland is on the Navy golf course and could be an exposure point for golfers or trespassers

looking for lost golf balls. The Navy enforces the no fishing/no swimming policy at this wetland.

The adolescent trespasser and maintenance worker scenarios were considered conservatively

representative of potential human receptors at this wetland.

10-10-15

10.10.5.3 Fish Tissue COPCs

No fish tissue data were available for this wetland, and this exposure pathway would likely be incomplete; therefore, no COPCs were identified.

10.10.5.4 Sediment COPCs

As shown in Table 10-10-6, the following sediment COPC was identified:

Arsenic

10.10.5.5 Surface Water COPCs

As shown in Table 10-10-7, the following surface water COPCs were identified:

- Aluminum
- Arsenic
- Lead

10.10.5.6 Risk Characterization

Adolescent Trespasser

Tables 10-10-8 through 10-10-11 detail cancer risk estimates and noncancer hazard estimates for this wetland under an adolescent trespasser scenario. As shown in Tables 10-10-8 and 10-10-9, arsenic is the only contributor to risk estimates for the sediment pathway under the adolescent trespasser scenario. Arsenic is the primary contributor to risk and hazard estimates for the surface water pathway as shown in Tables 10-10-10 and 10-10-11. Table 10-10-12 summarizes the risk and hazard estimates for Wetland 15. The cumulative risk estimated for this wetland is 2.4E-5 and the hazard index was estimated to be 0.5. Arsenic was identified as a COC for both sediment and surface water based on its contribution to the cumulative risk estimate for this wetland. Although exposure would likely be acute or subchronic, these hazard estimates were developed for completeness, and RGOs were developed below. Risk managers should also consider ecological endpoints.

TABLE 10-10-6 OCCURRENCE, DISTRIBUTION, AND SELECTION OF CHEMICALS OF POTENTIAL CONCERN NAS PENSACOLA SITE 41

Scenario Timetrame: Current and Future
Medium: Sediment
Exposure Medium: Sediment

	Exposure Point - Wetland 15										(2)	(3)	(4)	(5)		T	(5)
CAS Number	Chemical	(1) Minimum Concentration	Minimum Qualifier	(1) Maximum Concentration	M aximum Qualifier	Units	Location of Maximum Concentration	Detection Frequency	Range of Detection Limits	MEAN	Concentration Used for Screening	Background Value	Adolescent Site Trespasser Screening Toxicity Value	Commercial Maintenance Worker Screening Toxicity Value	Potential ARAR/TBC Source	COPC Flag	Rationale for Contaminant Delection or Selection
108601	2,2'-oxybis(1-Chloropr	82,0000	J	82.0000	J	UG/KG	041M150401	1 / 4	2500.00 - 3000.00	82.00	82	N/A	N/A	N/A	N/A	NO	NTX
105679	2,4-Dimethylphenol	630.0000	j	630.0000	J	UG/KG	041M150101	1 / 4	1100.00 - 3000.00	630.00	630	N/A	6300000	9800000	N/A	NO	BSL
78933	2-Butanone (MEK)	350.0000		350.0000		UG/KG	041M150101	1 / 4	43.00 - 77.00	350.00	350	N/A	190000000	290000000	N/A	NO	BSL
95487	2-Methylphenol (o-Cres	330.0000	J	330.0000	J	UG/KG	041M150101	1 / 4	1100.00 - 3000.00	330,00	330	N/A	16000000	25000000	N/A	NO	BSL
72548	4.4'-DDD	1,3000	j	200.00	DJ	UG/KG	041M150101	4 / 4	NAV	87.08	200	N/A	92000	57000	C N/A	NO	BSL
72559	4.4'-DDE	10,0000	j	340.00	DJ	UG/KG	041M150301	4 / 4	NAV	132.25	340	N/A	65000	40000	C N/A	NO	BSL
50293	4.4'-DDT	4.3000	J	16.0000	J	UG/KG	041M150101	3 / 4	0.59 - 0.59	10.07	16	N/A	65000	40000	C N/A	NO	BSL
106445	4-Methylphenol (p-Cres	4800.0000		4800.0000		UG/KG	041M150101	1 / 4	1100.00 - 3000.00	4800.00	4800	N/A	1600000	2500000	N/A	NO	BSL
67641	Acetone	130.0000		1400.0000		UG/KG	041M150101	2 / 4	43.00 - 430.00	765.00	1400	N/A	32000000	49000000	N/A	NO	BSL
5103719	alpha-Chlordane	1.4000	J	1.4000	J	UG/KG	041M150201	1 / 4	0.29 - 0.75	1.40	1.4	N/A	63000		N/A	NO	BSL
7429905	Aluminum (Al)	7810.0000		15800.00		MG/KG	041M150101	4 / 4	NAV	10235.00	15800	N/A	320000		N/A	NO	BSL
7440360	Antimony (Sb)	6.0000	J	6.0000	J	MG/KG	041M150401	1 / 4	0.72 - 2.00	6.00	6	N/A	130	1	N/A	NO	BSL
11096825	Aroclor-1260	14.0000	J	32.0000	J	UG/KG	041M150201	3 / 4	5.90 - 5.90	23.33	32	N/A	11000		N/A	NO	BSL
7440382	Arsenic (As)	2.5000		141.00		MG/KG	041M150401	4 / 4	NAV	40.88	141	N/A	15	· ·-	D N/A	YES	ASL
7440393	Barlum (Ba)	6.2000	J	40.90		MG/KG	041M150201	4 / 4	NAV	25.90	40.9	N/A	22000		N/A	NO	BSL
50328	Benzo(a)pyrene	59.0000	J	59.0000	J	UG/KG	041M150401	1 / 4	250.00 - 300.00	59.00	59	N/A	3000		C N/A	NO	BSL
205992	Benzo(b)fluoranthene	79.0000	J	250.0000	J	UG/KG	041M150401	3 / 4	300.00 - 300.00	176.33	250	N/A	30000		C N/A	NO	BSL
7440417	Beryllium (Be)	0.3400	J	0.3400	J	MG/KG	041M150401	1 / 4	0.41 - 0.57	0.34	0.34	N/A	630		C N/A	NO	BSL
319857	beta-BHC	0.9400	J	1.4000	J	UG/KG	041M150201	2 / 4	0.29 - 0.63	1.17	1.4	N/A	12000		C N/A	NO	BSL
117817	bis(2-Ethylhexyl)phthala	220.0000	J	490.0000	J	UG/KG	041M150401	3 / 4	2500.00 - 2500.00	313.33	490	N/A	1600000		C N/A	NO	BSL
7440702	Calcium (Ca)	3010.0000		11300.00		MG/KG	041M150301	4 / 4	NAV	7205.00	11300	N/A	N/A	N/A	N/A	NO	EN
7440473	Chromium (Cr)	14.3000		45.70		MG/KG	041M150201	4 / 4	NAV	29.63	45.7	N/A	1600		N/A	NO	BSL
7440484	Cobalt (Co)	1.5000	J	1.5000	j	MG/KG	041M150401	1 / 4	1.20 - 1.70	1.50	1.5	N/A	19000		N/A	NO	BSL
7440508	Copper (Cu)	5.5000	J	20.20	j	MG/KG	041M150101	4 / 4	NAV	13.28	20.2	N/A	13000		N/A	NO	BSL
319868	delta-BHC	5.5000	J	5.5000	J	UG/KG	041M150301	1 / 4	0.29 - 0.75	5.50	5.5	N/A	12000		C N/A	NO	BSL
84742	Di-n-butylphthalate	130.0000	j	250.0000	J	UG/KG	041M150101	3 / 4	1100.00 - 1100.00	190.00	250	N/A	32000000		N/A	NO	BSL
959988	Endosulfan I	1.7000	J	1.7000	J	UG/KG	041M150301	1 / 4	0.29 - 0.75	1.70	1.7	N/A	1900000		N/A	NO	BSL
72208	Endrin	1.5000	J	16.0000	J	UG/KG	041M150101	3 / 4	1.30 - 1.30	6.67	16	N/A	95000		N/A	NO	BSL
7421934	Endnin aldehyde	1.3000	J	7.3000	J	UG/KG	041M150301	2 / 4	0.59 - 1.50	4.30	7.3	N/A	95000		N/A	NO	BSL
53494705	Endrin ketone	1.9000	J	1.9000	J	UG/KG	041M150101	1 / 4	0.59 - 1.50	1.90	1.9	N/A	95000		N/A	NO	BSL
206440	Fluoranthene	94.0000	J	240.0000	J	UG/KG	041M150301	4 / 4	NAV	87.08	240	N/A	13000000		C N/A	NO	BSL
76448	Heptachlor	1.1000	J	1.1000	J	UG/KG	041M150201	1 / 4	0.29 - 0.75	1.10	1.1	N/A	4900		C N/A	NO	BSL
7439896	Iron (Fe)	11200.0000	J	223000.00	J	MG/KG	041M150201	4 / 4	NAV	70975.00	223000	N/A	N/A	N/A	N/A	NO	EN
7439921	Lead (Pb)	20.7000	J	211.00	J	MG/KG	041M150401	4 / 4	NAV	111.35	211	N/A	400	1	OSWER	NO	BSL
7439954	Magnesium (Mg)	912.0000	J	4980.00	J	MG/KG	041M150201	4 / 4	NAV	2575.50	4980	N/A	N/A	1	N/A	NO	EN
7439965	Manganese (Mn)	47.7000	J	520.00		MG/KG	041M150101	4 / 4	NAV	204.65	520	N/A	15000	1	N N/A	NO	BSL
75092	Methylene chloride	34.0000	J	34.0000	J	UG/KG	041M150101	1 / 4	43.00 - 110.00	34.00	34	N/A	1600			NO	BSL BSL
7440020	Nickel (Ni)	5.6000	J	12.4000	J	MG/KG	041M150201	2 / 4	4.90 - 4.90	9.00	12.4	N/A	6300		N/A N/A	NO	BSL
108952	Phenol	280.0000	J	280.0000	J	UG/KG	041M150101	1 / 4	1100.00 - 3000.00	280.00	280 1460	N/A N/A	190000000 N/A	N/A	N/A N/A	NO	EN EN
7440097	Potassium (K)	310.0000	J	1460.00	j	MG/KG	041M150301	4 / 4	NAV 300 00	807.75 170.00	210	N/A N/A	9500000		N/A	NO	BSL
129000	Pyrene	120.0000		210.0000	J	UG/KG	041M150201	3 / 4	300.00 - 300.00	1,74	210	N/A N/A	1600		N/A	NO	BSL
7782492	Selenium (Se)	0.9300		2.7000	J	MG/KG	041M150401 041M150301	3 / 4	1.20 - 1.20	6526.50	14200	N/A	N/A	N/A	N/A	NO	EN
7440235	Sodium (Na)	206.0000		14200.00	1	MG/KG			NAV NAV	21.63	36	N/A N/A	2200		N N/A	NO	BSL
7440622	Venadium (V)	10.5000	J	36.00		MG/KG	041M150301	4 / 4	NAV NAV	48.33	83.6	N/A N/A	95000		N/A	NO	BSL
7440666	Zinc (Zn)	23.5000		83.60	1	MG/KG	041M150101	4 / 4	NAV	40.33	03.0	I N/A	33000	130000	1 11/7	1 10	DOL .

⁽¹⁾ Minimum/maximum detected concentration

(6) Rationale Codes Selection Reason Above Screening Levels (ASL)

Selection Reason Above Screening Levels (ASL)

Deletion Reason: Below Screening Levels (BSL)

Background Levels (BKG) No Toxicity Information (NTX) Essential Nutrient (EN) Definitions:

N/A = Not Applicable
NAV = Not Available

CQPC = Chemical of Potential Concern

ARAR/TBC = Applicable or Releveant and Appropriate Requirement/ To Be Considered

OSWER = Office of Solid Waste and Emergency Response

J = Estimated Value

C = Carcinogenic

N Noncarcinogenic

⁽²⁾ Maximum concentration used as screening value.

⁽³⁾ No background values were developed for this media.

⁽⁴⁾ PRGs for site trespasser scenario calculated based on equations and parameters presented in Section 8 of this report.

⁽⁵⁾ PRGs for commercial maintenance worker scenario calculated based on equations and parameters presented in Section 8 of this report.

TABLE 10-10-7 OCCURRENCE, DISTRIBUTION, AND SELECTION OF CHEMICALS OF POTENTIAL CONCERN NAS PENSACOLA SITE 41

Scenario Timeframe: Current and Future Medium: Surface Water

Exposure Medium: Surface Water Exposure Point; Wetland 15 Surface Water

		(1)		(1)							(2)		(3)	(4)	1	(5)
CAS Number	Chemical	Minimum Concentration	Minimum Qualifier	Maximum Concentration	Maximum Qualifier	Units	Location of Maximum Concentration	Detection Frequency	Range of Detection Limits	Mean	Concentration Used for Screening	Background Value	Adolescent Site	Commercial Maintenance Worker Screening Toxicity Value	Potential ARAR/TBC Source	COPC Flag	Rationale for Contaminant Detection or Selection
72559	4,4'-DDE	0,063	J	0.0630	J	UG/L	041W150101	1 / 2	NAV	0.06	0.06	N/A	0.5	0.6 C	N/A	NO	BSL
7429905	Aluminum (Al)	934.000		213000.0000		UG/L	041W150101	2 / 2	NAV	106967.00	213000	N/A	120000	250000 N	N/A	YES	ASL
7440360	Antimony (Sb)	32.400	J	32.4000		UG/L	D41W150101	1 / 2	NAV	32.40	32.4	N/A	48	100 N	N/A	NO	BSL
7440382	Arsenic (As)	4.500	J	000B,88		UG/L	041W150101	2 / 2	NAV	36.65	68.8	N/A	5.6	4.7 C	N/A	YES	ASL
7440393	Barium (Ba)	34.700	J	642.0000		UG/L	041W150101	2 / 2	NAV	338.35	642	N/A	8300	18000 N	N/A	NO	BSL
7440417	Beryllium (Be)	3.200	j	3.2000		UG/L	041W150101	1 / 2	NAV	3.20	3.2	N/A	240	500 C	N/A	NO	BSL
7440702	Calcium (Ca)	87100.000		178000.0000		UG/L	041W150101	2 / 2	NAV	132550.00	178000	N/A	N/A	N/A	N/A	NO	EN
7440473	Chromium (Cr)	327.000		327.0000		UG/L	041W150101	1 / 2	NAV	327.00	327	N/A	360	760 N	N/A	NO	BSL
7440484	Cobalt (Co)	23.500	J	23.5000	J	UG/L	041W150101	1 / 2	NAV	23.50	23.5	N/A	7100	15000 N	N/A	NO	BSL
7440508	Copper (Cu)	4.000	J	191.0000		UG/L	041W150101	2 / 2	NAV	97.50	191	N/A	4800	10000 N	N/A	NO	BSL
7439896	Iron (Fe)	8300,000		715000.0000		UG/L	041W150101	2 / 2	NAV	361650.00	715000	N/A	N/A	N/A	N/A	NO	EN
7439921	Lead (Pb)	22.500		801.0000		UG/L	041W150101	2 / 2	NAV	411.75	801	N/A	15	15 N	N/A	YES	ASL
7439954	Magnesium (Mg)	34600.000	0	63700.0000		UG/L	041W150101	2 / 2	NAV	49150.00	63700	N/A	N/A	N/A	N/A	NO	EN
7439965	Manganase (Mn)	121.000	J	1640.0000		UG/L	041W150101	2 / 2	NAV	880.50	1640	N/A	2400	5000 N	N/A	NO	BSL
7439976	Mercury (Hg)	0.940	0	0.9400		UG/L	041W150101	1 / 2	NAV	0.94	0.94	N/A	N/A	N/A	N/A	NO	BSL
7440020	Nicksl (Ni)	103,000		103.0000		UG/L	041W150101	1 / 2	NAV	103.00	103	N/A	2400	5000 N	N/A	NO	BSL
7440097	Potassium (K)	11400.000		16000.0000		UG/L	041W150101	2 / 2	NAV	13700.00	16000	N/A	N/A	N/A	N/A	NO	EN
7782492	Selenium (Se)	16.300		16.3000		UG/L	041W150101	1 / 2	NAV	16.30	16.3	N/A	600	1300 N	N/A	NO	BSL
7440235	Sodium (Na)	141000.000		174000.0000		UG/L	041W150201	2 / 2	NAV	157500.00	174000	N/A	N/A	N/A	N/A	NO.	EN
7440280	Thallium (TI)	3.200	J	3.2000		UG/L	041W150201	1 / 2	NAV	3.20	3.2	N/A	8.3	18 N	N/A	NO	BSL
7440622	Vanadium (V)	2.000	J	337.0000		UG/L	041W150101	2 / 2	NAV	169.50	337	N/A	830	1800 N	N/A	NO	BSL
7440666	Zinc (Zn)	12.700		1010.0000		UG/L	041W150101	2 / 2	NAV	511.35	1010	N/A	36000	76000 N	N/A	NO	BSL

(1) Minimum/maximum detected concentration

(2) Maximum concentration used as screening value,

(3) RBCs for adolescent site trespasser scenario calculated using values presented in Region III Risk-Based Concentration Tables, (USEPA, 1998).

(4) RBCs for commercial maintanance worker scenario calculated using values presented in Region III Risk-Based Concentration Tables, (USEPA, 1998).

(5) Rationale Codes

Selection Reason: Above Screening Levels (ASL)

Deletion Reason: Below Screening Levels (BSL)

Background Levels (BKG)

Essential Nutrient (EN)

No Toxicity Information (NTX)

Definitions:

N/A = Not Applicable

COPC = Chemical of Potential Concern

ARAR/TBC = Applicable or Relevaent and Appropriate Requirement/ To Be Considered

J = Estimated Value

C = Carcinogenic

N = Noncarcinogenic

TABLE 10-10-8 CALCULATION OF CANCER RISKS REASONABLE MAXIMUM EXPOSURE NAS PENSACOLA SITE 41

Scenario: Timeframe: Current and Future

Medium: Sediment

Exposure Medium: Sediment
Exposure Point: Wetland 15
Receptor Population: Trespasser
Receptor Age: Adolescent

Exposure Route	Chemical of Potential Concern	Medium EPC Value	Medium EPC Units	EPC Selected for Hazard Calculation	Intake (Cancer)	Intake (Cancer) Units	Cancer Slope Factor	Slope Factor Units	Cancer Risk
Ingestio n	Arsenic	141	MG/KG	М	6.38E-06	mg/kg-day	1.5	(mg/kg-day) ⁻¹	9.57E-06
Dermal	Arsenic	141	MG/KG	М	2.61E-07	mg/kg-day	7.5	(mg/kg-day) ⁻¹	1.96E-06
Total Risk All Exposure Routes/Pathways 1.15									

EPC = Exposure Point Concentration

MG/KG = Milligram per Kilogram

TABLE 10-10-9 CALCULATION OF NON-CANCER HAZARDS REASONABLE MAXIMUM EXPOSURE NAS PENSACOLA SITE 41

Scenario: Timeframe: Current and Future

Medium; Şediment

Exposure Medium: Sediment Exposure Point: Wetland 15 Receptor Population: Trespasser Receptor Age: Adolescent

	·			EPC Selected						
Exposure	Chemical of Potential	Medium	Medium	for Hazard	Intake	Intake	Reference	Reference	Hazard	
Route	Concern	EPC Value	EPC Units	Calculation	(Non-Cancer)	(Non-Cancer) Units	Dose	Dose Units	Quotient	
Ingestion	Arsenic	141	MG/KG	М	4.46E-05	mg/kg-day	3.00E-04	mg/kg-day	0.149	
Dermal	Arsenic	141	MG/KG	М	1.83E-06	mg/kg-day	6.00E-05	mg/kg-day	0.031	
Total Hazard Index Across All Exposure Routes/Pathways 0										

EPC = Exposure Point Concentration

MG/KG = Milligram per Kilogram

TABLE 10-10-10 RME CALCULATION OF NON-CANCER HAZARDS REASONABLE MAXIMUM EXPOSURE NAS PENSACOLA SITE 41

Scenario: Timeframe: Current and Future

Medium: Surface water

Exposure Medium: Surface water Exposure Point: Wetland 15 Receptor Population: Trespasser Receptor Age: Adolescent

Exposure Route	Chemical of Potential Concern	Medium EPC Value	Medium EPC Units	Route EPC Value	EPC Selected for Hazard Calculation	Intake (Cancer)	Intake (Cancer) Units	Cancer Slope Factor	Slope Factor Units	Cancer Risk
Ingestion	Arsenic	0.0688	MG/L	N/A	М	4.05E-06	mg/kg-day	1.5	(mg/kg-day) ⁻¹	6.08E-06
Dermal	Arsenic	0.0688	MG/L	N/A	М	8.41E-07	mg/kg-day	7.5	(mg/kg-day) ⁻¹	6.31E-06
Total Risk										1.24E-05

EPC = Exposure Point Concentration

MG/L = Milligram per Liter

TABLE 10-10-11 RME CALCULATION OF NON-CANCER HAZARDS REASONABLE MAXIMUM EXPOSURE NAS PENSACOLA SITE 41

Scenario: Timeframe: Current and Future

Medium: Surface Water

Exposure Medium: Surface Water Exposure Point: Wetland 15 Receptor Population: Trespasser Receptor Age: Adolescent

					EPC Selected for					
Exposure	Chemical of Potential	Medium	Medium	Route EPC	Hazard	Intake	Intake	Reference	Reference	Hazard
Route	Concern	EPC Value	EPC Units	Value	Calculation	(Non-Cancer)	(Non-Cancer) Units	Dose	Dose Units	Quotient
Ingestion	Arsenic	0.0688	MG/L	N/A	M	2.83E-05	mg/kg-day	3.00E-04	mg/kg-day	0.094
	Aluminum	213	MG/L		M	8.80E-02	mg/kg-day	1.00E+00	mg/kg-day	0.088
Dermal	Arsenic	0.0688	MG/L		M	5.89E-06	mg/kg-day	6.00E-05	mg/kg-day	0.098
	Aluminum	213	MG/L		М	8.80E-03	mg/kg-day	2.00E-01	mg/kg-day	0.044
								Tot	al Hazard Index	0.32

EPC = Exposure Point Concentration

MG/L = Milligram per Liter

TALLE 10-10-12 SUMMARY OF RECEPTOR RISKS AND HAZARDS FOR COPCS REASONABLE MAXIMUM EXPOSURE NAS PENSACOLA SITE 41

Scenario Timeframe: Current and Future
Receptor Population: Site Trespasser
Receptor Age: Adolescent

Medium	Exposure Medium	Exposure Point	Chemical		Carcinogenic Risk	· ·	Chemical	Non-carcir	nogenic Hazar	d Quotient	
				Ingestion	Dermal Contact	Total		Primary Target Organ	Ingestion	Dermal Contact	Total
Sediment	Sediment	Wetland 19	Arsenic	9.57E-06	1.96E-06	1.15E-05	Arsenic	skin	0.149	0.031	0.179
			(Total)	9.57E-06	1.96E-06	1.15E-05	(Total)		0.149	0.031	0.179
Surface Water	Surface Water	Wetland 19	Arsenic	6.08E-06	6.31E-06	1.24E-05	Arsenic	skin	0.094	0.098	0.19
1							Aluminum	gastrointestianl tract	0.088	0.044	0.13
			(Total)	6.08E-06	6.31E-06	1.24E-05	(Total)		0,182	0.142	0.32
Total Risk Across All Pathways					2.39E-05	Total Hazard Index Across All Pathways			0.50		

Maintenance Worker

Tables 10-10-13 through 10-10-16 detail cancer and noncancer hazard estimates for this wetland under a maintenance worker scenario. As shown in Tables 10-10-13 and 10-10-15, arsenic is the only contributor to risk estimates for the sediment and surface water pathways under the maintenance worker scenario. Table 10-10-17 summarizes the risk and hazard estimates for Wetland 15 under a maintenance worker scenario. The cumulative risk estimated for this wetland is 3.3E-5 and the hazard index was estimated to be 0.28. Arsenic was identified as a COC for both sediment and surface water based on its contribution to the cumulative risk estimate for this wetland.

Lead Risk Characterization

A conservative exposure scenario was developed to assess the significance of surface water concentrations of lead at Wetland 15. This scenario involves a child (age 6 to 7) who accompanies an older sibling to the wetland one day a week for a year. Exposure to Wetland 15 surface water was addressed as an additional exposure relative to typical exposures encountered at the child's home. This additional exposure was presented as an "alternate" source within the constructs of the Lead Model. The standard default assumptions in the Lead Model were kept to simulate background lead exposures. This was done to provide a conservative estimate of daily intake from sources unrelated to Wetland 15.

The assumption was made that this child would incidentally ingest 0.05 liters of surface water per visit. Within the Lead Model, an alternate source was entered to account for this exposure as previously discussed. The bioavailability of lead ingested from the alternate source (Wetland 15 surface water) was equal to that of drinking water lead ingested from the standard residential default source. Assuming incidental ingestion of 0.05 liters of surface water once per week with a lead concentration of 68.8 μ g/L, the annual alternate source exposure was estimated to be 0.49 μ g lead/day. Table 10-10-18 presents the lead model output for a child 6 to 7 years old under these exposure conditions.

TABLE 10-10-13 CALCULATION OF CANCER RISKS REASONABLE MAXIMUM EXPOSURE NAS PENSACOLA SITE 41

Scenario: Timeframe: Current

Medium: Sediment

Exposure Medium: Sediment Exposure Point: Wetland 15

Receptor Population: Maintenance Worker

Receptor Age: Adult

Exposure Route	Chemical of Potential Concern	Medium EPC Value	Medium EPC Units	Route EPC Value	EPC Selected for Hazard Calculation	Intake (Cancer)	Intake (Cancer) Units	Cancer Slope Factor	Slope Factor Units	Cancer Risk
Ingestion	Arsenic	141	MG/KG	N/A	М	1.02E-05	mg/kg-day	1,5	(mg/kg-day) ⁻¹	1.53E-05
Dermal	Arsenic	141	MG/KG	N/A	М	4.20E-07	mg/kg-day	7.5	(mg/kg-day) ⁻¹	3.15E-06
		d-					Total Ri	sk All Exposure R	outes/Pathways	1.85E-05

EPC = Exposure Point Concentration

MG/KG = Milligram per Kilogram

TABLE 10-10-14 CALCULATION OF NON-CANCER HAZARDS REASONABLE MAXIMUM EXPOSURE NAS PENSACOLA SITE 41

Scenario: Timeframe: Current Medium: Sediment

Exposure Medium: Sediment

Exposure Medium: Sediment Exposure Point: Wetland 15

Receptor Population: Maintenance Worker

Receptor Age: Adult

					EPC Selected for					
Exposure	Chemical of Potential	Medium	Medium	Route EPC	Hazard	Intake	Intake	Reference	Reference	Hazard
Route	Concern	EPC Value	EPC Units	Value	Calculation	(Non-Cancer)	(Non-Cancer) Units	Dose	Dose Units	Quotient
Ingestion	Arsenic	141	MG/KG	N/A	М	2.70E-05	mg/kg-day	3.00E-04	mg/kg-day	0.090
Dermal	Arsenic	141	MG/KG	N/A	М	1.18E-06	mg/kg-day	6.00E-05	mg/kg-day	0.020
Total Hazard Index Across All Exposure Routes/Pathways									0.11	

EPC = Exposure Point Concentration

MG/KG = Milligram per Kilogram

TABLE 10-10-15 RME CALCULATION OF NON-CANCER HAZARDS REASONABLE MAXIMUM EXPOSURE NAS PENSACOLA SITE 41

Scenario: Timeframe: Current and Future

Medium: Surface water

Exposure Medium: Surface water Exposure Point: Wetland 15

Receptor Population: Maintenance Worker

Receptor Age: Adult

Exposure Route	Chemical of Potential Concern	Medium EPC Value	Medium EPC Units	Route EPC Value	EPC Selected for Hazard Calculation	Intake (Cancer)	Intake (Cancer) Units	Cancer Slope Factor	Slope Factor Units	Cancer Risk
Ingestion	Arsenic	0.0688	MG/L	N/A	М	6.50E-06	mg/kg-day	1.5	(mg/kg-day) ⁻¹	9.75E-06
Dermal	Arsenic	0.0688	MG/L	N/A	M	6.50E-07	mg/kg-day	7.5	(mg/kg-day) ⁻¹	4.88E-06
									Total Risk	1.46E-05

EPC = Exposure Point Concentration

MG/L = Milligram per Liter

TABLE 10-10-16 RME CALCULATION OF NON-CANCER HAZARDS REASONABLE MAXIMUM EXPOSURE NAS PENSACOLA SITE 41

Scenario: Timeframe: Current and Future

Medium: Surface Water

Exposure Medium: Surface Water Exposure Point: Wetland 15 Receptor Population; Trespasser Receptor Age: Adolescent

					EPC Selected for					
Exposure	Chemical of Potential	Medium	Medium	Route EPC	Hazard	Intake	Intake	Reference	Reference	Hazard
Route	Concern	EPC Value	EPC Units	Value	Calculation	(Non-Cancer)	(Non-Cancer) Units	Dose	Dose Units	Quotient
Ingestion	Arsenic	0.0688	MG/L	N/A	M	1.82E-05	mg/kg-day	3.00E-04	mg/kg-day	0.061
	Aluminum	213	MG/L		М	5.60E-02	mg/kg-day	1.00E+00	mg/kg-day	0.056
Dermal	Arsenic	0.0688	MG/L		М	1.82E-06	mg/kg-day	6.00E-05	mg/kg-day	0.030
	Aluminum	213	MG/L		М	5.60E-03	mg/kg-day	2.00E-01	mg/kg-day	0.028
L								<u> </u>		
								Tot	al Hazard Index	0.18

EPC = Exposure Point Concentration

MG/L = Milligram per Liter

TABLL 10-10-17 SUMMARY OF RECEPTOR RISKS AND HAZARDS FOR COPCS REASONABLE MAXIMUM EXPOSURE NAS PENSACOLA SITE 41

Scenario Timeframe: Current and Future Receptor Population: Maintenance Worker Receptor Age: Adult

Medium	Exposure Medium	Exposure Point	Chemical		Carcinogenic Risk		Chemical	Non-carcin	ogenic Hazaro	d Quotient	
				Ingestion	Dermal Contact	Total		Primary Target Organ	Ingestion	Dermal Contact	Total
Sediment	Sediment	Wetland 19	Arsenic	1.53E-05	3.15E-06	1.85E-05	Arsenic	skin	0.090	0.020	0.11
			(Total)	1.53E-05	3.15E-06	1.85E-05	(Total)		0.090	0.020	0.11
Surface Water	Surface Water	Wetland 19	Arsenic	9.75E-06	4.88E-06	1.46E-05	Arsenic	skin	0.061	0.030	0.091
							Aluminum	gastrointestinal tract	0.056	0.028	0.084
			(Total)	9.75E-06	4.88E-06	1.46E-05	(Total)		0.117	0.058	0.175
			Total Risk Across All Wetlands			3,31E-05	Total Hazard Index Across All Wetlands			0.28	

Figure 10-10-2 shows the probability percentage of blood lead levels for the hypothetical child receptor. Based on this model output, the geometric mean blood level is estimated to be $2.7~\mu g/dL$, and the probability of blood lead levels in excess of $10~\mu g/dL$ is 0.28%. USEPA generally considers media concentrations that result in probability percentage estimates of 5% or less sufficiently protective of potential child receptors. As a result, surface water lead concentrations at Wetland 15 would not require specific action under the hypothetical exposure scenario.

10.10.5.7 Remedial Goal Options

RGOs were developed in accordance with USEPA Region IV Supplemental Guidance to RAGS Bulletin 5, Remedial Options (USEPA, 1996a). Arsenic was identified as a COC for both sediment and surface water for Wetland 15. Because arsenic was identified as a COC for both media based only on cancer risk estimates and not based on hazard index estimates, only risk based RGOs were developed.

Adolescent Trespasser

As shown in Table 10-10-8, the maximum sediment concentration of 141 mg/kg-day, used as an exposure point concentration, resulted in a risk estimate of 1.15E-5 for arsenic. Using a linear ratio, a target risk of 1E-6 would result from 12.24 mg/kg. Therefore, 122.4 mg/kg and 1224 mg/kg represent target risks of 1E-5 and 1E-4, respectively. An exposure point concentration of 0.0688 mg/L for arsenic in surface water resulted in a risk estimate of 1.24E-5, as shown in Table 10-10-10. Using a linear ratio, 0.0056 mg/L would correspond with a target risk of 1E-6. Therefore, 0.056 mg/L and 0.56 mg/L represent target risks of 1E-5 and 1E-4, respectively.

Figure 10-10-2 Probability Percentage of Blood Lead Levels

Final Remedial Investigation Report NAS Pensacola Site 41 Section 10: Site-Specific Evaluations August 31, 2000

This page intentionally left blank.

Table 10-10-18 Lead Model (Version 0.99d) Inputs and Results NAS Pensacola, Wetland 15 Pensacola, Florida

AIR CONCENTRATION: $0.100 \mu g Pb/m3$ DEFAULT

Indoor AIR Pb Conc: 30.0 percent of outdoor.

Other AIR Parameters:

Age	Time Outdoors (hr)	Vent. Rate (m3/day)	Lung Abs. (%)
0-1	1.0	2.0	32.0
1-2	2.0	3.0	32.0
2-3	3.0	5.0	32.0
3-4	4.0	5.0	32.0
4-5	4.0	5.0	32.0
5-6	4.0	7.0	32.0
6-7	4.0	7.0	32.0

DIET: DEFAULT

DRINKING WATER Conc: $4.00~\mu g$ Pb/L DEFAULT

WATER Consumption: DEFAULT

SOIL & DUST:

Soil: constant conc.

Dust: constant conc.

Age	Soil (µg Pb/g)	House Dust (µg Pb/g)
0-1	200.0	200.0
1-2	200.0	200.0
2-3	200.0	200.0
3-4	200.0	200.0
4-5	200.0	200.0
5-6	200.0	200.0
6-7	200.0	200.0

Additional Dust Sources: None DEFAULT

Alternative Source Intake: Wetland 15 surface water

6-7: 0.49 μg Pb/day

MATERNAL CONTRIBUTION: Infant Model Maternal Blood Conc: 2.50 µg Pb/dL

CALCULATED BLOOD Pb and Pb UPTAKES:

YEAR	Blood Level (µg/dL)	Total Uptake (μg/day)	Soil+Dust Uptake (µg/day)	Diet Uptake (μg/day)	Water Uptake (μg/day)	Alt. Source Uptake (μg/day)	Air Uptake (μg/day)
0.5-1:	4.1	7.60	4.68	2.54	0.37	0.00	0.02
1-2:	4.5	10.93	7.36	2.63	0.91	0.00	0.03
2-3:	4.2	11.44	7.44	2.98	0.96	0.00	0.06
3-4:	4.0	11.48	7.53	2.90	0.99	0.00	0.07
4-5:	3.4	9.65	5 .69	2.85	1.04	0.00	0.07
5-6:	3.0	9.39	5.16	3.03	1.11	0.00	0.09
6-7:	2.7	9.70	4.89	3.35	1.13	0.23	0.09

August 31, 2000

Maintenance Worker

As shown in Table 10-10-13, the sediment exposure point concentration of 141 mg/kg-day resulted in a risk estimate of 1.85E-5 for arsenic. Using a linear ratio, a target risk of 1E-6 would result from 7.48 mg/kg. Therefore, 74.8 mg/kg and 748 mg/kg represent target risks of 1E-5 and 1E-4, respectively. A surface water exposure point concentration of 0.0688 mg/L resulted in a risk estimate of 1.46E-5, as shown in Table 10-10-15. Using a linear ratio, 0.0047 mg/L would correspond with a target risk of 1E-6. Therefore, 0.047 mg/L and 0.47 mg/L represent target risks of 1E-5 and 1E-4, respectively.

10.10.6 Conclusions and Recommendations

Wetlands 16 and 18 were sampled to represent the Group C wetlands in Phase IIB/III. Wetland 15 has similar contaminants (metals and pesticides/PCBs) as Wetlands 16 and 18, and is also tidally influenced by Bayou Grande. Comparison of Wetland 15 to the Group C representative wetlands (Wetlands 16 and 18) indicate no excess risk for sediment and surface water at Wetland 15.

The HHRA identified arsenic as a sediment COPC, and aluminum, arsenic, and lead as surface water COPCs at Wetland 15. However, since the wetland has no recreational value for swimming or fishing and is not routinely entered by maintenance workers (due to the thick vegetation and the potential for encountering poisonous snakes, such as the cottonmouth), the potential for incidental ingestion of sediment or surface water is considered low.

Because of the limited overall ecological risk at Wetland 15, and the limited potential for sediment or surface water ingestion by adolescent trespassers or maintenance workers, no further action is recommended for Wetland 15.

10.11 WETLAND 6

10.11.1 Site Description

Wetland 6 is a tile lined drainage ditch that originates at the parade grounds north of the NAS Pensacola Chapel and drains to the north into the Yacht Basin. Parsons and Pruitt described this area as a riverine wetland with open water (USEPA, 1991). Wetland 6 is roughly eight feet wide and three feet deep, with water depth averaging one to two feet. Portions of Wetland 6 are tidally influenced. It receives surface water and storm water runoff from various places along the eastern portion of the base including:

- The area near the NAS Pensacola Chapel and surrounding parade grounds.
- The western portion of NATTC at the former Chevalier Field.
- The area behind Buildings 3220 and 3440 (to the west of the former Chevalier Field).
- Wetland 5B, which receives surface water from Wetland 5A and the surrounding area.
- The storage yard used by the Defense Reutilization and Marketing Office (DRMO) at the Naval Supply Center.

Wetland 6 flows north, past NATTC, discharging into the southernmost portion of the Yacht Basin (Wetland 64). Wetland 6 is surrounded by either landscape areas, buildings and/or development, or isolated areas of highly disturbed vegetation. Vegetation growing in Wetland 6 includes duck potato (Sagittaria sp.). Small fish and crayfish have also been seen in Wetland 6. Since this wetland is a drainage ditch, it is periodically cleared of vegetation by base landscaping contractors. Sediment in Wetland 6 is very sandy, with a maximum TOC content of 4% detected.

IR sites potentially affecting Wetland 5 include Sites 9, 10, 12, 25, 26, 27, 29, and 34, which are all adjacent to or near this wetland. Site 9 was used as the station disposal site for the old Navy yard. Site 10 (Commodore's Pond) was used in the mid-nineteenth century for underwater storage of wooden timbers for shipbuilding. Site 12 (Scrap Bins) was the location

Final Remedial Investigation Report NAS Pensacola Site 41 Section 10: Site-Specific Evaluations August 31, 2000

where wet garbage was deposited in receptacles from the early thirties through the forties, and is currently used as a storage yard by the DRMO. Site 25 (Radium Spill Site) was the location of a radium spill which occurred in 1978. Site 26 (Supply Department Outside Storage) was the industrial chemical storage location from 1956 through 1964, and is still used to store various chemicals. Site 27 (Radium Dial Shop Sanitary Sewer) was associated with the Radium Dial Shop in Building 709 from 1940 to 1976. Site 29 (Soil South of Building 3460) is where several workers conducting an excavation received minor skin burns from contact with a black, oily liquid found in the soil in 1981. Site 34 (Solvent north of Building 3557) is the location of a 1984 solvent spill which occurred at a tank farm to the north of Building 3557.

10.11.2 Nature and Extent

The methods for evaluating nature and extent are presented in Section 6. Figure 10-11-1 denotes Phase IIA Wetland 6 sampling locations.

Sediment

Twenty-three metals were detected in Wetland 6 sediment samples. Six metals, including cadmium (four locations), chromium (one location), copper (three locations), lead (five locations), silver (one location), and zinc (one location), exceeded sediment benchmark levels. Twelve pesticides were detected in Wetland 6 sediment samples, including 4,4' DDT and its metabolites, aldrin, alpha/beta-BHC, dieldrin, endrin, endrin aldehyde, heptachlor, and alpha/gamma-chlordane. DDT and/or its metabolites exceeded benchmark levels at 10M01, 0601, 0602, 0603, 0604, 0605, 0606, 0607, and 0608. However, basewide levels were only exceeded for 4,4'-DDE (110 ppb at location 0601) and 4,4'-DDT (260 ppb/52 ppb at locations 0601 and 0603). Basewide levels are presented in Section 6. Dieldrin also exceeded its benchmark sediment level at five locations. Endrin exceeded its benchmark level (3.3 ppb) at 0607 (3.6 ppb). The PCBs Aroclor-1254/1260 were also detected; however, no PCB concentration exceeded sediment screening levels. Fifteen SVOCs were detected in Wetland 6 sediment samples, including 11 high and low molecular weight PAHs, and four phthalate esters. Three PAHs exceeded sediment benchmark levels, including acenaphthene (34 ppb at location 0604), chrysene

(300 ppb at location 0607), and fluoranthene (120 ppb at location 0602). Eight VOCs, including 1,1,1-trichloroethane, 1,1-dichloroethene, acetone (a common laboratory contaminant), chlorobenzene, chloroethane, tetrachloroethane, toluene, and trichloroethene were detected.

Table 10-11-1 shows the Wetland 6 Phase IIA sediment sample results (frequency of detection, range of detected concentrations, and average detected concentration). Table 10-11-2 compares detected concentrations at each sample location to sediment benchmark levels, and lists calculated HQs for each parameter. Only detected parameters with benchmark levels are presented in Table 10-11-2. The HQs will be further discussed in the ecological risk section (Section 10.11.4).

Surface Water

Thirteen metals were detected in Wetland 6 surface water samples. Aluminum (287 ppb), cyanide (5.6 ppb), mercury (0.88 ppb), and lead (3.1 ppb) exceeded surface water criteria at sample location 0610. Aluminum also exceeded surface water criteria at sample location 0607 (406 ppb). No pesticides or PCBs were detected in Wetland 6 surface water. Bis(2-ethylhexyl)phthalate was the only SVOC detection in Wetland 6 surface water samples, exceeding its surface water quality criteria (0.3 ppb) at sample location 0610 (3 ppb). Six VOCs were detected in Wetland 6 surface water samples, including 1,1,1-trichloroethane, 1,1-dichloroethane, 1,1-dichloroethene, cis-1,2-dichloroethene, methylene chloride (a common laboratory contaminant), and trichloroethene. 1,1-dichloroethene (8 ppb) exceeded its surface water quality criteria (3.2 ppb) at sample location 0610.

Table 10-11-1
Phase IIA Detected Concentrations in Wetland 6 Sediments

Parameter	Frequency of Detection	Range of Detected Concentrations	Average Detected Concentration
Inorganics (mg/kg)			
Aluminum (Al)	12/12	313 - 5980	1561
Antimony (Sb)	2/12	0.16 - 0.32	0.24
Arsenic (As)	9/12	0.14 - 2.1	0.70
Barium (Ba)	11/12	1 - 37	9.54
Beryllium (Be)	3/12	0.1 - 0.14	0.12
Cadmium (Cd)	9/12	0.19 - 5.4	1.00
Calcium (Ca)	12/12	62.5 - 8370	2147,13
Chromium (Cr)	11/12	0.56 - 73.5	15.59
Cobalt (Co)	7/12	0.18 - 20.7	3.53
Copper (Cu)	11/12	0.97 - 48.2	13.04
Iron (Fe)	12/12	328 - 4320	1336:33
Lead (Pb)	12/12	6 - 147	31.5
Magnesium (Mg)	11/12	27.3 - 1180	386.25
Manganese (Mn)	11/12	1.2 - 35.2	13.39
Mercury (Hg)	1/12	0.11	0.11
Nickel (Ni)	7/12	0.84 - 4.3	2.06
Potassium (K)	11/12	9.6 - 161	55.09
Selenium (Se)	1/12	0.85	0.85
Silver (Ag)	1/12	0.89	0.89
Sodium (Na)	9/12	4.9 - 105	33.93
Thallium (T1)	2/12	0.67 - 0.68	0.68
Vanadium (V)	12/12	0.6 - 11.3	2.83
Zinc (Zn)	11/12	9.7 - 207	54.67
Pesticides and PCBs (μg/kg)			
4,4'-DDD	12/12	0.21 - 40	12.08
4,4'-DDE	11/12	0.23 - 110	21.17
4,4'-DDT	11/12	0.22 - 260	31.71
Aldrin	5/12	0.23 - 1.1	0.59
Aroclor-1254	1/12	9.5	9.5
Aroclor-1260	3/12	0.82 - 4.1	2.91
Dieldrin	8/12	0.24 - 10	3.44
Endrin	4/12	1.8 - 3.6	2.5
Endrin aldehyde	1/12	0.48	0.48
Heptachlor	1/12	0.16	0.16
alpha-BHC	2/12	0,48 - 0,6	0.54
alpha-Chlordane	6/12	0.15 - 1.7	0.84
beta-BHC	3/12	0.16 - 2.8	1.49
gamma-Chlordane	6/12	0.19 - 1.2	0.52

Table 10-11-1
Phase IIA Detected Concentrations in Wetland 6 Sediments

Parameter	Frequency of Detection	Range of Detected Concentrations	Average Detected Concentration
SVOCs (μg/kg)			
Acenaphthene	1/11	34	34
Benzo(a)anthracene	3/11	34 - 43	39
Benzo(a)pyrene	4/11	23 - 42	32.5
Benzo(b)fluoranthene	5/11	27 - 340	107.8
Benzo(g,h;i)perylene	2/11 :	29 - 32	30.5
Benzo(k)fluoranthene	2/11	21 - 24	22.5
Butylbenzylphthalate	6/11	22=30	25.17
Chrysene	4/11	21 - 300	105,25
Di-n-butylphthalate	4/11	29 - 99	57.25
Di-n-octyl phthalate	1/11	84	84
Diethylphthalate	\$ 1/11	23	23
Fluoranthene	4/11	42 - 120	79.25
Indeno(1,2,3-cd)pyrene	2/11	27 - 28	27.5
Phenanthrene	2/11	37 - 51	44
Pyrene	4/11	52 - 100	73.5
VOCs (μg/kg)			
1,1,1-Trichloroethane	1/12	4	4
1,1-Dichloroethene	1/12	8	8
Acetone	7/11	13 - 4000	743.86
Chlorobenzene	1/12	2	2
Chloroethane	1/12	2	2
Tetrachloroethene	2/12	2 - 4	3
Toluene	3/12	4 - 14	8
Trichloroethene	3/12	2 - 5	3.33

Notes:

All results are in micrograms per kilogram ($\mu g/kg$) or parts per billion (ppb), except for metals which are in milligrams per kilogram (mg/kg) or parts per million (ppm).

The total number of samples, has been reduced by the number of rejected samples. However, note that no positive results rejected.

Table 10-11-2 Wetland 6 Phase IIA Sediment Concentrations Compared to Benchmark Levels

Sample Location	Parameter	Detected Concentration	Sediment Benchmark Value (SBV)	НО	SBV Reference
D. C. Landon					
010M000101		NS. 1		4000	
4,4'-DDD (UG/KG)		37 1	1,22	30.33	11
4.4-DDE (UG/KG)		29 1	2,07	14.01	
A.A-DDT (UG/KG)		0.4	1 (9.	9.24	D.
Copper (MG/KG)		14 2 1	18.7	0,76	ati
Lead (MG/KG)		314	30.2	1.04	ala
Nickel (MG/KG)		4.3	159	0,27	ab
Zine (MG/KG)		59,6 J	124	0,48	èb
manufacture.			1000	-53	-
M4000/108/a		STATE OF THE PARTY OF	100	- 86	-
AFOREST STREET		III 154301			140
1100334968			-	1 (Are)	-
MINISTER		100	2.00		100
NAME OF TAXABLE PARTY.		- X	117	100	DOM: N
-	84 , (111)	D 10 10 10 10 10 10 10 10 10 10 10 10 10	2.46	- 140	100
2000,000		DI DINGE	-06	36.3	
-		100	and the same of	100	140
STREET, SQUARE,					- 13
Coar Money			100		100
Company of the last		001	- 12	-	
THE REAL PROPERTY.		215	100	- 550	
Commence have		- M.	1000	100	
Maria Maria		400	The second	1.00	150
PH MINE		150	100		245
Delicated Diff.	•			155	
Tana Tanasa		-20	111.500	1550	100
-		No.			200
U41M060201					
4.4' DDD (UG/KG)		31 1	7.32	2.54	6
4,4'-DDE (UG/KG)		28 1	2.07	1.36	fi
4,4'-DDT (UG/KG)		0.35 J	1 18	0,29	b
alpha-Chlordane (UG/KG)		0.23 1	1.7	0.14	10
Aroclor-1254 (UG/KG)		9.5 1	216	0.84	ь
Arsenic (MG/KG)		0.28 .1	7.24	0.04	a b
Benzo(a)anthracene (UG/KG)		43	74.8	0.57	b
Benzo(a)pyréné (U		42	8.8	0.47	b
Cagmium (MG/KG)		6,33	0.68	0.49	b

USEPA Screening Concentration for Sediment - EPA SSVs

⁽b) FDEP Sediment Quality Assessment Guidelines - FDEP SQAGs

Some of the numbers in the table may vary because of rounding. Basewide levels (detailed in Section 8) for DDT and its metabolites.

Basewide level for 4,4'-DDE is 40 ppb. Basewide level for 4,4'-DDD is 50 ppb. Basewide level for 4,4'-DDT is 20 ppb.

Table 10-11-2 Wetland & Phase IIA Sediment Concentrations Compared to Benchmark Levels

Sample Location	Parameter	Detected Goncentration	Sediment Benchmark Value (SBV)	но	SBV Reference
Chromium (M	ig/kg)	2	52,3	0.04	ab
Chrysene (U)	3/KG)	45	108	0.42	ь
Copper (MG/		8,3 J	18,7	0.44	a bo
Fluoranthane		120	113	1.00	ь
gamma-Chlory	dane (UG/KG)	0/2 1	1.7	0.12	2
Lead (MG/KG	The second secon	10.9.4	30,2	0.36	ab
Nickel (MG/K	G)	G.84 1	15.9	0.05	ab
Phenanthrene		37 J	86.7	0.43	16
Pyrane (UG/		100	153	0,65	6
Zine (MG/KG		29,5 J	124	D 24	ab
PRIMINA				N/A	
or other law			ALC: UNKNOWN		-
STATE OF THE		BIO 4000			88.00
THE PERSON NAMED IN	_		200	200	-
-	Tables 1		-	100	-
State of Sept		400		100	799
1000		THE RESERVE	0.00	1000	10/200
-		1000	1000	100	-
1000	-	0.00	W1		200
Time Inch	2011	Test (St.		-	227
Transport Contract		4.0	111	- 20	
Description 14/200			-	-	
-			100	- 720	
NAME AND ADDRESS OF			200	120	200
-		B. 127.281		122	100
Di BORG		300	- 2	100	-
041M060401		-			
100 mm 10	- IUA	Cont. S.	200	W 1000	100
4,4'-DDD (UC		234	7.22	1.89	ь
4.4'-DDE (US		4.3	2.07	2 00	6
4,4-DOT (UG		2 1	1.19	1.68	ь
Acenaphthene		34	671	5.07	ь
Chromium (M		0,85	52,3	0.02	ab
Chrysene (UK		21 1	108	0.19	þ
Copper (MG/)		13.6 J	18.7	0.73	3.0
Fluoranthane		42	113	0.37	b
Lead (MG/KG	i)	16.2 J	30.2	0.54	ab
Programme TF Com. In.	LOW.	72.27		1 miles (1 m	

52

153

0.34

ь

Pyrene (UG/KG)

⁽a) USEPA Screening Concentration for Sediment - EPA SSVs
(b) FDEP Sediment Quality Assessment Guidelines - FDEP SQAGs

Some of the numbers in the table may vary because of rounding.

Basewide levels (detailed in Section 6) for DOT and its metabolites

Basewide level for 4,4'-DDE is 40 ppb. Basewide level for 4,4'-DDD is 50 ppb.

Basevide level for 4,44DDT is 20 ppb.

Table 10-11-2 Wetland 6 Phase IIA Sediment Concentrations Compared to Benchmark Levels

Sample Location	Parameter	Detected Concentration	Sediment Benchmark Value (SBV)	HQ	SBV Reference
Zinc (MG/KG)		28.1 3	124	0.23	ab
-				200	79
DAYMON	4	THE R. P. LEWIS CO., LANSING	la .	-	4.7
APPROXIMATE AND ADDRESS.	-1	160	100	200	100
LOCKED BOOK		100	1175	-	
(Silling St)	***	1000	200	1000	9.6
Come Inches		400	1.00	100	9.8
Cittory (Cittor)		49.0	100	-	
-		400	No.	Name of	Alter
be mind		13.45	100	77	Alt
041M080601					
4.4'-DDD (UG/	(G)	83 D	1,22	5.80	b
4,4'-DDE (UG/)		a D	2.07	3.86	to
4,4-DDT (UG/		4.8 J	1 19	4 03	6
alpha-Chlordani	The state of the s	0.25 J	17	6:15	a
Antimony (MG/		0.32 1	12	9,03	a
Arocioi-1260 (L	Mary and the second	211	21.5	0.19	6
Arsenic (MG/K)		1:4	7.24	0,19	a.b.
Berizo(a)anthra		46 J	74.8	0.53	b
Benzo(a)pyrane		32 J	88.8	0.36	6
Gadmium (MG/	and the state of t	0.76	0.68	112	b
Chromium (MG		7.6	52.3	0,14	a b
Copper (MG/KC		19	18.7	1.02	a to
Dieldrin (UG/K)		4.7	0.72	6.53	Ð
Fluoranthene (I		B7	113	0.59	ь
gamma-Chlorda	to the same of the	015 J	1.7	0.11	9
Lead (MG/KG)	C. Control	49 1	30.2	1.63	36
Nickel (MG/KG	1	1.3 J	15.9	80.0	ab
Pyrene (UG/KG		69	153	0.45	a
Zinc (MG/KG)		75.7	124	0.61	ab
Personal Property lies					
THE TOP	0	400	(0.)	16.00	1
TANKETON		9.1	1,000	9.11	0.
NAMES AND		-4.0	0.00	18,28	- 1
1		100 100 400	0.	0.48	Sec.
The state of		100	100	A.Ser III	- 44

Mores.

Some of the numbers in the table may vary because of rounding. Basewide levels (detailed in Section 6) for DDT and its metabolities.

Basewids level for 4.4'-DDE is 40 ppb.

Basewide level for 4,4'-DDD is 60 ppb. Basewide level for 4,4'-DDT is 20 ppb.

⁽a) USEPA Screening Concentration for Sediment - EPA SSVs (b) FDEP Sediment Quality Assessment Guidalines - FDEP SQAGs.

Table 10-11-2

Wetland 6

Phase IIA Sediment Concentrations Compared to Benchmark Levels

Sample Location	Parameter	Detected Concentration	Sadiment Benchmark Value (SBV)	на	SBV Reference
-	Name of Street	THE R. LEWIS CO., LANSING	THE REAL PROPERTY.	THE REAL PROPERTY.	CONTRACT OF
1	-	10 PM: 10		1000	100
The last	-			214(5)	1000
See Service		THE RESERVE	250	1240	100
James Jilling		March Co.	THE REAL PROPERTY.	0.46	100.00
		THE PARTY	100	III FEEL	100
2003	A PROPERTY OF		100	NO.	100
No. of Street,			1 X X X X X X X X X X X X X X X X X X X	100	III DAG
PHI CHINE		100.00	Marie Marie Street	110	THE REAL PROPERTY.
(market)		44	100	100	178
100		THE CO.	AND DESCRIPTION OF THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUM	CAR	
			(MA)	No.	156
41M060801					
4,4'-DDD (UG/	KG3	5.4 D	1.22	3.25	b.
4,4-DDE (UG/		8.4 D	2,07	4.06	b.
4,4'-DDT (UG/		4.5 1	1.19	3.78	h
alpha-Chlordan		1.2	17	0.71	a.
Arsenic (MG/K	The second secon	0.14 1	724	0.02	ab
Cadmium (MG		0.19 J	0.68	0.28	В
Chramium (MC		198	52,3	0.37	аb
Capper (MG/K		0.97 1	19.7	0.05	alx
Dieldrin (UG/K		56	0.72	7.78	ь
Endrin (UG/KG	4.0	18.4	3.3	0.55	a
Endrin aldehyda	**	9.48 4	33	0.15	8
gamma-Chlorda		0.44 1	1.7	0.26	8
Lead (MG/KG)		6.8	30,2	0,22	ab
- Community					
A Real Property lies		344	166	-	-
Charles and	Article States	200	110	500	1.0
Distribution.	1000	676.4	381	1000	10
Desired Street	B 100 - 100	2400	144	100	1.66
derivate place		100.0	36	100	100
Service Will	40 1 1 10		-61	- 15 M	LAR
Times Section		20	163	U.S.	AA AA
MANAGEMENT		1964	April .	Charles	243
De marie		100.00	COLUMN TO	100	- 32

Notes:

(a) USEPA Screening Concentration for Sediment - EPA SSVs
(b) FDEP Sediment Quality Assessment Guidelines - FDEP SQAGs
Some of the numbers in the table may vary because of rounding.
Basewide levels (detailed in Saction 6) for DDT and its metabolites
Basewide level for 4,4-DDE is 40 ppb.
Basewide level for 4,4-DDD is 50 ppb
Basewide level for 4,4-DDD is 20 ppb.

Table 10-11-2 Wetland 6 Phase IIA Sediment Concentrations Compared to Benchmark Levels

Sample Location	Parameter	Detected Concentration	Sediment Benchmark Value (SBV)	на	SBV Reference
SEASONS !!		NAME OF TAXABLE PARTY.	or Miller	100	BL/S
AFFERDRE		THE RESERVE TO SHARE THE PARTY NAMED IN		- 1100	
CARL CO.	_	100	100	0.00	-
Distance and	M-1 1	THE OWNER OF	70.00	100	
	CONT. (1)	400	.01	200	
1	-	LIG	Tie-	- 0.00	DATE
1900		480	Tak.	0.0	m e
1000	_	104	- Mark	100	146
Television Service		April 1	MY		100
-	A-3000	271	Art.		
Hell Blots		1000	44		-FT
NAME				-	- 100
D41M061101				_	
4.4'-DDD (UG	/KG)	0.21 J	1.22	0.17	D
4,4'-DDE (UG		0.29	2.07	0.14	15
Arocloi-1260		3.8 1	21.6	0.18	6
Arsenic (MG/I		0.3 J	7.24	0.04	ab
Benzo(a)pyren		23 J	83.8	0.26	
Cadmium (MC		0.72	0.69	1.06	b
Chromum (M	G/KG)	22.4	52.3	0.43	30
Cooper (MG/)		4	18.7	0.21	ab
Dieldrin (UG/)		0.3 1	0.72	0.42	to
Lead (MG/KG		B	30.2	0.20	ab
Nickel (MG/K	3)	0.96 J	15.91	0.08	ab
Zine (MG/KG)	1.0	18.3	124	0.15	ati

⁽a) USEPA Screening Concentration for Sediment - EPA SSVs (b) FDEP Sediment Quality Assessment Guidelines - FDEP SQASs

Some of the numbers in the table may vary because of rounding. Basewide levels (defailed in Section 6) for DDT and its metabolites Basewide level for 4.4'-DDE is 40 ppb Basewide level for 4.4'-DDD is 50 ppb.

Basewide level for 4,4-DDT is 20 ppb.

Table 10-11-3 shows the Wetland 6 Phase IIA surface water sample results (frequency of detection, range of detected concentrations, and average detected concentration). Table 10-11-4 compares detected concentrations at each sample location to surface water quality criteria and lists calculated HQs for each parameter. Only the detected parameters with water quality criteria are presented in Table 10-11-4. The HQs will be further discussed in the ecological risk section (Section 10.11.4).

Table 10-11-3
Phase IIA Detected Concentrations in Wetland 6 Surface Water

Parameter	Frequency of Detection	Range of Detected Concentrations	Average Detected Concentration
Inorganics (μg/L)			
Aluminum (Al)	2/3	287 - 406	346:5
Barium (Ba)	2/3	15.9 - 30.5	23.2
Calcium (Ca)	3/3	18300 - 24700	20700
Cyanide (CN)	1/3	5.6	5.6
Iron (Fe)	3/3	334 - 870	526.67
Lead (Pb)	2/3	1.2 - 3.1	2.15
Magnesium (Mg)	3/3	1910 - 3480	2610
Manganese (Mn)	3/3	19.5 - 55.7	36.2
Mercury (Hg)	1/3	0.88	0.88
Potassium (K)	3/3	1520 - 3050	2163
Sodium (Na)	3/3	10300 - 13800	11966.67
Thallium (Ti)	1/3	3.3	3.3
Vanadium (V)	2/3	2.1 - 2.3	2.2
SVOCs (μg/L)			
bis(2-Ethylhexyl)phthalate (BEHP)	1/3	3	3
VOCs (μg/L)			
1,1-Dichloroethane	1/3	5	5
1,1-Dichloroethene	1/3	8	8
1,1,1-Trichloroethane	1/3	5	5
cis-1,2-Dichloroethene	1/3	2	2
Methylene chloride	1/3	13	13
Trichloroethene	1/3	1	1

Note:

All results are in micrograms per liter ($\mu g/L$) or parts per billion (ppb).

Table 10-11-4(1) Wetland 6 Phase IIA Surface Water Concentrations Compared to Water Quality Criteria

Sample Location	Parameter	UOM	Detected Concentration	Water Quality Criteria	но	Criteria Reference
041W060301	Freshwater					
tron	6.0000000000000000000000000000000000000	UG/L	334.0	1,000 0	0.334	9.6
HIPPORT!	(Aubier)					
(Inches)			190	-	10000	
44.		-	0-	1,000	Digital Control	100
A 100 C				350	200	- 2
-		1 400		1,000	Contract of	
Odfe:		1.00	- 19	911	-	-
041W061001	Freshwater	-		-	-	
1,1,1-Trichloroe	0.16610.466	UG/L	50	528.0	0.00947	- 4
1.1-Dichlorosth		UGA	8.0	3.2	2.5	b
Aluminum	No.	OG/L	287.0	87.0	3.29885	2
bis(2 Ethylhexy)phthalate (BEHP)	DG/L	3.0	0.3	10.0	a
Cyanida (CN)	Washington &	UG/L	5,6	6.2	1.07692	аb
Iron		UG/L	87D.0	1,000,0	0.87	a.c.
Lead		UG/L	3.1	171	1 81287	85
Mercury		t)G/L	0.85	0.012	73.33383	ab
Trichtoraethane		UG/L	1,0	80.7	0.01239	Ď

Notes'

(a) USEPA Water Quality Criteria (1995)
 (b) FDEP Class III Water Quality Criteria (1996)
 Some of the numbers in the table may very because of rounding.

10.11.3 Fate and Transport

The pathways evaluated for the wetland specific fate and transport correlate to those identified in the conceptual model presented in Section 9. These pathways include: surface water/sediment transport into the wetland; groundwater discharge into the wetland; sediment/surface water transport within the wetland; sediment leaching to surface water within the wetland; and surface water/sediment transport from the wetland. Sediment transport and storm water runoff data are lacking; thus the evaluation is qualitative in nature. The method of evaluating leaching from sediment to surface water was presented in Section 9. Table 10-11-5 presents those contaminants present in sediment above benchmark levels and their calculated SSLs. Contaminants present in surface water above water quality criteria were presented on Table 10-11-4.

Transport Into the Wetland

Surface Water/Sediment Pathway

Based on landform and watershed analyses, the following sources can contribute contamination to Wetland 6 through this pathway:

Potential storm water runoff and sediment entrainment from Sites 9, 29, 34, 10, 12, and 26; numerous stormwater scuppers along the NATTC complex and drainage from Murray Road; direct surface water drainage from Wetland 5, which receives runoff from Sites 30, 25, and 27.

The presence of sediment contaminants above benchmark levels (see Table 10-11-5) validates the sediment transport pathway and by inference the surface water pathway. Additionally, there were four inorganics and two organics present in surface water above water quality criteria, further validating the pathway.

Table 10-11-5
Calculated Sediment Screening Values for Wetland 6

Parameter	USEPA or FDEP Surface Water Standard	Kd	SSL DF = 100	Maximum Concentration Detected	Leaching Potential DF = 100
Inorganics	(ppb)		(ррш)	(ррт)	
Cadmium	0.774 ^{4, b}	7:5E+01	5.82	5.4	NO
Chromium	11 a, b	1.9E+01	21.04	73.5	YES
Copper	7.826	4.3E+02	335.5	48.2	NO
Lead	1.71 a, b	9E+02	153.9	147	NO
Silver	0.07 b	8.3	59	0.89	NO
Zinc	70.2 a, b	6.2E+01	436.2	207	NO
Organics	(ppb)		(ppb)	(ppb)	
4,4 DDE	10.5	3.33E±04	3.50E+07	110	NO.5
4,4 DDD	0.0064 a	7.45E+03	4.77E+03	40	NO
4,4 DDT	0.001 ^{-a, b}	1.96E+04	1.96E+03	260	NO
Alpha Chlordane	0.004 a, b	9.00E+02	3.6E+02	0.70	NO
Dieldrin	0.0019 a, b	1.6E+02	3.04E+01	10	NO
Endrin	0.0023 a.b	9.22E+01	2.12E+01	3.60	NO
Acenaphthene	17 *	58.17	9.91E+04	34	NO
Chrysene	0.031 b	2.96E+03	9.19E+03	300	NO
Fluoranthene	39.8 *	7.98E+02	3.18E+06	120	NO NO

Notes:

Kd for organics calculated using foc of 0.0075 (numerical average of all sediment samples).

Kds are from: USEPA, 1996b (first preference); Superfund Chemical Data Matrix (USEPA, 1996c) (second preference); Texas Risk Reduction Program Concept Document 2, Volume 1, Appendix VII, 1996 (third preference); TERRA Model, Oak Ridge National Laboratory, 1984 (fourth preference — primary reference for inorganics).

Kd = normalized partitioning coefficient.

SSL = sediment screening level.

DF = dilution factor.

a = USEPA Freshwater Surface Water Chronic Screening Value (1995a).

b = FDEP Class III Water Quality Criteria (1996).

Groundwater Discharge Pathway

Based on potentiometric analysis, the primary potential source that would directly contribute contamination to Wetland 6 through this pathway are Sites 9, 10, 12, 26 and 29; indirect sources include Sites 30, 25, and 27. Groundwater at Sites 9, 10, 12, 26 and 29 is not contaminated, but at Sites 30, 25, and 27 groundwater is contaminated; therefore the pathway is considered valid.

Transport within the Wetland

Surface Water/Sediment Migration Pathway

The configuration of Wetland 6, along with landform analysis, indicates that the surface water and sediment transport will occur to the north, towards Wetland 64, and eventually Bayou Grande. It is conceivable that during periods of very high tides or storm surges that some back flushing of surface water will occur, particularly within the northern portion of Wetland 6. Surface water and sediment can therefore be considered to be mobile, and the pathway valid.

Sediment Leaching to Surface Water Pathway

Nine organics — six pesticides and three semivolatiles — and six inorganics, exceeded their benchmark levels, but only one inorganic exceeded its calculated SSL. The source for inorganics and semivolatiles in sediment is likely associated with storm water drainage from the former Chevalier Field, and surface water drainage from Wetland 5, while pesticides are the likely representative of residual from surface application near the wetland. There were four inorganics and two organics present in surface water above water quality criteria, but only lead exceeded its benchmark level in sediment. Except for chromium, the sources for these parameters in surface water may be attributed to the surface water and groundwater discharge pathways, while sediment leaching may be contributing to the chromium concentration. Given that chromium did exceed its SSL but is below its surface water criteria, the sediment leaching pathway is considered valid.

Transport from the Wetland

Transport of surface water and sediment from Wetland 6 can be expected to occur towards the north into Wetland 64, and eventually into the Bayou Grande system. Therefore sediment and surface water contamination can be expected to be mobile and not remain within the wetland.

10.11.4 Ecological Risk Assessment

HQs for Wetland 6 sediment samples are presented in Table 10-11-2. Phase IIA sediment sample results compared to the appropriate sediment benchmark levels revealed HQs above 1 for cadmium (four locations), chromium (one location), copper (three locations), lead (five locations), silver (one location), and zinc (one location). HQs were greater than 1 for 4,4'-DDT and/or its metabolites at 10M01, 0601, 0602, 0603, 0604, 0605, 0606, 0607, and 0608. Dieldrin had a HQ above 1 at five locations, and endrin at one location. Three PAHs had HQs greater than 1, including acenaphthene (5.07 at location 0604), chrysene (2.78 at location 0607), and fluoranthene (1.06 at location 0602). Phase IIA surface water results revealed HQs greater than 1 for aluminum at sample locations 0607 (4.67) and 0610 (3.29); as well as cyanide (1.08), mercury (76.33), and lead (1.81) at sample location 0610. Bis(2-ethylhexyl)phthalate had a HQ of 10 at location 0610. The VOC 1,1-dichloroethene also had an HQ above 1 at sample location 0610 (2.5). HQs greater than one indicate a potential for excess risk.

Wetland 6 was classified in Group D (all wetlands in the group appear as man-made drainage ditches and have limited ecological receptors) and was not studied further in Phase IIB/III. Color-codes, groupings and rationale for classification are described in Section 7.

10.11.5 Human Health Risk Assessment

10.11.5.1 Samples Included

Sediment

041M060101, 041M060201, 041M060301, 041M060401, 041M060501, 041M060601, 041M060701, 041M060801, 041M060901, 041M061001, 041M061101, 010M000101

Surface Water

041W060701, 041W061001

10.11.5.2 Current and Future Land Use

This wetland is the drainage pathway for the developed eastern part of NAS Pensacola. It is about one mile in length, and traverses the NAS Pensacola parade grounds and the western edge of the NATTC. It has no recreational, swimming, or fishing use, but is in an area where pedestrian traffic would have easy access. Numerous roads either parallel or cross Wetland 6 in several places, making the wetland easily accessible.

10.11.5.3 Fish Tissue COPCs

No fish tissue data were available for this wetland, and this exposure pathway would likely be incomplete; therefore, no COPCs were identified.

10.11.5.4 Sediment COPCs

As shown in Table 10-11-6, no sediment COPCs were identified.

10.11.5.5 Surface Water COPCs

As shown in Table 10-11-7, no surface water COPCs were identified.

10.11.5.6 Risk Summary

No COPCs were identified following the screening comparisons presented above. As a result, no formal human health risk assessment was conducted for Wetland 6.

10.11.6 Conclusions and Recommendations

Wetland 6 is a channelized drainage ditch without a viable aquatic community. In addition, this wetland is not considered a significant source of food or habitat. Therefore, as proposed in the approved RI/FS SAP Addendum, (EnSafe, 1997), this wetland was eliminated for further risk characterization. Since no COPCs were identified for Wetland 6, no formal HHRA was conducted. Because no excess ecological or human health risks are present at Wetland 6, no further action is recommended for this wetland.

TABLE 10-11-6 OCCURRENCE, DISTRIBUTION, AND SELECTION OF CHEMICALS OF POTENTIAL CONCERN NAS PENSACOLA SITE 41

Scenario Timeframe: Current and Future Medium: Sediment Exposure Medium: Sediment Exposure Point: Waltend 5 Sediment

Campaign Campaign																		
Carbonne Chemist Chemi			(1)		(1)						1	(2)	(3)	(4)		(5)	T	(6)
Carbonne Chemist Chemi		1	l		1				1			1			1			1
Control Cont		}	Marinum.	Motor	Mariane			Locasion of	Detection		l	Concentration	Destruction	Add to a constitution		Potential		
Teams	CAS Number	Chemical					Units			Range of Detection Limits	MEAN							
Telephone				Chemies	30.200			Concentration	, ,			Screening		(199) dasa r NG	1	Source		
1989 1989 1989 1989 2				<u> </u>	<u> </u>						<u> </u>		<u> </u>		L			
1199455																	NO	BSL.
1907160 1907				1 -		1								6300000	3800000	N/A	NO	BSL
17840 20 20 20 20 20 20 20																- 1		
				1 -		- 1											1	
192006 Pares 192006 Pares 192006 Pares 192006 Pares				-							11							
Second Property 1979-100				,		, ,										_		
Marker 1.2.1-cliny marker 1.2.1-cliny marker	,					i .												
Seminary Marchanes 12,0000 J				1 -		:					()							
				1 .														
Security Security						' '										-		
200002				ا ر							11							
Section Sect				ا رَ ا														
System S																		
Second S	319846	alpha-BHC		اوا		j j												
9-223 Servicing prints 23-2600 34-2007 34-2000	319857	bels-BHC		J		ا ر	- 1											
Series S	50293					l N												
## ## ## ## ## ## ## #	50328	Benzo(a)pyrene	23.0000	L			UGAKG	010M000101										
9103142 September Septembe			0.1500	L L	1.7000	ا ر ا	UGAG	041M060601	6 / 12	0.10 - 2.20					1	1		
10000 100000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 100000 10000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000 1000000				J	1.2000	J	UGKG	041M060601	6 / 12		0.52							
			34.0000	J	43.0000		UG/KG	041M060101	3 / 11	40.00 - 590.00	39.00	43.00	N/A	30000	19000	C NA	NO	BSL
11-11-Trickformalwane				J		ز	UGAKG	010M000101	8 / 12	0.21 - 4.20	3.44	10,00	N/A	1400	860	C N/A	NO	BSL
T2498 A-ODE				1								4000.00		32000		N N/A	NO	BSL
7-7-7-7-7-7-7-7-7-7-7-7-7-7-7-7-7-7-7-											4,00	4.00	N/A	6300000	9800000	N N/A	NO	BSL
7-4193854 Manganese Alah)				L		1 - 1					2,50		N/A	95000	150000	N N/A	NO.	BSL
7.43985 Magnesse AMP) 27.3000 J 150.000 J 53000 MGKG MMM02001 I 1 / 12 0.00 - 42.50 J 586.25 1180.00 MA				1												- 1		
7.43975 Marganese (MP)						J												
743937 Marcary Pells Marca				1														
7-440097 Policy (Pg) Polic																		
7440274 Polesskim (K) 9 8.000 J 0.800 J 0.800 J 0.800 D N 0.800 D						, ,					11							
7440235 Shew (Ag) 0.8900 J 0.8900 J 0.8900 J MGAKO O.1105000 J MGAKO O.1105000 J MGAKO O.1105000 J MGAKO O.1105000 O.110500 O.1105000 O.110500																		
7440282 Sedwim (%4)				1		1 - 1											1 /	
7440320 Thailbury (TS)				1 1							11							
7.440382 Arismory (8b) 0.1600 J 0.2200 J MGMC 041M060801 2 / 12 0.12 - 3.80 0.24 0.32 NA 130 200 N NA NO BSL 7.440383 Bartum (8a) 1.0000 J 3.7000 MGMC 041M060801 1 1 / 12 2.40 - 2.40 9.54 NA 15 9.2 C NA NO BSL 7.440381 Bartum (8a) 0.1000 J 0.1400 J 0.1400 J MGMC 041M060801 1 1 / 12 2.40 - 2.40 9.54 NA 15 9.2 C NA NO BSL 7.440381 Bartum (8a) 0.1000 J 0.1400 J MGMC 041M060901 1 1 / 12 1.00 - 0.56 1.00 NA 3200 490 N NA NO BSL 7.440431 Chromium (Cr) 0.5600 J 73.5000 MGMC 041M060901 1 1 / 12 1.80 - 1.80 15.89 73.80 NA S50 1500 N NA NO BSL 7.440582 Chromium (Cr) 0.5600 J 20.7000 J MGMC 041M060901 1 7 / 12 0.19 - 0.56 1.00 NA S50 1500 N NA NO BSL 7.440582 Chromium (Cr) 0.5700 J MGMC 041M060901 1 7 / 12 1.80 - 1.80 15.89 73.80 NA S50 1500 N NA NO BSL 7.440582 Chromium (Cr) 0.5700 J MGMC 041M060901 1 7 / 12 1.80 - 1.80 15.89 73.80 NA S50 1500 N NA NO BSL 7.440582 Chromium (Cr) 0.5700 J MGMC 041M060901 1 7 / 12 1.80 - 1.80 15.89 73.80 NA S50 1500 N NA NO BSL 7.440582 Chromium (Cr) 0.5700 J MGMC 041M060901 1 1 / 12 1.80 - 1.80 15.89 73.80 NA S500 1500 N NA NO BSL 7.440582 Chromium (Cr) 0.5700 J MGMC 041M060901 1 1 / 12 1.00 - 40.00 2.00 NA S500 N NA NO BSL 7.440584 Chromium (Cr) 9.5700 J MGMC 041M060901 1 1 / 12 1.00 - 40.00 2.00 NA S500 N NA NO BSL 7.440584 Chromium (Cr) 9.5700 J MGMC 041M060901 1 1 / 12 1.00 - 40.00 2.00 NA S500 N NA NO BSL 7.440584 Chromium (Cr) 9.5700 J J J J J J J J J J J J J J J J J J				-														
7.440.332				L) 1
7440477 Agrigation (Cg)				ادا		ľ												
7440473 Cadmium (Cn) 0.1900 J 6.4000 MG/MG 041M669010 3 / 12 0.06 - 0.13 0.12 0.14 N/A 530 983 C N/A N/O BSL 7440473 Chromium (Cn) 0.5600 J 73.5600 MG/MG 041M66901 1 / 12 1.80 - 1.60 18.99 73.60 N/A 320 490 N N/A N/O BSL 7440543 (Cn) 0.1900 J 20.7000 J MG/MG 041M66901 1 / 12 1.80 - 1.60 18.99 3.53 20.70 N/A 19000 29000 N N/A N/O BSL 7440566 Zhc (Zn) 9.7000 J 20.7000 J MG/MG 041M66901 1 / 12 1.80 - 1.80 18.99 3.53 20.70 N/A 19000 29000 N N/A N/O BSL 7440568 Zhc (Zn) 9.7000 J 20.7000 MG/MG 041M66901 1 / 12 1.80 - 1.80 18.99 3.53 20.70 N/A 19000 29000 N N/A N/O BSL 7440568 Zhc (Zn) 9.7000 J 20.7000 MG/MG 041M66901 1 / 12 1.20 - 40.00 8.00 N/A 760000 4700 N N/A N/O BSL 75343 1,1-Dichloroshiane 2.0000 J 3.0000 J 0.4000 MG/MG 041M66901 1 / 12 12.00 - 40.00 8.00 N/A 760000 4700 N N/A N/O BSL 75343 1,1-Dichloroshiane 8.0000 B.000 MG/MG 041M66901 1 / 12 12.00 - 40.00 8.00 N/A 3200000 C N/A N/O BSL 75343 1,1-Dichloroshiane 8.0000 B.000 MG/MG 041M66901 1 / 12 12.00 - 40.00 8.00 N/A 3200000 C N/A N/O BSL 75343 1,1-Dichloroshiane 8.0000 B.000 MG/MG 041M66901 1 / 12 12.00 - 40.00 8.00 N/A 3200000 C N/A N/O BSL 75343 1,1-Dichloroshiane 8.0000 B.000 MG/MG 041M66901 1 / 12 12.00 - 40.00 8.00 N/A 3200000 C N/A N/O BSL 75343 1,1-Dichloroshiane 8.0000 B.000 MG/MG 041M66901 1 / 12 12.00 - 40.00 8.00 N/A 3200000 C N/A N/O BSL 75343 1,1-Dichloroshiane 8.0000 B.000 MG/MG 041M66901 1 / 12 12.00 - 40.00 8.00 N/A 3200000 C N/A N/O BSL 75648 1.000000 B.000 M/A 1000000 B.000 N/A 1000000 C N/A N/O BSL 75649 Selenken (%) D.5500 D.550				ا ر			MGAKG											
7.44043 Cademium (CD)						J											1	, n
7440438 Chromium (C) 0.5600 J 73.5000 MG/KG 041M060001 11 / 12 1.80 - 1.80 15.89 73.60 N/A 1900 29000 N N/A NO BSL 744058 Copper (Cu) 0.9700 J 46.2000 MG/KG 041M060001 11 / 12 2.40 - 2.40 13.04 48.20 N/A 1900 29000 N N/A NO BSL N/A NO RSL N/A N	7440439	Cadmium (Cd)		L							1							
7440586 Cobal (Cc)	7440473	Chremium (Cr)	0,5600	J	73.5000										9			
7440568 Copper (CU) 0.9700 J				J	20.7000	J	MG/KG	041M061001										
7440565 Zinc (Zin) 9.7000 J 207,0000 J 207,0000 J 2000 J 20000 J 2000 J			0.9700	J	48.2000		MGKG	041M060301	11 / 12	2.40 - 2.40	13.04							
TABM3 1,1-Dichloroshlane							MGKG	041M060901	11 / 12	3,80 - 3,80	54.67	207.00	N/A	95000	150000	N/A	NO	
T-S-544 1-Dichloroeihane				ł •						1-11-								
Testable				J		ر					8.00			3200000D	49000	N NA	NO	BSL
7782492 Selenkum (Se) 0.8500 J				1														
Technoroalhane				J		J												
## 33328 Acenaphthren				١.		Ι. :									1			1 11
Delthylphinistale				J		J]				12,00								
94742 Di-n-bufyehihalale 29.0000 J 99.0000 J UG/KG 041M050101 4 / 11 40:00 - 690.00 57.28 99.00 NA 32000000 NA NA NO BSL 98697 Phenanthrene 37.0000 J 30.0000 J 04.000 DJ UG/KG 041M050101 2 / 11 40:00 - 690.00 57.28 99.00 NA 9500000 NA NA NO BSL 98697 NA 9500000 NA NA NO BSL 98697 NA 9500000 NA NA NO BSL 98697 NA 9500000 NA NA NO BSL 98697 NA 9500000 NA NA NO BSL 98697 NA 9500000 NA NA NO BSL 98697 NA 9500000 NA NA NO BSL 98697 NA 9500000 NA NA NO BSL 98697 NA 9500000 NA NA NO BSL 98697 NA 9500000 NA NA NA NA NA NA NA NA NA NA NA NA NA				1 .														
85018 Phanaribrene 37,0000 J 81,0000 J 81,0000 J 40,00 - 590,00 44,00 - 590,00 NA 9500000 18000000 N NA NO BSL 85687 Buyboersylphiniale 22,0000 J 30,0001 J UGKG 041M65901 8 / 11 40,00 - 590,00 0 25,17 30,00 NA 5300000 98000000 N NA NO BSL 72849 A/-DDD 0,2100 J 40,00 DJ UGKG 041M65901 12 / 12 NAV 15 40,00 NA 92000 57000 C NA NO BSL 7429905 A/uninum (A) 313,000 J 5890,00 MGKG 041M65901 12 / 12 NAV 1561 5890,00 NA 32000 490000 N NA NO BSL 7449702 Calcium (Ca) 52,500 J 6370,00 J MGKG 041M65901 12 / 12 NAV 1561 5890,00 NA 32000 490000 N NA NO BSL 7439896 NO FS) 38,000 J 4320,00 MGKG 041M659101 12 / 12 NAV 1335 4320,00 NA NA NA NA NA NA NA NA NO EN 7439892 Lead (Pb) 8,000 MGKG 041M669101 12 / 12 NAV 32 147,00 NA 400 400 05MER NO BSL																		
8567 Buylberray(phthalaise 22,0000 J 30,0000 J UGKG O41M65901 6 / 11 400,00 590,000 28.177 30.00 N/A 530,00000 500,00000 N/A N/O BSL SSL S				, .														
72848 4.4*DDD 0.2:100 J 40.00 DJ UXMC 041M051101 12 / 12 NAV 152 40.00 NA 92000 57000 C NA NO BSL 7429905 Aluminum (A) 313.0000 J 5980.00 MGMC 041M050101 12 / 12 NAV 1561 5880.00 NA 320000 490000 NA NA NO BSL 743906 From (Fe) 328.0000 J 4320.00 MGMC 041M050101 12 / 12 NAV 2147 8370.00 NA NA NA NA NA NA NA NA NA NA NA NA NA																		
7429905 Auminum (A) 313.0000 J 890.00 MG/KG 041M06001 12 / 12 NAV 1861 590.00 N/A 320000 450000 N N/A NO BSL 7449702 Calcium (Ca) 62.5000 J 8370.00 J MG/KG 041M06101 12 / 12 NAV 2147 8370.00 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A																- 1,		
7449702 Calcium (Ca) 52,5000 J 8370.00 J MG/KG 041M060101 12 / 12 NAV 2147 8370.00 NJA NJA NJA NJA NJA NJA NJA NJA NJA NJA				- 1		"												
7439926 iran (Fe) 328.0000 J 4320.00 MG/KG 041M061101 12 / 12 NAV 1335 4320.00 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A						ارا												
7439921 Lead (Pb) 8.0000 147.00 MG/KG 041M060101 12 / 12 NAV 32 147.00 NA 400 400 OSWER NO BSL	7439896	iron (Fa)		ایا														
	7440622			J			MGAG	041M050101	12 / 12	NAV	3	11.30	N/A	2200			NO	BSL

⁽¹⁾ Minimum/maximum detected concentration

(6) Retionale Codes Selection Reeson:

Reason: Above Screening Levels (ASL)
Deletion Reason Better Screening Levels (BSL)
Bettyrcund Levels (BKG)
No Toxicity Information (NTX)
Essential Nativet(En)

Definitions

N/A × Not Applicable NAV > Not Available

COPC = Chamical of Potential Concern

ARAR/TBC = Applicable or Releve and appropriate Requirement/ To Be Considered

CSWER a Office of Solid Weste and Emergency Response

J = Estimated Value C = Carcinogenic

C = Carcinogenic N Noncarcinogenic

⁽²⁾ Meximum concentration used as screening Value.

⁽³⁾ No bediground values were developed for this media.

⁽⁴⁾ PRGs for site trespasser scenario calculated based on equations and parameters presented in Section 8 of this report.

⁽⁵⁾ PRGs for commercial maintanence worker scenario culturated based on equations and parameters presented in Section 8 of this report.

TABLE 10-11-7 OCCURRENCE, DISTRIBUTION, AND SELECTION OF CHEMICALS OF POTENTIAL CONCERN NAS PENSACOLA SITE 41

Scenario Timeframe: Current and Future Medium: Surface Water Exposure Medium: Surface Water Exposure Point: Wetland 6 Surface Water

		(1)		(1)							(2)		(3)		(4)		(5)
CAS Number	Chemical	Minimum Concentration	Minimum Qualifier	Maximum Concentration	Maximum Qualifier	Units	Location of Maximum Concentration	Detection Frequency	Range of Detection Limits	Меал	Concentration Used for Screening	Background Value	Adolescent Site Trespasser PRG	Commercial Maintenance Worker PRG	Potential ARAR/TBC Source	COPC Flag	Rationale for Contaminant Delection or Selection
71556	1,1,1-Trichloroethane	5		5		UG/L	041W061001	1 / 3	NAV	- 6	5	N/A	9000	24000	N N/A	NO	BSL
75343	1,1-Dichloroethane	5		5		UG/L	041\\\061001	1 / 3	NAV	5	5	N/A	7300	18000	N N/A	NO	BSL
75354	1,1-Dichloroethene	8		8		UG/L	041W060701	1 / 3	NAV	8	8	N/A	8.6	8.3	C N/A	NO	BSL
7429905	Aluminum (Al)	287		406		UG/L	0410061001	2 / 3	NAV	347	406	N/A	120000	250000	N N/A	NO	BSL
7440393	Barium (Ba)	15.9	J	30.5	J	UG/L	041W060701	2 / 3	NAV	23.2	30.5	N/A	8300	18000	N N/A	NO	BSL
7440702	Calcium (Ca)	18300		24700		UG/L	041W061001	3 / 3	NAV	20700	24700	N/A	N/A	N/A	N/A	NO	EN
57125	Cyanide (CN)	5.6	J	5.6	J	UG/L	041W061001	1 / 3	NAV	5.6	5.6	N/A	550	1600	N N/A	NO	BSL
7439896	iron (Fe)	334		870	J	UG/L	041W0610D1	3 / 3	NAV	527	870	N/A	N/A	N/A	N/A	NO	EN
7439921	Lead (Pb)	1.2	J	3.1	J	UG/L	041W061001	2 / 3	NAV	2.2	3.1	N/A	15	15	TTAL	NO	BSL
7439954	Magnesium (Mg)	1910	J	3480	J	UG/L	041W060701	3 / 3	NAV	2610	3480	N/A	N/A	N/A	N/A	NO	EN
7439965	Manganese (Mn)	19.5		55.7		UG/L	041W061001	3 / 3	NAV	36.2	55.7	N/A	2400	5000	N N/A	NO	BSL
7439976	Mercury (Hg)	98.0		0.88		UG/L	041W061001	1 / 3	NAV	0.88	0.88	N/A	36	76	N N/A	NO	BSL
75092	Methylene chloride	13		13		UG/L	041W060701	1 / 3	NAV	13	13	N/A	1000	900	C N/A	NO	BSL
7440097	Potassium (K)	1520	J	3050	J	UG/L	041W060701	3 / 3	NAV	2163	3050	N/A	N/A	N/A	N/A	NO	EN
7440235	Sodium (Na)	10300		13800		UG/L	041W060301	3 / 3	NAV	11967	13800	N/A	N/A	N/A	N/A	NO	EN
7440280	Thellium (11)	3.3	J	3.3	J	UGAL	041W060701	1 / 3	NAV	3.3	3.3	N/A	8.3	18	N N/A	NO	BŞL
79016	Trichloroethene	1		1		UGAL	0410/061001	1 / 3	NAV	1	1	N/A	300	320	N N/A	NO	BSL
7440622	Vanadium (V)	2.1	J	2.3	1	UG/L	041W061001	2 / 3	NAV	2.2	2.3	N/A	830	1800	N N/A	NO	BSL
117817	bis(2-Ethythexyl)phthalate (B	3	J	3	J	UGAL	041W061001	1 / 3	NAV	3	3	N/A	110	130	C N/A	NO	BSL
156592	ds-1,2-Dichloroethene	2		2		UG/L	041W061001	1 / 3	NAV	2	2	N/A	670	1700	N N/A	NO	BSL.

(1) Minimum/maximum detected concentration

(2) Maximum concentration used as screening value.

(4) PRGs for site trespasser scenario calculated based on equations and parameters presented in Section 8 of this report.

(5) PRGs for commercial maintenance worker scenario calculated based on equations and parameters presented in Section 8 of this report.

(6) Rationale Codes

Selection Reason: Above Screening Levels (ASL) Deletion Reason: Below Screening Levels (BSL)

Background Levels (BKG) No Toxicity Information (NTX) Definitions: N/A = Not Applicable

NAV = Not Available

COPC = Chemical of Potential Concern

ARAR/TBC = Applicable or Releveant and Appropriate Requirement/ To Be Considered

TTAL = Treatment technique action level

J = Estimated Value C = Carolnogenic

N = Noncarcinogenic

Final Remedial Investigation Report NAS Pensacola Site 41 Section 10: Site-Specific Evaluations August 31, 2000

This page intentionally left blank.

10.12 WETLAND 63A

10.12.1 Site Description

Wetland 63A is on the southeastern shoreline of Pensacola Bay, southeast of former Chevalier Field (now the NATTC). It receives storm water runoff from the southeastern side of the NATTC. Wetland 63A is bordered by Site 14 to the north, buildings and development to the west, a beach and picnic area to the south, and Pensacola Bay to the east.

Parsons and Pruitt described this area as an estuarine emergent system (USEPA, 1991). Wetland 63A appears to be fed by surface water runoff from the NATTC and the area immediately to the west. The open water portion of the wetland ranges from one to about three feet in depth. Surface water from Wetland 63A flows east through a drainage channel about three feet wide, and drains into Pensacola Bay. Sediment in the wetland is mostly sandy, with TOC levels below 1%. A small stand of pine trees is adjacent to Wetland 63A, but other vegetation around this wetland is generally associated with disturbed areas at NAS Pensacola.

The IR site potentially affecting Wetland 63A is Site 14 (Dredge Spoil Fill Area), which was created between 1975 and 1977 by deposition of spoils from dredging operations in Pensacola Bay. The berms surrounding Site 14 were later collapsed and the site was approved for no further action. Other sites which may have impacted Wetland 63A include the activities associated with Buildings 3383 and 2252, which were previously at the southeast corner of Chevalier Field, near Wetland 63A. These buildings were demolished before construction of the NATTC. In December of 1994, an IRA near Building 3380 excavated and treated soil which had been contaminated by a leak from the bilge water pipeline that ran to the west of Wetland 63A.

10.12.2 Nature and Extent

The methods for evaluating nature and extent are presented in Section 6. Figure 10-12-1 denotes Phase IIA Wetland 63A sampling locations.

August 31, 2000

Sediment

Twenty metals were detected in Wetland 63A sediment samples. Four metals, including

cadmium (7.7 ppm), chromium (92.5 ppm), lead (106 ppm), and mercury (0.14 ppb) exceeded

sediment benchmark levels at location 63A3. Cadmium (0.70 ppm) and lead (32.1 ppm) also

exceeded criteria at location 63A4. Ten pesticides were detected in Wetland 63A sediment

samples, including 4,4'-DDT and its metabolites, delta/gamma-BHC, dieldrin, endrin,

endosulfan sulfate, and alpha/gamma-chlordane. No 4,4'-DDT or its metabolites exceeded

basewide levels (described in Section 6). Dieldrin exceeded its sediment benchmark criteria

(0.715 ppb) at sample location 63A3 (4.1 ppb). The PCB Aroclor-1260 was also detected and

exceeded its sediment benchmark criteria (21.6 ppb) at location 63A3 (260 ppb). Twelve SVOCs

were detected in Wetland 63A sediment samples, including ten high- and low-molecular weight

PAHs, and two phthalate esters. Fluoranthene exceeded its sediment benchmark level (113 ppb)

at sample location 63A4 (130 ppb). No VOCs were detected in Wetland 63A sediment samples.

Table 10-12-1 shows the Wetland 63A Phase IIA sediment sample results (frequency of detection,

range of detected concentrations, and average detected concentration). Table 10-12-2 compares

detected concentrations at each sample location to sediment benchmark levels, and lists calculated

HQs for each parameter. Only the detected parameters with benchmark levels are presented in

Table 10-12-2. The HQs will be further discussed in the ecological risk section (Section 10.12.4).

Surface Water

Fourteen metals were detected in Wetland 63A surface water samples. Aluminum (2,080 ppb),

copper (5.0 ppb), iron (483 ppb) and lead (299 ppb) exceeded the respective surface water criteria

for these metals at sample location 63A2. No organic constituents were detected in Wetland 63A

surface water samples.

10-12-2

Table 10-12-1
Detected Concentrations in Wetland 63A Sediments
NAS Pensacola Site 41, Phase IIA

Parameter	Frequency of Detection	Range of Detected Concentrations	Average Detected Concentration
Inorganics (mg/kg)			
Aluminum (Al)	5/5	180 - 5500	2106.6
Antimony (Sb)	1/5	0.29	0.29
Arsenic (As)	5/5	0.15 - 1.4	0.65
Barium (Ba)	5/5	0.39 - 16.3	5.08
Cadmium (Cd)	3/5	0.15 - 7.7	2.85
Calcium (Ca)	5/5	1170 - 4040	2304
Chromium (Cr)	5/5	0.51 - 92.5	20.69
Cobalt (Co)	2/5	0.26 - 0.37	0.32
Copper (Cu)	5/5	0.38 - 15.1	4.77
Iron (Fe)	5/5	293 - 5000	1809.4
Lead (Pb)	5/5	0.93 - 106	28.85
Magnesium (Mg)	5/5	100 - 351	172.4
Manganese (Mn)	5/5	1.7 - 44.5	13.56
Mercury (Hg)	1/5	0.14	0.14
Nickel (Ni)	2/5	0.97 - 5.1	3.04
Potassium (K)	5 /5	22 - 76	49.66
Silver (Ag)	1/4	0.46	0.46
Sodium (Na)	4/5	33.8 ~ 884	324.3
Vanadium (V)	5/5	0.55 - 14.4	4.76
Zinc (Zn)	5/5	1.5 - 88.9	26.04
Pesticides and PCBs (µg/kg)			
4,4'-DDD	3/5	0.32 - 5.6	2.41
4,4'-DDE	1/5	0.95	0.95
4,4'-DDT	3/5	0.29 - 1.1	0.72
Aroclor-1260	4/5	1.1 - 260	69.73
Dieldrin	1/5	4.1	4.1
Endosulfan sulfate	2/5	1.4	1.4
Endrin	1/5	2.7	2.7
alpha-Chlordane	1/5	1	1
delta-BHC	1/5	0.24	0.24
Gamma-BHC (Lindane)	1/5	0.21	0.21
gamma-Chlordane	1/5	1.4	1.4
SVOCs (μg/kg)			
Benzo(a)anthracene	1/5	63	63
Benzo(a)pyrene	1/5	72	72
Benzo(b)fluoranthene	1/5	120	120
Benzo(g,h,i)perylene	1/5	48	48
Benzo(k)fluoranthene	1/5	37	37
Butylbenzylphthalate	3/5	22 - 1400	494.33
Chrysene	1/5	74	74

Table 10-12-1
Detected Concentrations in Wetland 63A Sediments
NAS Pensacola Site 41, Phase IIA

Parameter	Frequency of Detection	Range of Detected Concentrations	Average Detected Concentration
SVOCs (μg/kg) (Continued)			
Fluoranthene	175	130;	130
Indeno(1,2,3-cd)pyrene Phenanthrene	1/5	47 47	47 47
Pyrene bis(2-Edhylhexyl)phthalate (BEHP)	2/5 2/ 5	24 - 120 99-130	72 114.5

Note:

The total number of samples has been reduced by the number of rejected samples. However, note that no positive results were rejected. All results are in micrograms per kilogram (μ g/kg) or parts per billion (ppb) except for metals which are in milligrams per kilogram (μ g/kg) or parts per million (ppm).

Table 10-12-3 shows the Wetland 63A Phase IIA surface water sample results (frequency of detection, range of detected concentrations, and average detected concentration). Table 10-12-4 compares detected concentrations at each sample location to surface water quality criteria and lists calculated HQs for each parameter. Only detected parameters with water quality criteria are presented in Table 10-12-4. The HQs will be further discussed in the ecological risk section (Section 10.12.4).

10.12.3 Fate and Transport

The pathways evaluated for the wetland specific fate and transport correlate to those identified in the conceptual model presented in Section 9. These pathways include: surface water/sediment transport into the wetland; groundwater discharge into the wetland; sediment/surface water transport within the wetland; sediment leaching to surface water within the wetland; and surface water/sediment transport from the wetland. Sediment transport and storm water runoff data is lacking; thus the evaluation is qualitative in nature. The method of evaluation of the leaching from sediment to surface water was presented in Section 9. Table 10-12-5 presents those contaminants present in sediment above benchmark levels and their calculated SSLs. Contaminants present in surface water above water quality criteria are presented in Table 10-12-4.

Table 10-12-2 (1) Wetland 63A Phase IIA Sediment Concentrations Compared to Benchmark Levels

Sample Location	Parameter	Detected Concentration	Sediment Benchmark Value (SBV)	но	SBV - HQ Reference
LATHE LATER		F 412 W			
TOTAL NA	F 7000				1000
District to	March 1971	100.00	100		200
10000	400.700	V 10 / W 1		161	100
Land (Street)		100000000000000000000000000000000000000	36.01	1840	100
(A)		1000	100	1,000	- 40
041M63A20	1				
4,4'-DDD ()		1.0	1,22	1.07	br.
4,4'-DDE (L		0,95	2.07	0.46	0
4,4'-DDT (L		0.29	1.19	0,24	6.
Araclar-126		14	21.6	0.68	6
Arsenic (M)		0.15	7,24	0.02	ab
Chromium i		2.2	52.3	0.04	ab
Copper (MC		1.2	18.7	0.08	ab
	(Undane) (UG/KG)	0.21	0.32	0.66	b
Lead (MG/F		3.1	30.2	0.10	ab
Pyrene (UG		24	153	0.16	b
Zinc (MG/K		4.9	124	0.04	a b
NORTH PROPERTY.				TRAIL	
9.440000195	Att (C)	400	100 Mar (0.0)	C AND	
1.44 (MI) A4	market and the		100	(E) 14E (II	-
Amelion	N PARK		434	rws.	- 120
The state of	AME.		ne	THE RES	
Care Po	45.70	76	100 mm	0.000	160
Distance of the	-	100	Time I	men i	100
Commence of	enco ma	THE RESERVE	The state of the s	DOM:	160
1004000	A 100 TO	100		Sec.	196.1
(Genelius	with the	4.0	100.00	TOTAL .	100
CHIEF STATE		100	APPLICATION	1040	4.0
1 parties	million to	0.00	1.0	MALE	14.
THE WAY		100	- 44	AAA	340
Thereof At	AC 1111	344	64.	(And	760
Speni (MISS	4 3 1 1 1 1 7 1	E SERVICE COMPANY	24.	1947	
The case		THE REAL PROPERTY.	175	-346	-
3000	100	Mary Mary		0.50	40.0
D41M63A40	1			-	
4,4'-DDD (L		D.32	1.22	0.26	В
4,4'-DDT (L		D.78	1.19	0.66	ь
Antimony (A		D.29	12	0.02	a

Notes:

⁽a) USEPA Screening Concentration for Sediment - EPA SSVs
(b) FDEP Sediment Quality Assessment Guidelines - FDEP SQAGs
Some of the numbers in the table may vary because of rounding.

Table 10-12-2 (2) Welland 63A Phase IIA Sediment Concentrations Compared to Benchmark Levels

Sample Location	Paramotor	Detected Concentration	Sediment Benchmark Value (SBV)	Нά	SBV - HQ Reference
Arocior-126	(UG/KG)	1.1	21.6	0.05	- 10
Arsenic (MC	G/KG)	1.3	7.24	0.18	ab
Berrac(a)ani	hracene (UG/KG)	63	74,0	0.64	ti
Benzo(a)pyr	rene (UG/KG)	72	68 6	0,81	b
bis(2-Ethylh	exyl)phihalate (BEHP) (UG/KG)	130	182	0.71	to
Cadmium (MG/KG)	0.7	0,68	1,03	6
Chromium I	(MG/KG)	6.2	52,3	0.12	₫ 6
Chrysene (UG/KG)	74	BUL	0.69	ь
Copper (MC	3/KG)	A.	18.7	0.21	àb
Fluoraninen	e (UG/KG)	130	112	1 15	6.
Lead (MG/	(G)	32.1	30.2	(DE	ab
Nickel (MG	(KG)	0,97	18.9	0.06	a 6
Phenanthre	ne (UG/KG)	47	26.7	0.54	b
Pyrene (UG	S/KG)	120	153.	0.78	b
Zinc (MG/K	(G)	25.4	124	0.20	ab

Notes:

⁽a) USEPA Screening Concentration for Sediment - EPA SSVs
(b) FDEP Sediment Quality Assessment Guidelines - FDEP SQAGs

Some of the numbers in the table may vary because of rounding

Table 10-12-3
Detected Concentrations in Wetland 63A Surface Water
NAS Pensacola Site 41, Phase IIA

Parameter	Frequency of Detection	Range of Detected Concentrations	Average Detected Concentration
Inorganics (µg/L)			
Aluminum (A))	t in the same of the	•	2080 4 4 4
Arsenic (As) Barium (Ba), 1	1/1 2 - 1/18 - 1	5 ************************************	5 2333w ² 7 H ₃
Calcium (Ca) Copper (Cu)	1/1 	38700	38700 38700
Iron (Fe) Cead (P5)	1/1 2011 - 18	483 - 2993	483
Magnesium (Mg) Manganese (Mn)	1/1 	5740 28.3 3 4 3 4 5 4 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6	5740 2837
Potassium (K) Selenium (Sc)	1/1 1/P-	14700 8	14700
Sodium (Na) Yanadium (V):	1/1 * ** 1/ r ! 4.50	28300 4:1	28300
Zinc (Zn)	1/1	19.3	19.3

Note:

All results are in micrograms per liter ($\mu g/L$) or parts per billion (ppb).

Transport into the Wetland

Surface Water/Sediment Pathway

Based on landform and watershed analysis, the following sources can contribute contamination to Wetland 63A through this pathway:

• Potential storm water runoff and sediment entrainment from Site 14, the former Chevalier Field complex including Sites 29 and UST G (a 1,000-gallon used oil and fuel tank associated with former NADEP Building 2662), and discharge from an NPDES-permitted outfall draining stormwater from the former Chevalier Field. During periods of storm surge, surface water form Pensacola Bay may breach the shore and enter the wetland as well.

Table 10-12-4 (1) Wetland 63A Phase IIA Surface Water Concentrations Compared to Water Quality Criteria

Sample Location	Parameter	UOM	Detected Concentration	Water Quality Criteria	НО	Criteria Reference
041W63A201	Saltwater					
Aluminum		UG/L	2,080.0	1,500.0	1.38667	b
Arsenic		UG/L	5.0	36.0	0.13889	а
Copper		UG/L	5.0	2.9	1.72414	аb
fron		UG/L	483.0	300.0	1.61	b
Lead		UG/L	299.0	5.6	53.39286	b
Selenium		UG/L	8.0	71.0	0.11268	аb
Zinc		UG/L	19.3	86.0	0.22442	аb

Notes:

(a) USEPA Water Quality Criteria (1995)
(b) FDEP Class III Water Quality Criteria (1996)
Some of the numbers in the table may vary because of rounding.

Table 10-12-5
Calculated Sediment Screening Values for Wetland 63A
NAS Pensacola Site 41

Parameter	USEPA or FDEP Surface Water Standard	Kd	SSL DF = 100	Maximum Concentration Detected	Leaching Potential DF = 100
Inorganics	(ppb)		(ррт)	(ррт)	
Cadmium	9.3 ^{a, b}	7.5E+01	69.9	7.7	NO
Chromium	50 a, b	1.9E+01	95.7	92.5	NO
Lead	5.6 b	9E+02	504	106	NO
Mercury	0.025 ^{a, b}	5.2E+01	0.13	0.14	YES
Organics	(ppb)		(ppb)	(ppb)	
4,4 DDD	0.025 •	1.12B+04	2.8E+04	5.6	NO
Dieldrin	0.0019 a, b	2.39E+02	4.56E+01	4.1	NO
Total PCBs*	0.03 ^{b, b}	3.45E+03	1.04E+04	260	NO
Fluoranthene	1.6 *	1.2E+03	1.92E+05	130	NO

Notes:

* = based on Aroclor-1260

Kd for organics calculated using foc of 0.0112 (numerical average of all sediment samples).

Kds are from: USEPA, 1996b (first preference); Superfund Chemical Data Matrix (USEPA, 1996c) (second preference); Texas Risk Reduction Program Concept Document 2, Volume 1, Appendix VII, 1996 (third preference); TERRA Model, Oak Ridge National Laboratory, 1984 (fourth preference — primary reference for inorganics).

Kd = normalized partitioning coefficient.

SSL = sediment screening level.

DF = dilution factor.

a = USEPA Saltwater Surface Water Chronic Screening Value (1995a).

b = FDEP Class II Water Quality Criteria (1996).

The presence of sediment contaminants above benchmark values (see Table 10-12-5) validates the sediment transport pathway and by inference the surface water pathway. Additionally, there were four inorganics present in surface water above standards, further validating the pathway.

Groundwater Discharge Pathway

Based on potentiometric analysis, the primary potential source that would contribute contamination to Wetland 63 A through this pathway is the petroleum site UST G, Site 14, and Site 36.

Final Remedial Investigation Report

NAS Pensacola Site 41

Section 10: Site-Specific Evaluations

August 31, 2000

Sediment Leaching to Surface Water Pathway

Groundwater at these sites has been shown to be contaminated, and therefore the pathway is

considered valid.

Transport within the Wetland

Surface Water/Sediment Migration Pathway

The configuration of the wetland, along with landform analysis, indicates that the wetland is

self-enclosed. Surface water movement and sediment transport can therefore be considered to be

relatively stable, and influenced only by influx during storm events.

Four organics — two pesticides, one PCB, and one semivolatile — and four inorganics, exceeded

their benchmark values, but only one inorganic exceeded its calculated SSL. The source for

inorganics and semivolatiles in sediment is likely associated with storm water drainage from

former Chevalier Field, while pesticides are likely representative of residual from surface

application near the wetland. There were four inorganics present in surface water above

standards, none of which exceeded its SSL. The sources for these inorganics in surface water may

be attributed to the surface water and groundwater pathways. Therefore, the sediment leaching

pathway is considered valid for this wetland but is considered minor because only one parameter

exceeded its SSL.

Transport from the Wetland

Due to the self-enclosed character of the wetland, surface water and sediment movement from

Wetland 63A is considered to be stable and will remain within the wetland.

10.12.4 Ecological Risk Assessment

HQs for Wetland 63A sediment samples are presented in Table 10-12-2. Phase IIA sediment

results compared to the appropriate sediment benchmark levels revealed HQs above 1 for

10-12-12

four metals, including cadmium (11.32), chromium (1.77), lead (3.51), and mercury (1.08) exceeded sediment benchmark levels at location 63A3. Cadmium (1.03) and lead (1.06) also had HQs greater than 1 at location 63A4. Pesticides with HQs above 1 included 4,4'-DDD at sample locations 63A2 (1.07) and 63A3 (4.59). However, as noted in the nature and extent discussion, these concentrations of 4,4'-DDT and its metabolites were below basewide levels. Dieldrin also had a HQ above 1 at sample location 63A3 (5.69), as did the PCB Aroclor-1260 (12.04). Fluoranthene had a HQ greater than 1 at sample location 63A4 (1.15). Phase IIA surface water results revealed HQs above 1 for aluminum (1.39), copper (1.72), iron (1.61) and lead (53.39) at sample location 63A2. HQs greater than one indicate a potential for excess risk.

Wetland 63A was classified in Group C and was not sampled in Phase IIB based on Phase IIA data. Wetlands 16 and 18 were chosen to represent Group C because they had the highest levels of contamination compared to other Group C Wetlands. Color-codes, groupings and rationale for classification are described in Section 7.

Risk in Wetland 16 was evaluated with respect to one assessment endpoint, survival, growth, and reproduction of macroinvertebrates associated with the benthic environment. Decision making triad results for Phase IIB/III Wetland 16 sediment analytical results (condition number 2) indicated that Wetland 16 sediment was acceptable and no further action was recommended for this medium.

Risk in Wetland 18 assessment endpoints were piscivorous bird health and reproduction; survival, growth, and reproduction of macroinvertebrates associated with the benthic environment; and protection of fish viability. Decision making triad results for Wetland 18 Phase IIB/III sediment and surface water analytical results (both condition number 3) indicated that Wetland 18 sediment and surface water were acceptable and no further action was recommended for either media at Wetland 18.

10.12.5 Human Health Risk Assessment

10.12.5.1 Samples Included

Sediment

041M63A101, 041M63A201, 014M63A301, 041M63A401, 014M63A501

Surface Water

041W63A201

10.12.5.2 Current and Future Land Use

Wetland 63A is southeast of the NATTC, directly east of the NATTC's Enlisted Club, a recreational club for NATTC students. A picnic ground containing covered pavilions is south of the Wetland 63A area. No signs or barriers exist to keep trespassers from the area. However, Wetland 63A is densely covered with weeds and scrubby vegetation, and is not an area that would be attractive to sightseers or passersby. It is unlikely that people would trespass through the area on a frequent basis, and the area is not regularly maintained by maintenance workers.

10.12.5.3 Fish COPCs Identified

No fish tissue data were available for this wetland, and this exposure pathway would likely be incomplete; therefore, no COPCs were identified.

10.12.5.4 Sediment COPCs Identified

As shown in Table 10-12-6, no sediment COPCs were identified.

10.12.5.5 Surface Water COPCs Identified

As shown in Table 10-12-7, the following chemical was identified as a COPC:

Lead

10-12-14

TABLE 10-12-6 OCCURRENCE, DISTRIBUTION, AND SELECTION OF CHEMICALS OF POTENTIAL CONCERN NAS PENSACOLA SITE 41

Scenario Timeframe: Current and Future

Medium: Sediment

Exposure Medium: Sediment

Exposure Point: Welland \$3a Sediment

I		(1)		(1)		T T		T	1	IT.	(2)	(3)	(4)		(5)			(6)
CAS Number	Chemical	Minimum Concentration	Minimum Qualifier	Maximum Concentration	Maximum Qualifier	Units	Location of Maximum Concentration	Detection Frequency	Range of Detection Limits	Mean	Concentration Used for Screening	Background Value	Adolescent Sile Trespasser PRG	Residential Soil RBC	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Potential ARAR/TBC Source	COPC Flag	Rationale for Conteminant Delection or Selection
72548	4,4'-DDD	0.3200	j	5.6000	רם	UG/KG	041M53A301	3 / 5	0.20 - 0.22	2.4	5.60	N/A	92000	2700	С	N/A	NO	BSL
72559	4,4'-DDE	0.9500		0,9500		UG/KG	041M63A401	1 / 5	0.20 - 0.22	1.0	0.95	N/A	65000	1900	c	N/A	NO	BSL
50293	4,4'-DDT	0,2900	J	1,1000	J	UG/KG	041M63A301	3 / 5	0.20 - 0.22	0.7	1.10	N/A	65000	1900	C	N/A	NO	BSL
5103719	alpha-Chlordane	1.0000	J	1.0000	J	UG/KG	041M63A401	1 / 5	0.20 - 0.22	1.0	1.00	N/A	63000	1800	c l	N/A	NO	BSL
7429905	Aluminum (Al)	180.0000	J	6740.00		MG/KG	041M63A301	6 / 6	NAV	2878.8	6740.00	N/A	320000	7800	N	N/A	NO	BSL
7440360	Antimony (Sb)	0.2900	J	12.6000	J	MG/KG	041M63A301	2 / 6	0.20 - 0.22	6.4	12.60	N/A	130	3.1	N	N/A	NO	BSL
11096825	Aroclor-1260	1.1000	J	260.0000	DJ	UG/KG	041M63A201	4 / 5	0.20 - 0.22	69.7	260.00	N/A	11000	320	C	N/A	NO	BSL
7440382	Arsenic (As)	0.1500	J	1.40]	MG/KG	041M63A401	6 / 6	NAV	0.7	1.40	N/A	15	0.43	c	N/A	NO	BSL
7440393	Barium (Ba)	0.3900	J	22.00	J	MG/KG	041M53A101	6 / 6	NAV	7.9	22.00	N/A	22000	550	N	N/A	NO	BSL
56553	Benzo(a)anthracene	63.0000		63.0000		UG/KG	041M63A401	1 / 5	0.20 - 0.22	63.0	63.00	N/A	30000	980	c	N/A	NO	BSL
50328	Benzo(a)pyrene	72.0000		72.0000		UG/KG	041M63A401	1 / 5	0.20 - 0.22	72.0	72.00	N/A	3000	88	c	N/A	NO	BSL
205992	Benzo(b)fluoranthene	120.0000		120,0000		UG/KG	041M63A401	1 / 5	0.20 - 0.22	120.0	120.00	N/A	30000	880	С	N/A	NO	BSL
191242	Benzo(g,h,i)perylene	48.0000	J	48.0000	J	UG/KG	041M63A401	1 / 5	0.20 - 0.22	48.0	48.00	N/A	9500000	230000	N	N/A	NO	BSL
207089	Benzo(k)fluoranthene	37.0000	J	37.0000	J	UG/KG	041M63A401	1 / 5	0.20 - 0.22	37.0	37.00	N/A	300000	8800	c	N/A	NO	BSL
117817	bis(2-Ethylhexyl)phthalate (BEHP)	99.0000	J	130.0000	J	UG/KG	041M63A401	2 / 5	0.20 - 0.22	114.5	130.00	N/A	1600000	46000	C	N/A	NO	BSL
85687	Butylbenzylphthalate	22.0000	J	1400.0000	J	UG/KG	041M53A401	3 / 5	0.20 - 0.22	494.3	1400.00	N/A	63000000	1600000	N	N/A	NO	BSL
7440439	Cadmium (Cd)	0.1500	J	7.7000	ļ	MG/KG	041M63A301	4 / 6	0.20 - 0.22	3.7	7.70	N/A	320	7.8	N	N/A	NO	BSL
7440702	Calcium (Ca)	1170.0000		4040.00	J	MG/KG	041M63A401	6 / 6	NAV	2316.7	4040.00	N/A	N/A	N/A	- 1	N/A	NO	EN
7440473	Chromium (Cr)	0.5100	J	92.50		MG/KG	041M63A301	6 / 6	NAV	27.7	92.50	N/A	1600	23	N	N/A	NO	BSL
218019	Chrysene	74.0000		74.0000	l	UG/KG	041M63A401	1 / 5	0.20 - 0.22	74.0	74.00	N/A	3000000	88000	С	N/A	NO	BSL
7440484	Cobalt (Co)	0.2600	J	0.3700	J	MG/KG	041M63A401	2 / 6	0.20 - 0.22	0.3	0.37	N/A	19000	470	N	N/A	NO	BSL
7440508	Copper (Cu)	0.3800	J	15.10		MG/KG	D41M63A101	6 / 6	NAV	6.4	15.10	N/A	13000	310	N	N/A	NO	BSL
319868	delta-BHC	0.2400	J	0.2400	J	UG/KG	041M63A201	1 / 5	0.20 - 0.22	0.2	0.24	N/A	12000	350	С	N/A	NO	BSL
60571	Dieldrin	4.1000	J	4.1000	J	UG/KG	041M63A301	1 / 5	0.20 - 0.22	4.1	4.10	N/A	1400	40	С	N/A	NO	BSL
1031078	Endosulfan sulfate	1.4000	J	1.4000	J	UG/KG	041M63A401	2 / 5	0.20 - 0.22	1.4	1.40	N/A	1900000	47000	N	N/A	NO	BSL
72208	Endrin	2.7000	J	2.7000	J	UG/KG	041M63A401	1 / 5	0.20 - 0.22	2.7	2.70	N/A	95000	2300	N	N/A	ו סא	BSL
206440	Fluoranthene	130.0000		130.0000		UG/KG	041M63A401	1 / 5	0.20 - 0.22	130.0	130.00	N/A	13000000	310000	N	N/A	NO	BSL
58899	gamma-BHC (Lindane)	0.2100	J	0.2100	J	UG/KG	041M63A201	1 / 5	0.20 - 0.22	0,2	0.21	N/A	17000	490	С	N/A	NO	BSL
5103742	gamma-Chlordane	1,4000		1.4000		UG/KG	041M63A401	1 / 5	0.20 ~ 0.22	1.4	1.40	N/A	63000	1800	С	N/A	NO	BSL
193395	Indeno(1,2,3-cd)pyrene	47.0000	J	47.0000	J	UG/KG	D41M63A401	1 / 5	0.20 - 0.22	47.0	47.00	N/A	30000	880	С	N/A	NO	BSL
7439896	Iron (Fe)	293,0000		5000,00		MG/KG	041M63A301	6 / 6	NAV	2169.5	5000.00	N/A	N/A	N/A	- 1	N/A	NO	EN
7439921	Lead (Pb)	0,9300		106,0000		MG/KG	041M63A301	5 / 6	0.20 - 0.22	28.8	196.00	N/A	400	400		OSWER	NO	BSL
7439954	Magnesium (Mg)	100.0000	J	351.00	J	MG/KG	041M63A301	6 / 6	NAV	202.2	351.00	N/A	N/A	N/A	ĺ	N/A	NO	EN
7439965	Manganese (Mn)	1.7000		44.50	į	MG/KG	041M63A101	6 / 6	NAV	15.2	44.50	N/A	15000	1100	N	N/A	NO	BSL
7439976	Mercury (Hg)	D. 1400	J	0.1400	J	MG/KG	041M63A301	1 / 6	0.20 - 0.22	0.1	0.14	N/A	95	2.3	N	N/A	NO	BSL
7440020	Nickel (Ni)	0,9700	J	7.3000	J	MG/KG	041M63A301	3 / 6	0.20 - 0.22	4.5	7.30	N/A	6300	160	N	N/A	NO	BSL
85018	Phenanthrene	47.0000	J	47.0000	J	UG/KG	041M63A401	1 / 5	0.20 - 0.22	47.0	47.00	N/A	9500000	230000	N	N/A	NO	BSL
7440097	Potassium (K)	22.0000	J	335.00	J	MG/KG	041M63A501	6 / 6	NAV	97.2	335.00	N/A	N/A	N/A		N/A	NO	EN
129000	Pyrene	24.0000	J	120.0000	1	UG/KG	041M63A401	2 / 5	0.20 - 0.22	72.0	120,00	N/A	9500000	230000	N	N/A	NO	BSL
7440224	Silver (Ag)	0.4600	J	0.4600	J	MG/KG	041M63A301	1 / 6	0.20 - 0.22	0.5	0.46	N/A	1600	39	N	N/A	NO	BSL
7440235	Sodium (Na)	33.8000	J	884.0000		MG/KG	041M63A201	5 / 6	0.20 - 0.22	324.3	884.00	N/A	N/A	N/A	- 1	N/A	NO	EN
7440622	Vanadium (V)	0.5500	J	14.40		MG/KG	041M63A101	6 / 6	NAV	6.2	14.40	N/A	2200	55	N	N/A	NO	BSL
7440666	Zinc (Zn)	1.5000		110.00		MG/KG	041M63A401	6 / 6	NAV	40.0	110.00	N/A	95000	2300	N	N/A	Ю	EN

(1) Minimum/maximum detected concentration

(2) Maximum concentration used as screening value.

(3) Background values were not developed for this media.

(4) PRGs for sits trespasser scenario calculated based on equations and parameters presented in Section 8 of this report.

(5) Residential soil RBCs presented in Region III Risk-Based Concentration Tables, (USEPA, 1998).

(6) Rationale Codes Selection Reason:

Daletion Reason:

Above Screening Levels (ASL) Below Screening Levels (BSL)

Background Levels (BKG) No Toxicity Information (NTX) Essential Nutrient (EN)

Definitions:

N/A = Not Applicable

NAV = Not Available

COPC = Chemical of Potential Concern

ARAR/TBC = Applicable or Releveant and Appropriate Requirement/ To Be Considered OSWER = Office of Solid Waste and Emergency Response

J = Estimated Value

C = Carcinoganic

N Noncarcinogenic

TABLE 10-12-7 OCCURRENCE, DISTRIBUTION, AND SELECTION OF CHEMICALS OF POTENTIAL CONCERN NAS PENSACOLA SITE 41

Scenario Timeframe: Current and Future

Medium: Surface Water Exposure Medium: Surface Water

Exposure Point: Welland 63A Surface Water

		(1)		(1)							(2)		(3)		(4)	T T	(5)
CAS Number	Chemical	Minimum Concentration	Minimum Qualifier	Maximum Concentration	Maximum Qualifier	Units	Location of Maximum Concentration	Detection Frequency	Range of Detection Limits	Mean	Concentration Used for Screening	Background Value	Adolescent Site Trespasser PRG	Tap Water RBC	Potential ARAR/TBC Source	COPC Flag	Rationale for Contaminant Defection or Selection
7429905	Aluminum (Al)	2080		2080		UG/L	041W63A201	1 / 1	NAV	2080	2080	N/A	120000	3700	N N/A	NO	BSL
74403B2	Arsenic (As)	5	J	5	J	UG/L	041W63A201	1 / 1	NAV	5	5	N/A	5.6	0.045	C N/A	NO	BSL
7440393	Barium (Ba)	53.3	J	53.3	J	UG/L	Q41W63A201	1 / 1	NAV	53.3	53.3	N/A	8300	260	N N/A	NO	BSL
7440702	Calcium (Ca)	38700		38700		UG/L	041W63A201	1 / 1	NAV	38700	38700	N/A	N/A	N/A	N/A	NO	EN
7440508	Copper (Cu)	5	J	5	J	UG/L	041W63A201	1 / 1	NAV	5	5	N/A	4800	150	N N/A	NO	BSL
7439896	Iron (Fe)	483		483	i l	UG/L	041W63A201	1 / 1	NAV	483	483	N/A	N/A	N/A	N/A	NO	EN
7439921	Lead (Pb)	299		299		UG/L	041W63A201	1 / 1	NAV	299	299	N/A	15	15	TTAL	YES	ASL
7439954	Magnesium (Mg)	5740		5740		UG/L	041W63A201	1 / 1	NAV	5740	5740	N/A	N/A	N/A	N/A	NO	EN
7439965	Manganese (Mn)	28.3		28.3		UG/L	041W63A201	1 / 1	NAV	28.3	28.3	N/A	2400	73	N N/A	NO	BSL
7440097	Potassium (K)	14700		14700		UG/L	041W63A201	1 / 1	NAV	14700	14700	N/A	N/A	N/A	N/A	NO	EN
7782492	Selenium (Se)	6		8		UG/L	041W63A201	1 / 1	NAV	8	8	N/A	600	18	N N/A	NO	BSL
7440235	Sodium (Na)	28300		28300		UG/L	041W63A201	1 / 1	NAV	28300	28300	N/A	N/A	N/A	N/A	NO	EN
7440622	Vanadium (V)	4.1	J	4.1	J	UG/L	041W63A201	1 / 1	NAV	4.1	4.1	N/A	830	26	N N/A	NO	BSL
7440688	Zinc (Zn)	19.3	J	19.3	J	UG/L	041W63A201	1 / 1	NAV	19.3	19.3	N/A	36000	1100	N N/A	NO	BSL

(1) Minimum/maximum detected concentration

(2) Maximum concentration used as screening value.

(3) PRGs for adolescent site trespasser scenario calculated using equations and parameters presented in Section 8 of this report.

(4) Tap water RBCs presented in Region III Risk-Based Concentration Tables, (USEPA, 1998).

(5) Rationale Codes

Selection Reason: Above Screening Levels (ASL)

Deletion Reason: Below Screening Levels (BSL) Background Levels (BKG) Essential Nutrient (EN)

No Toxicity Information (NTX)

Definitions: N/A = Not Applicable NAV = Not Available

COPC = Chemical of Potential Concern

ARAR/TBC = Applicable or Relevant and Appropriate Requirement/ To Be Considered

TTAL = Treatment technique action level

J = Estimated Value

C = Carcinogenic N = Noncarcinogenic

10.12.5.6 Risk Characterization

Lead Risk Characterization

A conservative exposure scenario was developed to assess the significance of surface water concentrations of lead at Wetland 63A. This scenario involves a child (age 6 to 7) who accompanies an older sibling to the wetland one day a week for a year. Exposure to Wetland 63A surface water was addressed as an additional exposure relative to typical exposures encountered at the child's home. This additional exposure was presented as an "alternate" source within the constructs of the Lead Model. The standard default assumptions in the lead model were kept to simulate background lead exposures. This was done to provide a conservative estimate of daily intake from sources unrelated to Wetland 63A. The assumption was made that this child would incidentally ingest 0.05 liters of surface water during each visit. Within the Lead Model, an alternate source was entered to account for this exposure as previously discussed. The bioavailability of lead ingested from the alternate source (Wetland 63A surface water) was equal to that of drinking water lead ingested from the standard residential default source. Assuming incidental ingestion of 0.05 liters of surface water once per week with a lead concentration of 229 µg/L, the annual alternate source exposure was estimated to be 1.63 µg lead/day.

Table 10-12-8 presents the Lead Model output for a child 6 to 7 years old under these exposure conditions.

Figure 10-12-2 shows the probability percentage of blood lead levels for the hypothetical child receptor. Based on this model output, the geometric mean blood level is estimated to be $2.8 \mu g/dL$, and the probability of blood lead levels in excess of $10 \mu g/dL$ is 0.33%. USEPA generally considers media concentrations that result in probability percentage estimates of 5% or less sufficiently protective of potential child receptors. As a result, surface water lead concentrations at Wetland 63A would not require specific action under the hypothetical exposure scenario.

Table 10-12-8 Lead Model (Version 0.99d) Inputs and Results NAS Pensacola, Wetland 63A Pensacola, Florida

LEAD MODEL Version 0.99d

AIR CONCENTRATION: 0.100 μ g Pb/m3 DEFAULT

Indoor AIR Pb Conc: 30.0 percent of outdoor.

Other AIR Parameters:

Age	Time Outdoors (hr)	Vent. Rate (m3/day)	Lung Abs. (%)
0-1	1.0	2.0	32.0
1-2	2.0	3.0	32.0
2-3	3.0	5.0	32.0
3-4	4.0	5.0	32.0
4-5	4.0	5.0	32.0
5-6	4.0	7.0	32.0
6-7	4.0	7.0	32.0

DIET: DEFAULT

DRINKING WATER Conc: 4.00 µg Pb/L DEFAULT

WATER Consumption: DEFAULT

SOIL & DUST:

Soil: constant conc.

Dust: constant conc.

Age	Soil (µg Pb/g)	House Dust (µg Pb/g)
0-1	200.0	200.0
1-2	200.0	200.0
2-3	200.0	200.0
3-4	200.0	200.0
4-5	200.0	200.0
5-6	200.0	200.0
6-7	200.0	200.0

Additional Dust Sources: None DEFAULT

Alternative Source Intake: Wetland 63A surface water

6-7: 1.63 μg Pb/day

MATERNAL CONTRIBUTION: Infant Model Maternal Blood Conc: 2.50 μ g Pb/dL

CALCULATED BLOOD Pb and Pb UPTAKES:

YEAR	Blood Level (μg/dL)	Total Uptake (μg/day)	Soil+Dust Uptake (µg/day)	Diet Uptake (μg/day)	Water Uptake (μg/day)	Alt. Source Uptake (μg/day)	Air Uptake (μg/day)
0.5-1:	4.1	7.60	4.68	2.54	0.37	0.00	0.02
1-2:	4.5	10.93	7.36	2.63	0.91	0.00	0.03
2-3;	4.2	11.44	7.44	2.98	0.96	0.00	0.06
3-4:	4.0	11.48	7.53	2.90	0.99	0.00	0.07
4-5:	3,4	9.65	5.69	2.85	1.04	0.00	0.07
5 -6:	3.0	9.39	5.16	3.03	1.11	0.00	0.09
6-7:	2.8	10.22	4.87	3.35	1.13	0.78	0.09

Figure 10-12-2 Probability Percentage of Blood Lead Levels for the Hypothetical Child Receptor

Final Remedial Investigation Report NAS Pensacola Site 41 Section 10: Site-Specific Evaluations August 31, 2000

This page intentionally left blank.

10.12.5.7 Remedial Goal Options

No COCs were identified for Wetland 63A, and as a result, no RGOs were calculated.

10.12.6 Conclusions and Recommendations

Because they had similar contaminants (metals and pesticides/PCBs), Wetlands 16 and 18 were sampled to represent the Group C wetlands in Phase IIB/III. Phase IIB/III assessment endpoint and triad analyses revealed that sediment and surface water were acceptable at these wetlands. The HHRA identified no sediment or fish tissue COPCs at Wetland 63A.

Because of the lack of excess ecological and human health risk at Wetland 63A, no further action is recommended for Wetland 63A.

Final Remedial Investigation Report NAS Pensacola Site 41 Section 10: Site-Specific Evaluations August 31, 2000

This page intentionally left blank.

August 31, 2000

10.13 WETLAND 48

10.13.1 Site Description

Wetland 48 is in a mostly undeveloped portion of NAS Pensacola, north of Radford Boulevard,

and south of the NAS Pensacola Fuel Farm. It is a thickly vegetated palustrine forested wetland.

Parsons and Pruitt described this area as a palustrine forested system (USEPA, 1991). Wetland 48

appears to be fed by surface water and groundwater sources. Surface water drains to the east into

Wetland 52, passing through a culvert under the access road to the fuel farm. A sediment sample

collected in this area was mostly sandy, with a TOC value of 4.4%.

The IR site potentially affecting Wetland 48 is Site 37 (Sherman Field Fuel Farm Area), south of

the western end of Forrest Sherman Field.

10.13.2 Nature and Extent

The methods for evaluating nature and extent are presented in Section 6. Figure 10-13-1 denotes

the Phase IIA Wetland 48 sampling location.

Sediment

Fifteen metals were detected in the single sediment sample collected at Wetland 48. No

metals exceeded a sediment benchmark level at Wetland 48. 4,4'-DDD (2,600 ppb), 4,4'-DDE

(620 ppb), and 4,4'-DDT (240 ppb) were detected in the Wetland 48 sediment sample above

basewide levels (20 ppb, 40 ppb, and 50 ppb, respectively). No other organics were detected in

the Wetland 48 sediment sample.

Table 10-13-1 shows the Wetland 48 Phase IIA sediment sample results (frequency of detection,

range of detected concentrations, and average detected concentration). Table 10-13-2 compares

detected concentrations to sediment benchmark levels, and lists calculated HQs for each parameter.

10-13-1

August 31, 2000

The HQs will be further discussed in the ecological risk section (Section 10.13.4). Only the

parameters with benchmark levels are presented in Table 10-13-2.

Surface Water

Five metals were detected in the single Wetland 48 surface water sample. None of the detected

metals exceeded surface water quality criteria. No organic constituents were detected in

Wetland 48 surface water.

Table 10-13-3 shows the Wetland 48 Phase IIA surface water sample results (frequency of

detection, range of detected concentrations, and average detected concentration). Table 10-13-4

which lists only the parameters with surface water criteria, compares detected concentrations at

each sample location to surface water quality criteria, and lists calculated HQs for each parameter.

The HQs will be further discussed in the ecological risk section (Section 10.13.4).

10.13.3 Fate and Transport

The pathways evaluated for the wetland specific fate and transport correlate to those identified in

the conceptual model presented in Section 9. These pathways include: surface water/sediment

transport into the wetland; groundwater discharge into the wetland; sediment/surface water

transport within the wetland; sediment leaching to surface water within the wetland; and

surface water/sediment transport from the wetland. Sediment transport and storm water runoff

data are lacking, thus the evaluation is qualitative in nature. The method of evaluating leaching

from sediment to surface water was presented in Section 9. Table 10-13-5 presents those

contaminants present in sediment above benchmark values and their calculated SSLs.

Contaminants present in surface water were presented previously in Table 10-13-4.

10-13-2

Table 10-13-1
Phase IIA Detected Concentrations in Wetland 48 Sediments

Parameter	Frequency of Detection	Range of Detected Concentrations	Average Detected Concentration
Inorganics (mg/kg)			
Aluminum (Ai)	V I.	1400	1400
Arsenic (As)	1/1	0.55	0.55
Barium (Ba)	W.	3.5	3.5
Cadmium (Cd)	1/1	0.3	0.3
Calcium (Ca) 🔭 i	re in	499	499,
Chromium (Cr)	1/1	1.1	1.1
Copper (Cu)	, vi	ra and a second	" "n "Fig
Iron (Fe)	1/1	290	290
Lead (Pb)	1/1	17.4	17.4
Magnesium (Mg)	1/1	84.9	84.9
Manganese (Mn)		1.5	1.5
Potassium (K)	1/1	14.4	14.4
Selenium (Se)	. 1/1 · · · · · · · · · · · · · · · · · ·	0.71	0.71
Vanadium (V)	1/1	2.4	2.4
Zinc (Zn)	u u	6.3	† 63
Pesticides and PCBs (µg/kg)			
4,4*-DDD	1/1	2600	2600
4,4'-DDE	1/1	620	620
4,4'-DDT	1/1	240	240

Note:

All results are in micrograms per kilogram (μ g/kg) or parts per billion (ppb) except for metals which are in milligrams per kilogram (μ g/kg) or parts per million (ppm).

Table 10-13-2 Wetland 48 Phase IIA Sediment Concentrations Compared to Benchmark Levels

Sample Location	Parameter	Detected Concentration	Sediment Benchmark Value (SBV)	HQ	SBV Reference
041M480101					
4,4'-DDD (UG	/KG)	2600 DJ	1.22	2131.15	b
4,4'-DDE (UG/	/KG)	620 DJ	2.07	299.52	ь
4,4'-DDT (UG/	(KG)	240 J	1.19	201.68	b
Arsenic (MG/K	(G)	0.55 J	7.24	0.08	аb
Cadmium (MG	S/KG)	0.3 J	0.68	0.44	b
Chromium (MC	G/KG)	1.1	52.3	0.02	аb
Copper (MG/K	(G)	1.1 J	18.7	0.06	аb
Lead (MG/KG))	17.4	30.2	0.58	a b
Zinc (MG/KG)		6.3	124	0.05	аb

Basewide level for 4,4'-DDT is 20 ppb.

⁽a) USEPA Screening Concentration for Sediment - EPA SSVs
(b) FDEP Sediment Quality Assessment Guidelines - FDEP SQAGs Some of the numbers in the table may vary because of rounding. Basewide levels (detailed in Section 6) for DDT and its metabolites Basewide level for 4,4'-DDE is 40 ppb. Basewide level for 4,4'-DDD is 50 ppb.

Table 10-13-3
Phase IIA Detected Concentrations in Wetland 48 Surface Water

Parameter	Frequency of Detection	Range of Detected Concentrations	Average Detected Concentration
Inorganics (μg/L)			
Calcium (Ca)	M	977.	
Iron (Fe)	1/1	285	285
Magnesium (Mg)	, w	1020	1020
Manganese (Mn)	1/1	2.9	2.9
Sodium (Na)	1/1	7480	7480

Note:

All results are in micrograms per liter ($\mu g/L$) or parts per billion (ppb).

Table 10-13-4 (1) Wetland 48

Phase IIA Surface Water Concentrations Compared to Water Quality Criteria

Sample Location	Parameter	UOM	Detected Concentration	Water Quality Criteria	HQ	Criteria Reference
041W480101	Freshwater					
iron		UG/L	285.0	1,000.0	0.285	a b

Notes:

Table 10-13-5
Calculated Sediment Screening Values for Wetland 48

Parameter	USEPA or FDEP Surface Water Standard	Kd	SSL DF = 100	Maximum Concentration Detected	Leaching Potential DF = 100
Organics (ppb)					
4,4 DDE	10.5	1,96E+05	2.06E+08	620	NO ^V ·
4,4 DDD	0.0064 a	4.38E+04	2.8E+04	2,600	NO
4,4 DDT	* >= 0.001 * b	1.15E+05	1.15E+04	240	NO ₅ 5.

Notes:

Kd for organics calculated using foc of 0.0443 (numerical average of all sediment samples).

Kds are from: USEPA, 1996b (first preference); Superfund Chemical Data Matrix (USEPA, 1996c) (second preference); Texas Risk Reduction Program Concept Document 2, Volume 1, Appendix VII, 1996 (third preference); TERRA Model, Oak Ridge National Laboratory, 1984 (fourth preference — primary reference for inorganics).

Kd = normalized partitioning coefficient.

SSL = sediment screening level.

DF = dilution factor.

a = USEPA Freshwater Surface Water Chronic Screening Value (1995a).

b = FDEP Class III Water Quality Criteria (1996).

Transport into the Wetland

Surface Water/Sediment Pathway

Based on landform and watershed analysis, the following sources can contribute contamination to Wetland 48 through this pathway:

• Potential stormwater water runoff and sediment entrainment from the petroleum site UST X (a fuel tank of unknown size/quantity), from the marina operations along Radford Blvd. paralleling the southern boundary of the base with Pensacola Bay and along Radford Blvd. itself. During periods of storm surge, surface water form Pensacola Bay may breach Radford Blvd. and enter the wetland complex as well.

The presence of sediment contaminants above benchmark values (see Table 10-13-5) validates the sediment transport pathway and by inference the surface water pathway. However, there were no surface water contaminants present above standards, thus the surface water pathway is considered invalid.

Final Remedial Investigation Report NAS Pensacola Site 41

Section 10: Site-Specific Evaluations

August 31, 2000

Groundwater Discharge Pathway

Based on potentiometric analysis, the primary potential source that would contribute contamination

to Wetland 48 through this pathway is the petroleum site UST X. Groundwater at this site has

been shown to be contaminated, and therefore the pathway is considered valid.

Transport within the Wetland

Surface Water/Sediment Migration Pathway

The configuration of wetland, along with landform analysis, indicates that wetland is connected

to Wetlands 52 and 74, and the direction of overall flow is inferred to be to the east towards

Wetland 74. During periods of high water, the flow through the Wetland 48/52/74 complex is

towards the east and southeast, eventually emptying into the Bay to the east of Wetland 52, and

to the south of Wetland 48 near the marina area. Surface water movement and sediment transport

can therefore be considered to be mobile and subject only to surface water influx during

rain events, stormwater surges from the Bay, and overall drainage to the Bay.

Sediment Leaching to Surface Water Pathway

Three organics, all pesticides, exceeded their benchmark values, but did not exceed their

calculated SSL. There were no contaminants present in surface water above standards. Therefore,

the sediment leaching pathway is considered invalid for this wetland, and sediment contamination

is not expected to partition to surface water.

Transport from the Wetland

Surface water and sediment movement from Wetland 48 follows drainage into Wetlands 52

and 74, and drainage towards the Bay in the marina area.

10-13-10

10.13.4 Ecological Risk Assessment

HQs for Wetland 48 sediment samples are presented in Table 10-13-2. Phase IIA sediment sample results compared to the appropriate sediment benchmark levels revealed HQs above 1 for 4,4'-DDD (2,131.5), 4,4'-DDE (299.52), and 4,4'-DDT (201.68). Phase IIA surface water results revealed no HQs above 1 for the single surface water sample collected at Wetland 48. HQs greater than one indicate a potential for excess risk.

Wetland 48 was classified as Group E. Because aquatic and terrestrial receptors were not expected, Group E wetlands were not sampled in Phase IIB/III. Color-codes, groupings and rationale for classification are described in Section 7.

10.13.5 Human Health Risk Assessment

10.13.5.1 Samples Included

Sediment

041M480101

Surface Water

041W480101

10.13.5.2 Current and Future Land Use

Wetland 48 is in a densely wooded zone south of the NAS Pensacola Fuel Farm. Though the area is not posted as restricted, it is in an area of the base that is not regularly frequented by personnel, and is not easily accessible. Though the access road to the fuel farm provides accessibility to Wetland 48's eastern fringe, no hiking trails or roads exist which would facilitate recreational use. The dense foliage in the wetland also serves as a barrier to trespassers.

August 31, 2000

10.13.5.3 Fish Tissue COPCs

No fish tissue data were available for this wetland, and this exposure pathway would likely be

incomplete; therefore, no COPCs were identified.

10.13.5.4 Sediment COPCs

As shown in Table 10-13-6, no sediment COPCs were identified.

10.13.5.5 Surface Water COPCs

As shown in Table 10-13-7, no surface water COPCs were identified.

10.13.5.6 Risk Summary

No COPCs were identified following the screening comparisons described in Section 8 and

presented above. As a result, no formal human health risk assessment was conducted for

Wetland 48.

10.13.6 Conclusions and Recommendations

Wetland 48 is intermittent, and due to its location is not expected to be a significant source of

food, water, or habitat. Therefore, as proposed in the approved RI/FS SAP Addendum

(EnSafe, 1997), this wetland was eliminated from further risk characterization. Since no COPCs

were identified for Wetland 48, no formal HHRA was conducted. No further action is

recommended for this wetland.

10-13-12

TABLE 10-13-6 OCCURRENCE, DISTRIBUTION, AND SELECTION OF CHEMICALS OF POTENTIAL CONCERN NAS PENSACOLA SITE 41

Scenario Timeframe: Current and Future Exposure Point: Wellend 48 Sediment

CAS Number	Chemical	(1) Minimum Concentration	Minimum Qualifler	(1) Maximum Concentration	Maximum Qualifier	Units	Location of Maximum Concentration	Detection Frequency	Range of Detection Limits	MEAN	(2) Concentration Used for Screaning	Background Value	Adolescent Site Trespasser PRG	(5) Residentlal Soil RBC	Potential ARAR/TBC Source	COPC Flag	(6) Rationale for Contaminant Delection or Selection
	4,4'-DDD	2600.0000	DJ	2600.0000	נם	UG/KG	041M480101	1 / 1	2600.00 - 2600.00	2600.00	2600	N/A	92000	2700 C	1	NO	BSL
	4,4'-DDE	620.0000	מ	620.0000	ы	UG/KG	041M480101	1 / 1	620.00 - 620.00	620.00	620	N/A	65000	1900 C	N/A	NO	BSL
	4,4'-DDT	240.0000	J	240.0000	J	UG/KG	041M480101	1 / 1	240.00 - 240.00	240.00	240	N/A	65000	1900 Ç	N/A	NO	BSL
7429905	Aluminum (Al)	1400.0000		1400.0000		MG/KG	041M480101	1 / 1	1400.00 - 1400.00	1400.00	1400	N/A	320000	7800 N	N/A	NO	BSL
7440382	Arsenic (Az)	0.5500	J	0.5500	J	MG/KG	041M480101	1 / 1	0.55 - 0.55	0.55	0.55	N/A	15	0.43 C	N/A	NO	BSL
7440393	Barium (Ba)	3.5000	j	3.5000	J	MG/KG	041M480101	1 / 1	3,50 - 3,50	3,50	3.5	N/A	22000	550 N	N/A	NO	BSL
7440439	Cadmium (Cd)	0.3000	J	0.3000	J	MG/KG	041M480101	1 / 1	0.30 ~ 0.30	0.30	0.3	N/A	320	7.8 N	N/A	NO '	BSL.
7440473	Chromium (Cr)	1,1000		1.1000		MG/KG	041M480101	1 / 1	1.10 - 1.10	1.10	1.1	N/A	950	23 N	N/A	NO	BSL
7440508	Copper (Cu)	1.1000	J	1.1000	J	MG/KG	041M480101	1 / 1	1.10 - 1.10	1.10	1.1	N/A	13000	310 N	N/A	NO.	BSL
7439896	Iron (Fe)	290.0000		290.0000		MG/KG	041M480101	1 / 1	290.00 - 290.00	290.00	290	N/A	N/A	N/A	N/A	NO	ÉN
7439921	Lead (Pb)	17.4000		17.4000		MG/KG	041M480101	1 / 1	17.40 - 17.40	17.40	17.4	N/A	400	400	OSWER	NO	BSL
7439954	Magnesium (Mg)	84.9000	J	84.9000	J	MG/KG	041M480101	1 / 1	84,90 - 84,90	84.90	84.9	N/A	N/A	N/A	N/A	NO	EN
7439965	Manganese (Mn)	1.5000		1.5000		MG/KG	041M480101	1 / 1	1.50 - 1.50	1.50	1.5	N/A	15000	1100 N	N/A	NO	BSL
7440097	Potassium (K)	14.4000	ı	14.4000	J	MG/KG	041M480101	1 / 1	14.40 - 14.40	14.40	14.4	N/A	N/A	N/A	N/A	NO	EN
7440622	Vanadium (V)	2.4000	J	2,4000	J	MG/KG	041M480101	1 / 1	2.40 - 2.40	2.40	2.4	NIA	2200	55 N	N/A	NO	BSL
7440666	Zinc (Zn)	6.3000	j	6.3000	J	MG/KG	041M480101	1 / 1	6.30 - 6.30	6.30	6.3	N/A	95000	2300 N	N/A	NO	BSL

(1) Minimum/maximum detected concentration

(2) Maximum concentration used as screening value.

(3) Background values were not developed for this media.

(4) PRGs for site traspasser scenario calculated based on equations and parameters presented in Section 8 of this report.

(5) Residential soil RBCs presented in Region III Risk-Based Concentration Tables, (USEPA, 1998).

(6) Rationale Codes Selection Reason: Above Screening Levels (ASL)

Deletion Reason: Below Screening Levels (BSL)

Background Levels (BKG)

No Toxicity Information (NTX) Essential Nutrient (EN)

Definitions:

N/A = Not Applicable

NAV = Not Available

COPC = Chemical of Potential Concern

ARAR/TBC = Applicable or Relevant and Appropriate Requirement/ To Be Considered

OSWER - Office of Solid Waste and Emergency Response

J = Estimated Value

C = Carcinogenie

N Noncarcinogenic

TABLE 10-13-7 OCCURRENCE, DISTRIBUTION, AND SELECTION OF CHEMICALS OF POTENTIAL CONCERN NAS PENSACOLA SITE 41

Scenario Timeframe: Current and Future Medium: Surface Water Exposure Medium: Surface Water Exposure Point: Wetland 48 Surface Water

				~													
CAS Number	Chemical	(1) Minimum Concentration	Minimum Qualifier	(1) Maximum Concentration	Meximum Qualifier	Units	Location of Maximum Concentration	Detection Frequency	Range of Detection Limits	Maun	(2) Concentration Used for	Background Value	Adolescent Site Trespasser PRG	(3) Tap Water RBC		COPC Flag	(4) Rationals for Contaminant Delection or
7440702	Caldum (Ca)	977.00	J	977.00	Quanter	UGAL	041W480101	1 / 1	NAV	977.00	Screening 977	N/A	N/A	N/A	Source N/A	NO	Selection EN
7439898	Iron (Fe)	285.00	_	285.00		UGAL	041W480101	1 / 1	NAV	285.00	285	N/A	N/A	N/A	N/A	NO	EN
	Magnesium (Mg)	1020.00	J	1020.00	!!	UGAL	041W480101	1 / 1	NAV	1020.00	1020	N/A	N/A	N/A	N/A	NO	EN
	Manganese (Mn) Sodium (Na)	2.90 7480.00	J	2.90 7480.00	,	UG/L UG/L	041W480101 041W450101	1 / 1	NAV NAV	2.90 7480.00	2.9 7480	N/A N/A	2400 N/A	73 N N/A	N/A N/A	NO NO	BSL EN

(1) Minimum/maximum detected concentration

(2) Missimum concentration used as acreening value.

(3) PRGs for adolescent alta trespasser scenario calculated using equations and parameters presented in Section 8 of this report.

(4) Tap water RBCs presented in Region III Risk-Based Concentration Tables, (USEPA, 1999).

(6) Rationale Codes

Selection Reason: Above Screening Levels (ASL)

Deletion Reason: Below Screening Levels (BSL)

Background Lavais (BKG) Essential Nutrient (EN)

No Todaky Information (NTX)

Definitions: N/A = Not Applicable

NAV = Not Avallable

COPC = Chemical of Potential Concern

ARAR/TBC = Applicable of Relevant and Appropriate Requirement/ To Be Considered

J = Estimated Value

C = Carcinogenic

N = Noncarcinogenic

10.14 WETLAND 49

10.14.1 Site Description

Wetland 49 is located southwest of Forested Sherman Field. Parsons and Pruitt described this area

as a palustrine forested system (USEPA, 1991). Wetland 49 is surrounded to the north and east

by the grassy fields bordering the fringes of the Forrest Sherman Field runways, which are

periodically mowed. To the south is a wooded zone containing mostly scrub oaks and pines. The

forested area of Wetland 49 contains pines and cypress trees. The northern fringe of the wetland

is more seasonally wet than the drier southern portion. A shallow sheet flow of water in the

northern portion drains to the north toward storm sewer grates along the wetland's fringe. An

open water portion at the south end of Wetland 49 ranges from zero to about one foot in depth and

from five to twenty feet in width. A clearing at the southeast end of the wetland also is seasonally

inundated during wet weather.

Wetland 49 is west of UST 18 (Crash Crew Training Area), to the northeast of Site 37

(Sherman Field Fuel Farm Area), and is partially encompassed by Site 19 (Fuel Farm

Pipeline Leak). Site 19 resulted from a 1958 aviation fuel leak from the underground pipeline

leading from the fuel farm across Wetland 49 to Forrest Sherman Field. The leak occurred near

the Wetland 49 area.

10.14.2 Nature and Extent

The methods for evaluating nature and extent are presented in Section 6. Figure 10-14-1 denotes

the Phase IIA Wetland 49 sampling location.

Sediment

Seventeen metals were detected in Wetland 49 sediment samples, and did not exceed sediment

benchmark levels. Pesticides detected in Wetland 49 sediment samples include 4,4'-DDT and its

10-14-1

metabolites, and heptachlor epoxide. 4,4'-DDD exceeded its basewide level (50 ppb) at

locations 4901 (94 ppb) and 4902 (59 ppb). Four SVOCs were detected in Wetland 49

sediment samples, including one PAH and three phthalate esters. Bis(2-ethylhexyl)phthalate

exceeded its sediment benchmark level (182 ppb) at location 4901 (1,700 ppb). The VOC

chloromethane was detected in sample 4903.

Table 10-14-1 shows the Wetland 49 Phase IIA sediment sample results (frequency of detection,

range of detected concentrations, and average detected concentration). Table 10-14-2 compares

detected concentrations at each sample location to sediment benchmark levels, and lists calculated

HQs for each parameter. Only the detected parameters with benchmark levels are presented in

Table 10-14-2. The HQs will be further discussed ecological risk section (Section 10.14.4).

Surface Water

Nine metals were detected in Wetland 49 surface water samples. Aluminum (1,800 ppb), and lead

(3.1 ppb) exceeded their surface water quality criteria (87 ppb and 3.1 ppb) at sample

location 4903. The only organic constituent detected in Wetland 49 surface water samples was

acetone, a common laboratory contaminant.

Table 10-14-3 shows the Wetland 49 Phase IIA surface water sample results (frequency of

detection, range of detected concentrations, and average detected concentration). Table 10-14-4

compares detected concentrations at each sample location to surface water quality criteria and lists

calculated HQs for each parameter. Only the detected parameters with water quality criteria are

presented in Table 10-14-4. The HQs will be further discussed in the ecological risk section

(Section 10.14.4).

10-14-2

Table 10-14-1
Phase IIA Detected Concentrations in Wetland 49 Sediments

Parameter	Frequency of Detection	Range of Detected Concentrations	Average Detected Concentration
Inorganics (mg/kg)			
Aluminum (Al)	3/3	1500 - 3560	2686.67
Arsenic (As)	1/3	0.21	0.21
Barium (Ba)	3/3 1 e3	1.7 - 5.6	4.3
Calcium (Ca)	3/3	14.4 - 1630	676.47
Chromium (Cr)	3/3	0.99 - 2.6	2.03
Cobalt (Co)	3/3	0.15 - 0.2	0.17
Copper (Cu)	3/3	0.49 - 1.6	1.097
Iron (Fe)	3/3	407 <i>-</i> 707	554
Lead (Pb)	3/3	2,7 - 7,2	5.57
Magnesium (Mg)	3/3	43.3 - 123	81.8
Manganese (Mn)	3/3	0.94 - 7	3.38
Mercury (Hg)	1/3	0.06	0.06
Nickel (Ni)	1/3	0.91	0.91
Potassium (K)	3/3	26.2 - 66	50.63
Sodium (Na)	3/3	17.9 - 30.4	22.17
Vanadium (V)	3/3	2.1 - 3	2.63
Zinc (Zn)	3/3	0.96 - 7.6	5.02
Pesticides and PCBs (µg/kg)			
4,4'-DDD	2/3	59 - 94	76,5
4,4'-DDE	2/3	9.2 - 18	13.6
4,4'-DDT	2/3	1.2 - 3	2.1
Heptachlor epoxide	1/3	1.1	1.1
SVOCs (μg/kg)			
Butylbenzylphthalate	1/3	30	30
Di-n-butylphthalate	1/3	39	39
Pyrene	1/3	21	21
bis(2-Ethylhexyl)phthalate (BEHP)	1/3	1700	1700
VOCs (μg/kg)			
Chloromethane	1/3	2	2

Note:

All results are in micrograms per kilogram ($\mu g/kg$) or parts per billion (ppb), except for metals which are in milligrams per kilograms (mg/kg) or parts per million (ppb).

Table 10-14-2 Wetland 49 Phase IIA Sediment Concentrations Compared to Benchmark Levels

Sample Location	Parameter	Detected Concentration	Sediment Benchmark Value (SBV)	на	SBV Reference
DATM490101					
4,4'-DDD (UG/	KG)	94 DJ	1,22	77.05	
4,4 DDE (UGA		18	2,07	B 70	.6
4,4'-DDT (UG/I		121	(1.13)	1.01	16
	l)phihalale (BEHP) (UG/KG)	1700	182	9,34	b
Chromium (MC		2.5	52.3	0,05	a b
Copper (MG/K)		7.6 J	18.7	0.09	ab
Load (MG/LG)		7.2	30,2	0.24	ab
Mercury (MG/II		D 05 4	0.13	0.46	аь
Pyrene (LIG/K)	- 16	21 3	153	0.14	ь
Zinc (MG/KG)		70	124	0,06	à b
-OSSESSION					
\$1.00 mm		Die-	_	444	
FR-05		100	-	1000	- 20
ARCHI COM		1000	104	1000	100
Frank Street		100 E	(The	100	1.00
Discourse (MI		Description of	1000	-	1000
Date (Mile)		75 × 100	40	7.996	100
LANG MILES		100	- 0	TO NAME OF	AR.
Real partners		1072	M	Ann.	TAKE
N-March		1.0	100	ber .	140
041M490301					
Chromium (MG	A/KGY	0.99	523	0.02	a ti
Copper (MG/K		0.49 1	187	0.03	a b
Lead (MG/KG)		2.7	30,2	0.09	a 6
THE MINISTRACT		0.96 /	124	0.01	8.4

Notes

Some of the numbers in the table may vary because of rounding.
Basewide levels (detailed in Section 6) for DDT and its metabolites.
Basewide level for 4.4'-DDE is 40 ppb.
Basewide level for 4.4'-DDD is 50 ppb.

Basewide level for 4,4'-DDT is 20 ppb

⁽a) USEPA Screening Concentration for Sediment - EPA SSVs
(b) FDEP Sediment Quality Assessment Guidalines - FDEP SQAGs

Table 10-14-3
Phase IIA Detected Concentrations in Wetland 49 Surface Water

Parameter	Frequency of Detection	Range of Detected Concentrations	Average Detected Concentration
Inorganics (μg/L)			
Aluminum (Al)	1/2	1800	1800
Calcium (Ca)	2/2	692 - 4500	2596
Iron (Fe)	2/2	73 - 821	447
Lead (Pb)	1/2	3.1	3.1
Magnesium (Mg)	2/2	733 - 1100	916.5
Manganese (Mn)	2/2	1.9 - 7.4	4.65
Potassium (K)	1/2	180	180
Sodium (Na)	2/2	6750 - 13100	9925
Vanadium (V)	2/2	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	2.3
VOCs (μg/L)			
Acetone	2/2	4₌6	1.5

Note:

All results are in micrograms per liter ($\mu g/L$) or parts per billion (ppb).

10.14.3 Fate and Transport

The pathways evaluated for the wetland specific fate and transport correlate to those identified in the conceptual model presented in Section 9. These pathways include: surface water/sediment transport into the wetland; groundwater discharge into the wetland; sediment/surface water transport within the wetland; sediment leaching to surface water within the wetland; and surface water/sediment transport from the wetland. Sediment transport and storm water runoff data are lacking; thus the evaluation is qualitative in nature. The method of evaluation of the leaching from sediment to surface water was presented in Section 9. Table 10-14-5 presents those contaminants present in sediment above sediment benchmark levels and their calculated SSLs. Contaminants present in surface water above appropriate standards were previously presented in Table 10-14-4.

Transport into the Wetland

Surface Water/Sediment Pathway

Based on landform and watershed analysis, the following sources can contribute contamination to Wetland 49 through this pathway:

Table 10-14-4 (1) Wetland 49 Phase IIA Surface Water Concentrations Compared to Water Quality Criteria

Sample Location	Parameter	Now	Detected Concentration	Water Quality Criteria	HQ	Criteria Reference
HERMAN	September 1			The Park		100
S. Indian		-	1000	100	1000	-
041W490301	Freshwater	-		_		
Aluminum	Critical	LIGAL	1.600.0	87 n	20.68966	- 3
from		UG/L	821 0	1,000.0	0,821	a b
Lead		LIG/L	3.1	1.71	1,81287	ab

Notes:

 ⁽a) USEPA Water Cluality Criteria (1995)
 (b) FDEP Class III Water Quality Criteria (1996)
 Some of the numbers in the table may vary because of founding.

Table 10-14-5
Calculated Sediment Screening Values for Wetland 49

Parameter	USEPA or FDEP Surface Water Standard	Kd	SSL DF = 100	Maximum Concentration Detected	Leaching Potential DF = 100
Organics (ppb)	1000				and the second second
4,4-DDE	10.5 *	5,68E+04	5,96E+07	18	NO :::
4,4'-DDD	0.0064 ª	1.27E+04	8.13E+03	94	NO
4,4'-DDT;	0.001	3.34E+04	3,340	3	NO

Notes:

Kd for organics calculated using foc of 0.012 (numerical average of all sediment samples).

Kds are from: USEPA, 1996b (first preference); Superfund Chemical Data Matrix (USEPA, 1996c) (second preference); Texas Risk Reduction Program Concept Document 2, Volume 1, Appendix VII, 1996 (third preference); TERRA Model, Oak Ridge National Laboratory, 1984 (fourth preference — primary reference for inorganics).

Kd = normalized partitioning coefficient.

SSL = sediment screening level.

DF = dilution factor.

USEPA Freshwater Surface Water Chronic Screening Value (1995a).

b = FDEP Class III Water Quality Criteria (1996).

Potential storm water runoff and sediment entrainment from the petroleum Site 19 (the jet fuel pipeline associated with IR Site 19) and from the western end of the Forrest Sherman airfield complex.

The presence of sediment contaminants above benchmark levels (see Table 10-14-5) validates the sediment transport pathway and by inference the surface water pathway. Additionally, two inorganics were present in surface water above standards, further validating the pathway.

Groundwater Discharge Pathway

Based on potentiometric analysis, the primary potential source that would contribute contamination to Wetland 49 through this pathway is the petroleum Site 19. Groundwater at this site has been shown to be contaminated, and therefore the pathway is considered valid.

August 31, 2000

Transport within the Wetland

Surface Water/Sediment Migration Pathway

The configuration of wetland, along with landform analysis, indicates that Wetland 49 is connected

to Wetland 51, but the direction of flow is not evident. However, the Wetland 49/51 complex is

self-enclosed and not in direct contact with an exterior stress. Surface water movement and

sediment transport can therefore be considered to be stable and subject only to surface water influx

during rain events.

Sediment Leaching to Surface Water Pathway

Three organics, all pesticides, exceeded their benchmark levels, but did not exceed their calculated

SSL. Only 4,4'-DDD exceeded its basewide level. Additionally, the two inorganic parameters

above criteria in surface water were not above benchmark levels (which are lower values than

SSLs) in sediment, suggesting the source for that contaminant is related to the surface water

pathway or groundwater discharge source. The sediment leaching pathway is considered invalid

for this wetland, and sediment contamination is not expected to partition to surface water.

Transport from the Wetland

Surface water and sediment movement can be expected to be stable and remain within the wetland.

10.14.4 Ecological Risk Assessment

HQs for Wetland 49 sediment samples are presented in Table 10-14-2. Phase IIA sediment results

compared to the appropriate sediment benchmark levels revealed a HQ above 1 for 4,4'-DDD

(77.05), 4,4'-DDE (8.70), 4,4'-DDT (1.01), and bis(2-ehtylhexyl)phthalate (9.34) at

sample location 4901. The HQ was also greater than 1 for 4,4'-DDD (48.36), 4,4'-DDE (4.44),

and 4,4'-DDT (2,52) at sample location 4902. Phase IIA surface water HOs greater than 1 for

aluminum (20.69), and lead (1.81) ranged from 0.073 at location 4901 to 23.32 at location 4903.

HQs greater than 1 indicate a potential for excess risk.

10-14-10

Wetland 49 was classified in Group E. Because aquatic and terrestrial receptors were not expected to be exposed to wetlands in Group E, they were also eliminated from further sampling and analysis. Color-codes, groupings and rationale for classification are described in Section 7.

10.14.5 Human Health Risk Assessment

10.14.5.1 Samples Included

Sediment

041M490101, 041M490201, 041M490301

Surface Water

041W490101, 041W490201

10.14.5.2 Current and Future Land Use

Wetland 49 is in an area west of Forrest Sherman Field that is restricted to public access. This restriction is due to the area's proximity to the airfield, and because the base pistol range is on the northern side of the wetland. Warning flags and signs are posted to caution passersby when the pistol range is in use. Maintenance workers can be expected to occasionally visit the area.

10.14.5.3 Fish Tissue COPCs

No fish tissue data were available for this wetland, and this exposure pathway would likely be incomplete; therefore, no COPCs were identified.

10.14.5.4 Sediment COPCs

As shown in Table 10-14-6, no sediment COPCs were identified.

10.14.5.5 Surface Water COPCs

As shown in Table 10-14-7, no surface water COPCs were identified.

TABLE 10-14-6 OCCURRENCE, DISTRIBUTION, AND SELECTION OF CHEMICALS OF POTENTIAL CONCERN NAS PENSACOLA SITE 41

Sceneric Timeframe; Current and Future Medium: Sediment Exposure Medium: Sediment Exposure Point: Welland 49 Sediment

		(1)		(1)							(2)	(3)	(4)		(5)			(6)
CAS Number	Chemical	Minimum Concentra <u>tion</u>	Minimum Qualifier	Maximum Contentration	Maximum Qualifler	Units	Location of Maximum Concentration	Detection Frequency	Range of Detection Limits	MEAN	Concentration Used for Screening	Background Value	Adolescent Site Trespasser PRG	Commercial Maintenance Worker PRG		Potential ARAR/TBC Source	COPC Flag	Rationale for Contaminant Delection or Selection
72548	4,4'-DDD	59.0000	DJ	94.0000	DJ	UG/KG	041M490101	2 / 3	0.24 - 0.24	76.50	94	N/A	92000	57000	С	N/A	NO	BSL
72559	4,4'-DDE	9.2000		18.0000		UG/KG	041M490201	2 / 3	0.24 - 0.24	13.60	18	N/A	65000	41000	c	N/A	NO	BŞL
50293	4,4'-DDT	1,2000	J	3,0000	J	UG/KG	041M490201	2 / 3	0.24 - 0.24	2.10	3	N/A	65000	41000	c l	N/A	NO	BSL
7429905	Aluminum (Al)	1500.0000		3560.00		MG/KG	041M490201	3 / 3	NAV	2687	3560	N/A	320000	490000	N	N/A	NO	BSL
7440382	Arsenic (As)	0.2100	J	0.2100	J	MG/KG	041M490201	1 / 3	0.14 ~ 0.14	0.21	0.21	N/A	15	9.2	cl	N/A	NO	BSL
7440393	Barlum (Ba)	1.7000	J	5.60		MG/KG	041M490301	3 / 3	NAV	4.3	5.6	N/A	22000	34000	N	N/A	NO	BSL
	bis(2-Ethylhexyl)phthalate(1700.0000		1700.0000		UG/KG	041M490101	1 / 3	460.00 - 490.00	1700	1700	N/A	1600000	980000	c	N/A	NO	BSL
	Butylbenzylphthalate	30,0000	J	30.0000	J	UG/KG	041M490101	1 / 3	450.00 - 490.00	30	30	N/A	63000000	98000000	N	N/A	NO	BSL
7440702	Calcium (Ca)	14.4000		1630.00		MG/KG	041M490101	3 / 3	NAV	676	1630	N/A	N/A	N/A	- 1	N/A	NO	EN
74873	Chloromethane	2.0000	J	2.0000	J	UG/KG	041M490301	1 / 3	13.00 - 65.00	2	2	N/A	1700000	1100000	cl	N/A	NO	BSL
7440473	Chromium (Cr)	0.9900		2.60		MG/KG	041M490101	3 / 3	NAV	2.03	2.6	N/A	1600	2500	N	N/A	NO	BSL
7440484	Cobalt (Co)	0.1500	J	0.20	J	MG/KG	041M490101	3 / 3	NAV	0.17	0.2	N/A	19000	29000	N	N/A	NO	BSL
7440508	Copper (Cu)	0.4900	J	1.60	J	MG/KG	041M490101	3 / 3	NAV	1.1	1,6	N/A	13000	20000	N	N/A	NO	BSL
84742	Di-n-butylphthelate	39,0000	J	39.0000	J	UG/KG	041M490101	1 / 3	460.00 - 490.00	39	39	N/A	32000000	49000000	Νl	N/A	NO	BSL
1024573	Heptachlor epoxide	1.1000	J	1,1000	J	UG/KG	041M490201	1 / 3	0.12 - 1.00	1.1	1.1	N/A	2400	1500	cl	N/A	NO	BSL
7439896	iron (Fe)	407.0000		707.00	1	MG/KG	041M490101	3 / 3	NAV	554	707	N/A	N/A	N/A	- 1	N/A	NO	EN
7439921	Lead (Pb)	2.7000		7.20		MG/KG	041M490301	3 / 3	NAV	5.57	7.2	N/A	400	400	- 1	OSWER	NO	BSL
7439954	Magnesium (Mg)	43.3000	J	123.00	J	MG/KG	041M490301	3 / 3	NAV	82	123	N/A	N/A	N/A	- 1	N/A	NO	EN
7439965	Manganese (Mn)	0.9400	J	7.00		MG/KG	041M490101	3 / 3	NAV	3,3B	7	N/A	15000	23000	мI	N/A	NO	BSL
7439976	Mercury (Hg)	0.0600	J	0.0600	J	MG/KG	041M490101	1 / 3	0.06 - 0.06	0.06	0,05	N/A	95	2.3	N	N/A	NO	BSL
7440020	Nickei (Ni)	0.9100	J	0,9100	J	MG/KG	041M490201	1 / 3	0.64 - 0.65	0.91	0.91	N/A	6300	9800	N	N/A	NO	BSL
7440097	Potassium (K)	26.2000	J	66.00	J	MG/KG	041M490201	3 / 3	NAV	51	66	N/A	N/A	N/A		N/A	NO	EN
	Pyrene	21,0000	J	21.0000	J	UG/KG	041M490101	1 / 3	46.00 - 49.00	21	21	N/A	9500000	15000000	N	N/A	NO	BSL
7440235	Sodium (Na)	17.9000	J	30.40		MG/KG	041M490301	3 / 3	NAV	22	30.4	N/A	N/A	N/A		N/A	NO	EN
7440622	Vanadium (V)	2,1000	J	3.00	J	MG/KG	041M490101	3 / 3	NAV	2.63	3	N/A	2200	3400	N	N/A	NO	BSL
7440666	Zinc (Zn)	0.9600	J	7.60		MG/KG	041M490201	3 / 3	NAV	5.02	7.6	N/A	95000	15000	N	N/A	NO	BSL

⁽¹⁾ Minimum/maximum detected concentration

(8) Rationale Codes Selection Reason:

Above Screening Levels (ASL) Deletion Reason: Below Screening Levels (BSL) Background Levels (BKG) No Toxicity Information (NTX) Essential Nutrient (EN)

Definitions:

N/A = Not Applicable NAV = Not Available

COPC = Chemical of Potential Concern

ARAR/TBC = Applicable or Releveant and Appropriate Requirement/ To Be Considered

OSWER = Office of Solid Waste and Emergency Response

J = Estimated Value C = Carcinogenic

N Noncarcinogenic

⁽²⁾ Maximum concentration used as screening value.

⁽³⁾ No background values were developed for this media.

⁽⁴⁾ PRGs for site trespassor scenario calculated based on equations and parameters presented in Section 8 of this report.

⁽⁵⁾ PRGs for commercial maintenance worker scenario calculated based on equations and parameters presented in Section 8 of this report.

TABLE 10-14-7 OCCURRENCE, DISTRIBUTION, AND SELECTION OF CHEMICALS OF POTENTIAL CONCERN NAS PENSACOLA SITE 41

Scenario Timeframe: Current and Future Medium: Surface Water

Exposure Medium: Surface Water Exposure Point: Wetland 49 Surface Water

		(1)		(1)							(2)		(3)	(4)		(5)
CAS Number	Chernical	Minimum Concentration	Minimum Qualifier	Maximum Concentration	Maximum Qualifier	Units	Location of Maximum Concentration	Detection Frequency	Range of Detection Limits	Mean	Concentration Used for Screening		Adolescent Site Trespasser PRG	Commercial Maintenance Worker PRG	Potential ARAR/TBC Source	COPC Flag	Rationale for Contaminant Delection or Selection
67641	Acetone	4.00	J	6.00	J	UG/L	041W490301	2 / 2	NAV	5.00	6	N/A	21000	35000 N	N/A	NO	BSL
7429905	Aluminum (Al)	1800.00	J	1800.00		UG/L	041W490301	1 / 2	NAV	1800.00	1800	N/A	120000	250000 N	I N/A	NO	BŞL
7440702	Calcium (Ca)	692,00	J	4500.00	J	UG/L	041W490101	2 / 2	NAV	2596.00	4500	N/A	N/A	N/A	N/A	NO :	EN
7439896	Iron (Fe)	73.00	J	821.00		UGAL	041W490301	2 / 2	NAV	447.00	821	N/A	N/A	N/A N	I N/A	NO	EN
7439921	Lead (Pb)	3.10	1	3.10		UG/L	041W490301	1 / 2	NAV	3,10	3,1	N/A	15	15	TTAL	NO	BŞL
7439954	Magnesium (Mg)	733.00	J	1100.00	J	UG/L	041W490301	2 / 2	NAV	916.50	1100	N/A	N/A	N/A	N/A	NO	EN
7439965	Manganese (Mn)	1.90	J	7.40	ı	UG/L	041W490301	2 / 2	NAV	4.65	7.4	N/A	2400	5000 N	I N/A	NO	BSL
7440097	Potassium (K)	180.00	J	180.00		UG/L	041W490101	1 / 2	NAV	180.00	180	N/A	N/A	N/A	N/A	NO	EN
7440235	Sodium (Na)	6750.00		13100.00		UG/L	041W490301	2 / 2	NAV	9925.00	13100	N/A	N/A	N/A	N/A	NO	EN
7440622	Vanadium (V)	2.30	J	2.30	J	UG/L	041W490301	2 / 2	NAV	2.30	2.3	N/A	830	1800 N	I N/A	NO	BSL

(1) Minimum/maximum detected concentration

(2) Maximum concentration used as screening value.

(4) PRGs for site trespasser scenario calculated based on equations and parameters presented in Section 8 of this report.

(5) PRGs for commercial maintenance worker scenario calculated based on equations and parameters presented in Section 8 of this report.

(6) Rationale Codes

Selection Reason: Above Screening Levels (ASL) Deletion Reason: Below Screening Levels (BSL)

Background Levels (BKG) No Toxicity Information (NTX) Essential Nutrient (EN)

Definitions: N/A = Not Applicable

NAV = Not Available

COPC = Chemical of Potential Concern

ARAR/TBC = Applicable or Relevant and Appropriate Requirement/ To Be Considered

TTAL = Treatment technique action level

J = Estimated Value C = Carcinogenic

N = Noncarcinogenic

10.14.5.6 Risk Summary

No COPCs were identified following the screening comparisons described in Section 8 and presented above. As a result, no formal human health risk assessment was conducted for Wetland 49.

10.14.6 Conclusions and Recommendations

Wetland 49 is intermittent, and due to its location is not expected to be a significant source of food, water, or habitat. Therefore, as proposed in the approved RI/FS SAP Addendum (EnSafe, 1997), this wetland was eliminated from further risk characterization. Since no COPCs were identified for Wetland 49, no formal HHRA was conducted. Because no excess ecological or human health risks are present at Wetland 49, no further action was recommended and approved for this wetland.

10.15 WETLAND 13

10.15.1 Site Description

Wetland 13 is in the northeastern quadrant of NAS Pensacola, southeast of the bilge water plant of the NAS Pensacola waste water treatment plant. Parsons and Pruitt described this area as a palustrine forested site with emergent vegetation (USEPA, 1991). The dominant vegetation in this area includes pines, black willow (Salix nigra), and smartweed (Polygonum sp.), with sawgrass (Cladium jamaicense) in the small open water portion. Wetland 13 is seasonally saturated, and has only a small area of standing surface water during the wet season.

The IR site potentially affecting Wetland 13 is Site 13 (Magazine Point Rubble Disposal Site), which extends along the eastern shore of Magazine Point and the former Chevalier Field (now the NATTC). Rubble from Site 13 is distributed along the eastern side of Wetland 13. The proximity of the bilge water plant may also have been a concern for this wetland.

10.15.2 Nature and Extent

The methods for evaluating nature and extent are presented in Section 6. Figure 10-15-1 denotes the Phase IIA Wetland 13 sampling location.

Sediment

Seventeen metals were detected in the single Wetland 13 sediment sample. No metals exceeded a sediment benchmark level at Wetland 13. Pesticides detected in Wetland 13 sediment included 4,4'-DDE, 4,4'-DDT and dieldrin. 4,4'-DDE (1.9 ppb) and 4,4'-DDT (1.4 ppb) were below their basewide levels (40 ppb and 20 ppb). Basewide levels are described in Section 6. Dieldrin (0.3 ppb) was also below its benchmark level (0.72 ppb). No PCBs were detected in Wetland 13 sediment. Three SVOCs were detected in Wetland 13 sediment, including fluoranthene, di-n-butylphthalate, and bis(2-ethylhexyl)phthalate. SVOC detections were below sediment benchmark levels. No VOCs were detected in the Wetland 13 sediment sample.

Table 10-15-1 shows the Wetland 13 Phase IIA sediment sample results (frequency of detection,

range of detected concentrations, and average detected concentration). Table 10-15-2, which

presents only the parameters with sediment benchmark levels, compares detected concentrations

at each sample location to sediment benchmark levels, and lists calculated HQs for each parameter.

The HQs will be further discussed in the ecological risk section (Section 10.15.4).

Surface Water

Twenty-one metals were detected in the single Wetland 13 surface water sample. Aluminum

(145,000 ppb), beryllium (4.4 ppb), cadmium (9.8 ppb), chromium (225 ppb), copper (142 ppb),

iron (36,200 ppb), lead (1,220 ppb), mercury (1.3 ppb), selenium (13.6 ppb), and zinc (536 ppb)

exceeded appropriate surface water quality criteria. However, the surface water sample was

highly turbid (greater than 1,000 NTU). No organic constituents were detected in Wetland 13

surface water.

Table 10-15-3 shows the Wetland 13 Phase IIA surface water sample results (frequency of

detection, range of detected concentrations, and average detected concentration). Table 10-15-4

compares detected concentrations at each sample location to surface water quality criteria and lists

calculated HQs for each parameter. Only parameters with water quality criteria are listed in

Table 10-15-4. The HQs will be further discussed in the ecological risk section (Section 10.15.4).

10.15.3 Fate and Transport

The pathways evaluated for the wetland specific fate and transport correlate to those identified in

the conceptual model presented in Section 9. These pathways include: surface water/sediment

transport into the wetland; groundwater discharge into the wetland; sediment/surface water

transport within the wetland; sediment leaching to surface water within the wetland; and surface

water/sediment transport from the wetland.

10-15-2

Table 10-15-1
Phase IIA Detected Concentrations in Wetland 13 Sediments

Parameter	Frequency of Detection	Range of Detected Concentrations	Average Detected Concentration
Inorganics (mg/kg)			
Aluminum (Al)	1/1	1590	1590
Antimony (Sb)	1/1	0.15	0.15
Arsenic (As)	1/1	0.14	0.14
Barium (Ba)	1/1	0.88	0.88
Beryllium (Be)	. 1/1	0.11	0.11
Calcium (Ca)	1/1	327	327
Chromium (Cr)	1/1		4
Copper (Cu)	1/1	1.2	1.2
Iron (Fe)	1/1	229	229
Lead (Pb)	1/1	9.2	9.2
Magnesium (Mg)	1/1	187	187
Manganese (Mn)	1/1	0.85	0.85
Potassium (K)	1/1	50.6	50.6
Selenium (Se)	1/1	0.41	0.41
Sodium (Na)	1/1	290	290
Vanadium (V)	1/1	7.5	7.5
Zinc (Zn)	1/1	1.7	1.7
Pesticides and PCBs (µg/kg)			
4,4'-DDE	1/1	1.9	1.9
4,4'-DDT	1/1	1.4	1.4
Dieldrín	1/1	0.3	0.3
SVOCs (μg/kg)			
Di-n-butylphthalate	1/1	26	26
Fluoranthene	1/1	29	29
bis(2-Ethylhexyl)phthalate (BEHP)	1/1	31	31

Note:

All results are in micrograms per kilogram ($\mu g/kg$) or parts per billion, except for metals which are in milligrams per kilogram (mg/kg) or parts per million (ppm).

Table 10-15-2
Wetland 13
Phase IIA Sediment Concentrations Compared to Benchmark Levels

Sample Location	Parameter	Detected Concentration	Sediment Benchmark Value (SBV)	HQ	SBV Reference
041M130101					
4,4'-DDE (UG	/KG)	1.9 J	2.07	0.92	b
4,4'-DDT (UG	/KG)	1.4 J	1.19	1.18	b
Antimony (MC	S/KG)	0.15 J	12	0.01	а
Arsenic (MG/I	KG)	0.14 J	7.24	0.02	a b
bis(2-Ethylhex	yl)phthalate (BEHP) (UG/KG)	31 J	182	0.17	b
Chromium (M	G/KG)	4	52.3	0.08	a b
Copper (MG/l	(G)	1.2 J	18.7	0.06	a b
Dieldrin (UG/KG)		0.3 J	0.72	0.42	b
Fluoranthene (UG/KG)		29 J	113	0.26	b
Lead (MG/KG)		9.2 J	30.2	0.30	a b
Zinc (MG/KG)	ı	1.7	124	0.01	аb

Natas

Basewide levels (detailed in Section 6) for DDT and its metabolites

Basewide level for 4,4'-DDE is 40 ppb.

Basewide level for 4,4'-DDD is 50 ppb.

Basewide level for 4,4'-DDT is 20 ppb.

⁽a) USEPA Screening Concentration for Sediment - EPA SSVs

⁽b) FDEP Sediment Quality Assessment Guidelines - FDEP SQAGs Some of the numbers in the table may vary because of rounding.

Table 10-15-3
Phase IIA Detected Concentrations in Wetland 13 Surface Water

Parameter	Frequency of Detection	Range of Detected Concentrations	Average Detected Concentration	
Inorganics (µg/L)				
Aluminum (Al)	1/1	145000	145000	
Antimony (Sb)	1/1	2.8	2.8	
Arsenic (As)	1/1	26.6	26.6	
Barium (Ba)	1/1	95.4	95.4	
Beryllium (Be)	1/1	4.4	4.4	
Cadmium (Cd)	1/1	9.8	9.8	
Calcium (Ca)	1/1	47500	47500	
Chromium (Cr)	1/1	225	225	
Cobalt (Co)	1/1	7.8	7.8	
Copper (Cu)	1/1	142	142	
Iron (Fe)		36200	36200	
Lead (Pb)	1/1	1220	1220	
Magnesium (Mg)	1/1	37100	37100	
Manganese (Mn)	1/1	150	150	
Mercury (Hg)	1/1	1.3	1.3	
Nickel (Ni)	1/1	47.2	47.2	
Potassium (K)	1/1	16600	16600	
Selenium (Se)	1/1	13.6	13.6	
Sodium (Na)	1/1	199000	199000	
Vanadium (V)	1/1	324	324	
Zinc (Zn)	1/1	536	536 North Co.	

Note:

All results are in micrograms per liter ($\mu g/L$) or parts per billion (ppb).

Table 10-15-4 (1) Wetland 13 Phase IIA Surface Water Concentrations Compared to Water Quality Criteria

Sample Location	Parameter	UOM	Detected Concentration	Water Quality Criteria	НQ	Criteria Reference
041W130101	Freshwater					
Aluminum		UG/L	145,000.0	87.0	1,666.66667	а
Antimony		UG/L	2.8	160.0	0.0175	а
Arsenic		UG/L	26.6	50.0	0.532	b
Beryllium		UG/L	4.4	0.13	33.84616	b
Cadmium		UG/L	9.8	0.774	12.6615	аb
Chromium		UG/L	225.0	11.0	20.45455	аb
Copper		UG/L	142.0	7.8	18.20513	аb
iron		UG/L	36,200.0	1,000.0	36.2	a b
Lead		UG/L	1,220.0	1.71	713.45028	аb
Mercury		UG/L	1.3	0.012	108.33333	аb
Nickel		UG/L	47.2	104.0	0.45385	аb
Selenium		UG/L	13.6	5.0	2.72	аb
Zinc		UG/L	536.0	70.2	7.63533	a b

Notes:

(a) USEPA Water Quality Criteria (1995)
(b) FDEP Class III Water Quality Criteria (1996)
Some of the numbers in the table may vary because of rounding.

Sediment transport and storm water runoff data are lacking, thus the evaluation is qualitative in nature. The method of evaluation of the leaching from sediment to surface water was presented in Section 9. Table 10-15-5 presents those contaminants present in sediment above sediment benchmark levels and their calculated SSLs. Contaminants present in surface water above water quality criteria are presented in Table 10-15-4.

Table 10-15-5
Calculated Sediment Screening Values for Wetland 13

Parameter	USEPA or FDEP Surface Water Standard	Kd	SSL DF = 100	Maximum Concentration Detected	Leaching Potential DF = 100
Organics (ppb)					
4,4'-DDT	0.001 a, b	3.61E+04	3,610	1.4	NO

Notes:

Kd for organics calculated using foc of 0.0138 (numerical average of all sediment samples).

Kds are from: USEPA, 1996b (first preference); Superfund Chemical Data Matrix (USEPA, 1996c) (second preference); Texas Risk Reduction Program Concept Document 2, Volume 1, Appendix VII, 1996 (third preference); TERRA Model, Oak Ridge National Laboratory, 1984 (fourth preference — primary reference for inorganics).

Kd = normalized partitioning coefficient.

SSL = sediment screening level.

DF = dilution factor.

a = USEPA Freshwater Surface Water Chronic Screening Value (1995a).

b = FDEP Class III Water Quality Criteria (1996).

Transport into the Wetland

Surface Water/Sediment Pathway

Based on landform and watershed analysis, the following sources can contribute contamination to Wetland 13 through this pathway:

 Potential storm water runoff and sediment entrainment from Sites 13, 32, 33, and 35, and from the bilge water plant and northern portions of former Chevalier Field (now the NATTC). August 31, 2000

The presence of a single sediment contaminant above sediment benchmark levels

(see Table 10-15-5) validates the sediment transport pathway (albeit not greatly significant) and

by inference the surface water pathway. Additionally, ten inorganics were present in surface water

above water quality criteria, further validating the pathway. As previously stated, the

surface water sample was highly turbid which may have contributed to the number of inorganic

exceedances.

Groundwater Discharge Pathway

Based on potentiometric analysis, there are no known sources that would contribute contamination

to Wetland 13 through this pathway. Therefore, the pathway is considered invalid.

Transport within the Wetland

Surface Water/Sediment Migration Pathway

The configuration of wetland, along with landform analysis, indicates that wetland is self-enclosed

and not in direct contact with an exterior stress. Surface water movement and sediment transport

can therefore be considered to be stable and subject only to surface water influx during rain events.

Sediment Leaching to Surface Water Pathway

One pesticide exceeded its sediment benchmark level, but did not exceed its SSL nor its basewide

level. Additionally, those parameters above water quality criteria in surface water were not above

benchmark levels (which are lower values than SSLs) in sediment. The source for these

contaminants may be related to the surface water pathway, undetermined groundwater discharge

source, or high turbidity. The sediment leaching pathway is considered invalid for this wetland,

and sediment contamination is not expected to partition to surface water.

Transport from the Wetland

Surface water and sediment movement can be expected to be stable and remain within the wetland.

10-15-10

10.15.4 Ecological Risk Assessment

HQs for the single Wetland 13 sediment sample are presented in Table 10-15-2. Phase IIA sediment sample results compared to the appropriate sediment benchmark levels revealed a HQ above 1 for 4,4'-DDT (1.18). No other sediment detections had a HQ greater than 1. As noted in the nature and extent discussion, the concentrations of 4,4'-DDE and 4,4-DDT in the single Wetland 13 sediment sample were below the basewide levels. Phase IIA surface water results revealed HQs greater than 1 for aluminum (1,666.67), beryllium (33.85), cadmium (12.66), chromium (20.45), copper (18.21), iron (36.2), lead (713.45), mercury (108.33), selenium (2.72), and zinc (7.64). However, as noted in the nature and extent discussion, the HQ exceedances in the Wetland 13 surface water sample may be attributable to this sample's high turbidity. HQs greater than 1 indicate a potential for excess risk.

Wetland 13 is classified as a blue-coded wetland (E/A&H, 1995a). Contaminants detected in the blue-coded wetlands were isolated and were generally below benchmark or reference values. In addition, contaminant exceedances did not appear to be related to IR sites. Therefore, the blue-coded wetlands were not studied further in Phase IIB/III. Color-codes, groupings and rationale for classification are described in Section 7.

10.15.5 Human Health Risk Assessment

10.15.5.1 Samples Included

Sediment

041M130101

Surface Water

041W130101

10.15.5.2 Current and Future Land Use

Wetland 13 lies in a wooded zone north of the NATTC at NAS Pensacola, at the southern end of

Magazine Point. Wetland 13 is east of the bilge water plant of the waste water treatment plant.

Wetland 12 is west. The Magazine Point area is posted as a restricted location that is patrolled

by base police. Routine grounds maintenance activities are periodically performed near

Wetland 13 to control weeds and brush. There is no recreational use of this area. Unlikely uses

could include occasional trespassing or use by children who find the area attractive. More than

50% of the sediment at Wetland 13 is exposed for most of the year, so assuming

sediment exposure would be similar to soil exposure. Dermal contact could be a significant

exposure pathway and was included in this HHRA; however, game fish habitat is limited, so

fishing would not be expected. The adolescent trespasser scenario was considered to be

conservatively representative of potential receptor populations for Wetland 13.

10.15.5.3 Fish COPCs Identified

No fish tissue data were available for this wetland, and this exposure pathway would likely be

incomplete; therefore, no COPCs were identified.

10.15.5.4 Sediment COPCs Identified

As shown in Table 10-15-6, no sediment COPCs were identified.

10.15.5.5 Surface Water COPCs Identified

As shown in Table 10-15-7, the following chemical was identified as a COPC:

Aluminum

Arsenic

• Lead

10-15-12

TABLE 10-15-6 OCCURRENCE, DISTRIBUTION, AND SELECTION OF CHEMICALS OF POTENTIAL CONCERN NAS PENSACOLA SITE 41

Scenario Timetrame: Current and Future Medium: Sedment Exposure Medium: Sediment Exposure Point: Welland 13 Sediment

		(1)		(1)						(2)	(3)	(4)		5)		(6)
CAS Number	Chemical	Minimum Concentration	Minimum Qualifier	Maximum Concentration	Maximum Quatifier	Units	Location of Maximum Concentration	Detection Frequency	MEAN	Concentration Used for Screening	Background Value	Adolescent Site Trespasser PRG	Residential Soil RBC	Potential ARAR/TBC Source	COPC Flag	Rationale for Contaminant Delection or Selection
72559	4,4'-DDE	1.9000	J	1.9000	J	UG/KG	041M130101	1 / 1	1.90	1.90	N/A	65000	1900	N/A	NO	BSL
50293	4,4'-DDT	1.4000	J	1.4000		UG/KG	041M130101	1 / 1	1.40	1.40	N/A	65000	1900	N/A	NO	BSL
7429905	Aluminum (Al)	1590.0000		1590.0000		MG/KG	041M130101	1 / 1	1590.00	1590.00	N/A	320000	7800	N/A	NO	BSL
7440360	Antimony (Sb)	0.1500	J	0.1500	J	MG/KG	041M130101	1 / 1	0,15	0.15	N/A	130	3.1	I N/A	NO	BSL
7440382	Arsenic (As)	0.1400	J	0.1400	J	MG/KG	041M130101	1 / 1	0,14	0.14	N/A	15	0.43	N/A	NO	BSL
7440393	Barium (Ba)	0.8800	J	0.8800	J	MG/KG	041M130101	1 / 1	0.88	0.88	N/A	22111	550 I	I N/A	NO	BSL
7440417	Beryllium (Be)	0.1100	J	0.1100	J	MG/KG	041M130101	1 / 1	0.11	0.11	N/A	632	16 1	I N/A	NO	BSL
117817	bis(2-Ethylhexyl)phthalate (BEHP)	31,0000	J	31.0000		UG/KG	041M130101	1 / 1	31.00	31,00	N/A	1579330	46000	N/A	NO	BSL
7440702	Calcium (Ca)	327,0000	J	327.0000	J	MG/KG	D41M130101	1 / 1	327.00	327.00	N/A	N/A	N/A	N/A	NO	EN
7440473	Chromium (Cr)	4.0000		4.0000		MG/KG	041M130101	1 / 1	4.00	4.00	N/A	1600	23 I	I N/A	NO	BSL
7440508	Copper (Cu)	1.2000	J	1.2000	J	MG/KG	041M130101	1 / 1	1.20	1.20	N/A	13000	310	I N/A	NO	BSL
60571	Diektrin	0.3000	J	0.3000	J	UG/KG	041M130101	1 / 1	0.30	0.30	N/A	1400	40	N/A	NO	BSL
84742	Di-n-butylphthalate	26.0000	J	26.0000	J	UG/KG	041M130101	1 / 1	26.00	26.00	N/A	32000000	780000	I N/A	NO	BSL
206440	Fluoranthene	29.0000	J	29.0000		UG/KG	041M130101	1 / 1	29.00	29.00	N/A	13000000	310000	I N/A	NO	BSL
7439896	Iron (Fe)	229.0000		229,0000		MG/KG	041M130101	1 / 1	229.00	229.00	N/A	N/A	N/A	N/A	NO	EN
7439921	Lead (Pb)	9.2000	J	9.2000	J	MG/KG	041M130101	1 / 1	9.20	9.20	N/A	400	400	OSWER	NO	BSL
7439954	Magnesium (Mg)	187.0000	J	187,0000	J	MG/KG	041M130101	1 / 1	187.00	187.00	N/A	N/A	N/A	N/A	NO	EN
7439965	Manganese (Mn)	0.8500	J	0.8500	J	MG/KG	041M130101	1 / 1	0.85	0.85	N/A	15000	1100	N/A	NO	BSL
7440097	Potassium (K)	50,6000	J	50.6000	J	MG/KG	041M130101	1 / 1	50.60	50.60	N/A	N/A	N/A	N/A	NO	EN
7782492	Selenium (Se)	0.4100	J	0.4100	J	MG/KG	041M130101	1 / 1	0.41	0.41	N/A	1600	39	I N/A	NO	BSL
7440235	Sodium (Na)	290.0000	J	290.0000	J	MG/KG	041M130101	1 / 1	290.00	290.00	N/A	N/A	N/A	N/A	NO	EN
7440622	Venedium (V)	7.5000		7.5000		MG/KG	041M130101	1 / 1	7.50	7.50	N/A	2200	55	N/A	NO	BSL
7440666	Zinc (Zn)	1,7000		1.7000		MG/KG	041M130101	1 / 1	1.70	1.70	N/A	95000	2300	I N/A	NO	BSL

(1) Minimum/maximum detected concentration

(2) Maximum concentration used as screening value.

(3) Background concentations were not calculated for this media.

(4) PRGs for site trespasser scenario calculated based on equations and parameters presented in Section 8 of this report.

(5) Residential soil RBCs presented in Region III Risk-Based Concentration Tables (USEPA, 1998).

(6) Rationale Codes

Selection Reason:

Above Screening Levels (ASL)

Deletion Reason: Below Screening Levels (BSL) Background Levels (BKG) No Toxicity Information (NTX) Essential Nutrient (EN)

Definitions:

N/A = Not Applicable NAV = Not Available

COPC = Chemical of Potential Concern

ARAR/TBC = Applicable or Releveant and Appropriate Requirement/ To Be Considered

OSWER = Office of Solid Waste and Emergency Response

J = Estimated Value

C = Carcinogenic

N Noncarcinogenic

TABLE 10-15-7 OCCURRENCE, DISTRIBUTION, AND SELECTION OF CHEMICALS OF POTENTIAL CONCERN NAS PENSACOLA SITE 41

Scenario Timetrame: Current and Future

Medium: Surface Water

Exposure Medium: Surface Water
Exposure Point: Wetland 13 Surface Water

				J													
		(1)		(1)							(2)		(3)	(4)			(5)
CAS Number	Chemical	Minimum Concentration	Minimum Qualifier	Maximum Concentration	Maximum Qualifier	Units	Location of Maximum Concentration	Detection Frequency	Range of Detection Limits	Mean	Concentration Used for Screening	Background Value	Adolescent Site Trespasser PRG	Tap Water RBC	Potential ARAR/TBC Source	COPC Flag	Rationale for Contaminant Delection or Selection
7429905	Aluminum (Al)	145000.000		145000.0000		UG/L	041W130101	1 / 1	NAV	145000.00	145000	N/A	120000	3700 N	N/A	YES	AŞL
7440360	Antimony (Sb)	2.800	Ĵ	2.8000	J	UG/L	041W130101	1 / 1	NAV	2.00	2.8	N/A	48	1.5 N	N/A	NO	BSL
7440382	Arsenic (As)	26.600		26 6000		UG/L	041W130101	1 / 1	NAV	26.60	26.6	N/A	5.6	0.045 C	N/A	YES	ASL
7440393	Barium (Ba)	95.400	J	95.4000	J	UG/L	041W130101	1 / 1	NAV	95.40	95.4	N/A	8300	260 N	N/A	NO	BSL
7440417	Beryllium (Be)	4,400	J	4,4000	J	UG/L	041W130101	1 / 1	NAV	4,40	4.4	N/A	240	7.3 C	N/A	NO	BSL
7440439	Cadmium (Cd)	9.800		9.8000		UG/L	041W130101	1 / 1	NAV	9.80	9.8	N/A	60	1.8 N	N/A	NO	BSL
7440702	Calcium (Ca)	47500.000		47500,0000		UG/L	041W130101	1 / 1	NAV	47500.00	47500	N/A	N/A	N/A	N/A	NO	EN
7440473	Chromium (Cr)	225.000		225.0000		UG/L	041W130101	1 / 1	NAV	225.00	225	N/A	360	11 N	N/A	NO	BSL
7440484	Cobalt (Co)	7.800	J	7.8000	J	UG/L	041W130101	1 / 1	NAV	7.80	7.8	N/A	7100	220 N	N/A	NO	BSL
7440508	Copper (Cu)	142.000		142.0000		UG/L	041W130101	1 / 1	NAV	142.00	142	N/A	4800	150 N	N/A	NO	BSL
7439898	iron (Fe)	36200.000		36200.0000		UG/L	041W130101	1 / 1	NAV	38200.00	36200	N/A	N/A	N/A	N/A	NO	EN
7439921	Lead (Pb)	1220.000		1220.0000		UG/L	041W130101	1 / 1	NAV	1220.00	1220	N/A	15	15 N	TTAL	YES	ASL
7439954	Magnesium (Mg)	37100.000		37100.0000		UG/L	041W130101	1 / 1	NAV	37100.00	37100	N/A	N/A	N/A	N/A	NO	EN
7439965	Manganese (Mn)	150.000		150.0000		UG/L	041W130101	1 / 1	NAV	150.00	150	N/A	2400	73 N	N/A	NO	BSL
7439976	Mercury (Hg)	1.300		1.3000		UG/L	041W130101	1 / 1	NAV	1.30	1.3	N/A	36	1.1 N	N/A	NO	BSL
7440020	Nickel (Ni)	47.200		47.2000		UG/L	041W130101	1 / 1	NAV	47.20	47.2	N/A	2400	73 N	N/A	NO	BSL
7440097	Potassium (K)	16600.000		16600.0000		UG/L	041W130101	1 / 1	NAV	16600.00	15600	N/A	N/A	N/A	N/A	NO	EN
7782492	Selenium (Se)	13.600		13.6000		UG/L	041W130101	1 / 1	NAV	13.60	13.6	N/A	600	18 N	N/A	NO	BSL
7440235	Sodium (Na)	199000.000		199000.0000		UG/L	041W130101	1 / 1	NAV	199000.00	199000	N/A	N/A	N/A	N/A	NO	EN
7440622	Vanadium (V)	324.000		324.0000		UG/L	041W130101	1 / 1	NAV	324.00	324	N/A	830	26 N	N/A	NO	BSL
7440668	Zinc (Zn)	536.000		536.0000		UG/L	041W130101	1 / 1	NAV	536.00	536	N/A	36000	1100 N	N/A	NO	BSL

(1) Minimum/maximum detected concentration

(2) Maximum concentration used as screening value.

(3) PRGs for adolescent site trespasser scenario calculated using equations and parameters presented in Section 8 of this report.

(4) Tap water RBCs presented in Region III Risk-Based Concentration Tables, (USEPA, 1998).

(5) Rationale Codes

Selection Reason: Above Screening Levels (ASL) Deletion Reason: Below Screening Levels (BSL)

Background Levels (BKG) Essential Nutrient (EN)

No Toxicity Information (NTX)

Definitions: N/A ≃ Not Applicable

NAV = Not Available

COPC = Chemical of Potential Concern

ARAR/TBC = Applicable or Releveent and Appropriate Requirement/ To Be Considered

TTAL = Treatment technique action level

J = Estimated Value

C = Carcinogenic

N = Noncarcinogenic

10.15.5.6 Risk Characterization

As shown in Table 10-15-8, arsenic is the only contributor to surface water risk estimates. The cumulative risk estimated for this wetland is 2.4E-6. The HI shown in Table 10-15-9 was estimated to be 0.19. Arsenic was identified as a surface water COC water based on its contribution to the cumulative risk estimate for this wetland. Table 10-15-10 summarizes cancer risk estimates and noncancer hazard estimates for this wetland. Although exposure would likely be acute or subchronic, these hazard estimates were developed for completeness, and RGOs were developed below.

Lead Risk Characterization

A conservative exposure scenario was developed to assess the significance of the surface water concentration of lead at Wetland 13. This scenario involves a child (age 6 to 7) who accompanies an older sibling to the wetland one day a week for a year. Exposure to Wetland 13 surface water was addressed as an additional exposure relative to typical exposures encountered at the child's home. This additional exposure was presented as an "alternate" source within the constructs of the Lead Model. The standard default assumptions in the Lead Model were kept to simulate background lead exposures. This was done to provide a conservative estimate of daily intake from sources unrelated to Wetland 13.

The assumption was made that this child would incidentally ingest 0.05 liters of surface water during each visit. Within the Lead Model, an alternate source was entered to account for this exposure as previously discussed. The bioavailability of lead ingested from the alternate source (Wetland 13 surface water) was equal to that of drinking water lead ingested from the standard residential default source. Assuming incidental ingestion of 0.05 liters of surface water once per week with a lead concentration of 1220 μ g/L, the annual alternate source exposure was estimated to be 8.69 μ g lead/day. Table 10-15-11 presents the lead model output for a child 6 to 7 years old under these exposure conditions.

TABLE 10-15-8 RME CALCULATION OF NON-CANCER HAZARDS REASONABLE MAXIMUM EXPOSURE NAS PENSACOLA SITE 41

Scenario: Timeframe: Current and Future

Medium: Surface water

Exposure Medium: Surface water Exposure Point: Wetland 13 Receptor Population: Trespasser Receptor Age: Adolescent

Exposure Route	Chemical of Potential Concern	Medium EPC Value	Medium EPC Units	Route EPC Value	EPC Selected for Hazard Calculation	Intake (Cancer)	Intake (Cancer) Units	Cancer Slope Factor	Slope Factor Units	Cancer Risk
Ingestion	Arsenic	0.0266	MG/L	N/A	M	1.60E-06	mg/kg-day	1.5	(mg/kg-day) ⁻¹	2.40E-06
Dermal	Arsenic	0.0266	MG/L	N/A	М	3.30E-10	mg/kg-day	7.5	(mg/kg-day) ⁻¹	2.48E-09
									Total Risk	2.40E-06

EPC = Exposure Point Concentration

MG/L = Milligram per Liter

M = Medium-specific EPC selected for risk calculation.

TABLE 10-15-9 RME CALCULATION OF NON-CANCER HAZARDS REASONABLE MAXIMUM EXPOSURE NAS PENSACOLA SITE 41

Scenario: Timeframe: Current and Future

Medium: Surface Water

Exposure Medium: Surface Water Exposure Point: Wetland 13 Receptor Population: Trespasser Receptor Age: Adolescent

					EPC Selected for					
Exposure	Chemical of Potential	Medium	Medium	Route EPC	Hazard	Intake	Intake	Reference	Reference	Hazard
Route	Concern	EPC Value	EPC Units	Value	Calculation	(Non-Cancer)	(Non-Cancer) Units	Dose	Dose Units	Quotient
Ingestion	Arsenic	0.0266	MG/L	N/A	М	1,10E-05	mg/kg-day	3.00E-04	mg/kg-day	0.037
	Aluminum	145	MG/L	N/A	M	5.97E-02	mg/kg-day	1.00E+00	mg/kg-day	0.060
Dermal	Arsenic	0.0266	MG/L		M	2.28E-06	mg/kg-day	6.00 E- 05	mg/kg-day	0.038
	Aluminum	145	MG/L		М	1.20E-02	mg/kg-day	2.00E-01	mg/kg-day	0.060
L		L		<u> </u>				Tot	al Hazard Index	0.194

EPC = Exposure Point Concentration

MG/L = Milligram per Liter

M = Medium-specific EPC selected for risk calculation.

TABLE 10-15-10 RME CALCULATION OF NON-CANCER HAZARDS REASONABLE MAXIMUM EXPOSURE NAS PENSACOLA SITE 41

Scenano Timeframe: Current and Future
Receptor Population: Site Trespasser
Receptor Age: Adolescent

Medium	Exposure Medium	Exposure Point	Chemical		Carcinogenic Risk	ς.	Chemical	Non-carcinogenic Hazard Quotient			
				Ingestion	Dermal Contact	Total		Primary Target Organ	Ingestion	Dermal Contact	Total
Surface Water	Surface Water	Wetland 13	Arsenic	2.40E-06	2.48E-09	2.40E-06	Arsenic	skin	0.037	0.038	0.075
							Aluminum	gastrointestinal tract	0.060	0.060	0.120
			(Total)	2.40E-06	2.48E-09	2.40E-06	(Total)		0.10	0,10	0.194
	Total Risk Across All Wetlands					2.40E-06		Total Hazard Index Across	All Wetlands		0.194

Table 10-15-11 Lead Model (Version 0.99d) Inputs and Results NAS Pensacola, Wetland 13 Pensacola, Florida

AIR CONCENTRATION: $0.100 \mu g Pb/m3$ DEFAULT

Indoor AIR Pb Conc: 30.0 percent of outdoor.

Other AIR Parameters:

Age	Time Outdoors (hr)	Vent. Rate (m3/day)	Lung Abs. (%)
0-1	1.0	2.0	32.0
1-2	2.0	3.0	32.0
2-3	3.0	5.0	32.0
3-4	4.0	5.0	32.0
4-5	4.0	5.0	32.0
5-6	4.0	7.0	32.0
6-7	4.0	7.0	32.0

DIET: DEFAULT

DRINKING WATER Conc. $4.00~\mu g$ Pb/L DEFAULT

WATER Consumption: DEFAULT

SOIL & DUST: Soil: constant conc. Dust: constant conc.

Age	Soil (µg Pb/g)	House Dust (µgPb/g)
0-1	200.0	200.0
1-2	200.0	200.0
2-3	200.0	200.0
3-4	200.0	200.0
4-5	200.0	200.0
5-6	200.0	200.0
6-7	200,0	200.0

Additional Dust Sources: None DEFAULT

Alternative Source Intake: Wetland 13 surface water

6-7: 8.69 μ g Pb/day

MATERNAL CONTRIBUTION: Infant Model

Maternal Blood Conc: $2.50~\mu g~Pb/dL$

CALCULATED BLOOD Pb and Pb UPTAKES:

YEAR	Blood Level (µg/dL)	Total Uptake (μg/day)	Soil + Dust Uptake (ug/day	Diet Uptake (µg/day	Water Uptake (ug/day)	Alt. Source Uptake (µg/day)	Air Uptake (μg/day)
0.5-1	4.1	7.60	4.68	2.54	0.37	0.00	0.02
1-2	4.5	10.93	7.36	2.63	0.91	0.00	0.03
2~3	4.2	11.44	7,44	2.98	0.96	0.00	0.06
3-4	4.0	11.48	7,53	2.90	0.99	0.00	0.07
4-5	3.4	9.65	5.69	2.85	1.04	0.00	0.07
5-6	3.0	9,39	5.16	3.03	1.11	0.00	0.09
6-7	3.4	10.35	4.81	3.30	1.11	4.09	0.09

Figure 10-15-2 shows the probability percentage of blood lead levels for the hypothetical child

receptor. Based on this model output, the geometric mean blood level is estimated to be

3.4 μ g/dL, and the probability of blood lead levels in excess of 10 μ g/dL is 0.97%. USEPA

generally considers media concentrations that result in probability percentage estimates of 5% or

less sufficiently protective of potential child receptors. As a result, the surface water

lead concentration found at Wetland 13 would not require specific action under the

hypothetical exposure scenario.

10.15.5.7 Remedial Goal Options

RGOs were developed in accordance with USEPA Region IV Supplemental Guidance to

RAGS Bulletin 5, Remedial Options (USEPA, 1996a). Arsenic was the only COC identified at this

wetland. Because arsenic was identified as a COC for surface water based only on cancer risk

estimates and not based on hazard index estimates, only risk based RGOs were developed.

An exposure point concentration of 0.0266 mg/L for arsenic resulted in a cancer risk estimate of

2.4E-6 for the adolescent trespasser, as shown in Table 10-15-8 for surface water. Using a

linear ratio, 0.011 mg/L would correspond with a cancer hazard of 1E-6. Therefore, 0.11 mg/L

and 1.1 mg/L represent cancer hazards of 1E-5 and 1E-4, respectively.

10.15.6 Conclusions and Recommendations

Wetland 13 is classified as a blue-coded wetland, where contaminants were mostly isolated,

generally below benchmark or reference values, and did not appear to be related to IR sites. The

blue-coded wetlands were not studied further in Phase IIB/III.

The HHRA identified no sediment or fish tissue COPCs at Wetland 13. Aluminum, arsenic, and

lead were identified as surface water COPCs. Arsenic was considered the only contributor to risk

10-15-20

Figure 10-15-2 Probability Percentage of Blood Lead Levels

This page intentionally left blank.

for the surface water pathway at Wetland 13. Under USEPA guidelines, surface water lead concentrations at Wetland 13 would not require specific action under the hypothetical exposure scenario. Under an adolescent trespasser scenario, the surface water EPC of 0.0266 mg/L for arsenic resulted in a risk estimate of 2.4E-6. Linear ratio analyses reveals that a target risk of 1E-6 results from an EPC of 0.011 mg/L, with EPCs of 0.11 mg/L and 1.1 mg/L representing target risks of 1E-5 and 1E-4, respectively.

Because of the limited overall ecological risk at Wetland 13, the restricted access to the area, and the limited potential for surface water ingestion by adolescent trespassers, no further action is recommended for Wetland 13.

This page intentionally left blank.

10.16 WETLAND 17

10.16.1 Site Description

Wetland 17 is in the northern portion of the base, near Site 1, on the eastern shore of

Redoubt Bayou. Parsons and Pruitt described this area as an estuarine system with

emergent vegetation (USEPA, 1991). This wetland is roughly one-half acre in size and is

dominated with black needlebush (Juncus roemerianus). It is tidally influenced and contains

standing water during high and low tides. There is no stream or surface drainage feature

contributing runoff to Wetland 17.

The IR site potentially affecting Wetland 17 is Site 1 (Sanitary Landfill), which was used from the

mid-1950s until 1976 as the predominant disposal site for all solid wastes generated on the base.

10.16.2 Nature and Extent

The methods for evaluating nature and extent are presented in Section 6. Figure 10-16-1 denotes

Phase IIA Wetland 17 sampling locations.

Sediment

Sixteen metals were detected in the Wetland 17 sediment samples. No metals exceeded a sediment

benchmark level at Wetland 17. Pesticides detected in Wetland 17 sediment included 4,4'-DDD,

4,4'-DDE and gamma-BHC. The 4,4'-DDT and its metabolite were below basewide levels, which

are described in Section 6. Gamma-BHC exceeded its sediment benchmark level (0.32 ppb) at

sample location 1703 (0.51 ppb). The PCB, Aroclor-1260 was detected at all three sample

locations below its benchmark level (21.6 ppb). One SVOC, bis(2-ethylhexyl)phthalate, was

detected above its benchmark level (182 ppb) at sample location 1702 (2,300 ppb). Chlorobenzene

was the only VOC detected in Wetland 17 sediment samples.

10-16-1

Table 10-16-1 shows the Wetland 17 Phase IIA sediment sample results (frequency of detection, range of detected concentrations, and average detected concentration). Table 10-16-2, which lists only the parameters with benchmark levels, compares detected concentrations at each sample location to sediment benchmark levels, and lists calculated HQs for each parameter. The HQs will be further discussed in the ecological risk section (Section 10.16.4).

Surface Water

Ten metals were detected in the single Wetland 17 surface water sample, and thallium (16.3 ppb) was the only metal to exceed its surface water quality criteria (6.3 ppb). Methylene chloride, a common laboratory contaminant, was detected below its surface water quality criteria.

Table 10-16-3 shows the Wetland 17 Phase IIA surface water sample results (frequency of detection, range of detected concentrations, and average detected concentration). Table 10-16-4 compares detected concentrations at each sample location to surface water quality criteria and lists calculated HQs for each parameter. Only the parameters with water quality criteria are presented in Table 10-16-4. The HQs will be further discussed in the ecological risk section (Section 10.6.4).

10.16.3 Fate and Transport

The pathways evaluated for the wetland specific fate and transport correlate to those identified in the conceptual model presented in Section 9. These pathways include: surface water/sediment transport into the wetland; groundwater discharge into the wetland; sediment/surface water transport within the wetland; sediment leaching to surface water within the wetland; and surface water/sediment transport from the wetland. Sediment transport and stormwater runoff data are lacking, thus the evaluation is qualitative in nature. The method of evaluation of the leaching from sediment to surface water was presented in Section 9. Table 10-16-5 presents those contaminants present in sediment above benchmark levels and their calculated SSLs. Contaminants present in surface water above water quality criteria are presented in Table 10-16-4.

Table 10-16-1
Phase IIA Detected Concentrations in Wetland 17 Sediments

Parameter	Frequency of Detection	Range of Detected Concentrations	Average Detected Concentration
Inorganics (mg/kg)			
Aluminum (AI)	3/3	438 - 842	598.67
Arsenic (As)	3/3	0.27 - 0.58	0.40
Barium (Ba)	3/3	0.48 - 0.73	0.57
Calcium (Ca)	3/3	57.5 - 129	87.57
Chromium (Cr)	3/3	2.1 - 3.6	2.9
Cobalt (Co)	2/3	0.14 - 0.17	0.16
Copper (Cu)	3/3	0.75 - 1.3	0.97
Iron (Fe)	3/3	467 - 1190	794.67
Lead (Pb)	3/3	2.2 - 3.4	2.6
Magnesium (Mg)	3/3	114 - 320	198
Manganese (Mn)	3/3	0.8 - 2.4	1.63
Potassium (K)	3/3	39.1 - 119	72.67
Sodium (Na)	3/3	2.75 - 1350	712.67
Thallium (Tl)	1/3	0.31	0.31
Vanadium (V)	3/3	1.4 - 2.1	1.7
Zinc (Zn)	3/3	1.8 - 4.2	2.8
Pesticides and PCBs (µg/kg)			
4,4'-DDD	1/3	0.23	0.23
4,4'-DDE	1/3	0.3	0.3
Aroclor-1260	3/3	0.7 - 2.8	1.46
Gamma-BHC (Lindane)	2/3	0.2 - 0.51	0.36
SVOCs (μg/kg)			
bis(2-Ethylhexyl)phthalate (BEHP)	1/3	2300	2300
VOCs (μg/kg)			
Chlorobenzene	1/3	2	2

Note:

All results are in micrograms per kilogram ($\mu g/kg$) or parts per billion (ppb), except for metals which are in milligrams per kilogram (mg/kg) or parts per million (ppm).

Table 10-16-2 Wetland 17 Phase IIA Sediment Concentrations Compared to Benchmark Levels

Sample Location	Parameter	Detected Concentration	Sediment Benchmark Value (SBV)	HQ	SBV Reference
041M170101					
4,4'-DDD (UG	JKG)	0.23.4	1 22	n 10	b
A.4-DDE (UG		市出	207	D 14	В.
Avoctor-1250		28	21/6	0.13	(B)
Arsenia (MG/I	KG)	0.58 .1	7.24	D OB	a tx
Chromium (M		21	52.3	D.04	ab
Copper (MG/	(G)	0.67 4	18,7	0.65	8.6
Lead (MG/KG		121	30.2	0.07	a b
Zina (MG/KG)	,	24	124	0.02	a b
Stevens:					
	time to	3411	400	-	
Stewart St.	A	100.00	100	1000	100
1	Street, or other Day	MILITARY DE		200	
1 Stores W.	- TO	1000		-	1.000
Ulier will		919 L	140		XX
See And	April 1	786.60	13.60		-
THE SERVICE		120	- 40	u sec.	44
Pilen		-0	-	(DK)	146
041M170301					
Aroclor-1260	(UG/KG)	0.7 1	276	0.03	Ď.
Arsenic (MG/	A TALL LAND	0,27 J	7.24	0.07	вв
Chromium (M		2/6	523	0.07	аБ
Copper (MG/)		3.3.4	18.7	0.07	a b
The second secon	Lindane) (LIG/KG)	0.51	0.32	1,59	b
Lead (MG/KG		3.4	30.2	0.11	a 6
Zinc (MG/KG)		4.2	124	0.03	ab

⁽a) USEPA Screening Concentration for Sediment - EPA SSVs

⁽b) FDEP Sediment Quality Assessment Guidelines - FDEP SQAGs Some of the numbers in the table may vary because of rounding Basewide levels (detailed in Section 5) for DDT and its metabolites Basewide level for 4,4'-DDE is 40 ppb.

Basewide level for 4,4'-DDD is 50 ppb. Basewide level for 4,4'-DOT is 20 ppb.

Table 10-16-3
Phase IIA Detected Concentrations in Wetland 17 Surface Water

Parameter	Frequency of Detection	Range of Detected Concentrations	Average Detected Concentration
Inorganics (μg/L)			
Arsenic (As)	1/1	2.2	2.2
Barium (Ba)	1/1	10.6	10.6
Calcium (Ca)	ψ: 1/1	106000	106000
Iron (Fe)	1/1	263	263
Magnesium (Mg)	1/1	356000	356000
Manganese (Mn)	1/1	7.4	7.4
Potassium (K)	1/1	109000	109000
Sodium (Na)	1/1	3040000	3040000
Thallium (Tl)	1/1	16.3	16.3
Zinc (Zn)	1/1	4.7	4.7
VOCs (μg/L)			
Methylene chloride	1/1	38	38

Note:

All results are in micrograms per liter ($\mu g/L$) or parts per billion (ppb).

Transport into the Wetland

Surface Water/Sediment Pathway

Based on landform and watershed analysis, the following sources can contribute contamination to Wetland 17 through this pathway:

Potential storm water runoff and sediment entrainment from the Site 1. Additionally, there
is a direct surface water connection with Bayou Grande, and backflushing of surface water
will occur during periods of high tides and storm surge.

Table 10-16-4 (1) Wetland 17 Phase IIA Surface Water Concentrations Compared to Water Quality Criteria

Sample Location	Parameter	UOM	Detected Concentration	Water Quality Criteria	НО	Criteria Reference
041W170101	Saltwater					
Arsenic		UG/L	2.2	36.0	0.06111	а
Iron		UG/L	263.0	300.0	0.87667	b
Thallium		UG/L	16.3	6.3	2.5873	b
Zinc		UG/L	4.7	86.0	0.05465	аb

Notes:

Table 10-16-5
Calculated Sediment Screening Values for Wetland 17

Parameter	USEPA or FDEP Surface Water Standard	Kd	SSL DF = 100	Maximum Concentration Detected	Leaching Potential DF = 100
Organics	(ppb)		(ppb)	(ppb)	
Gamma BHC	0.16 a, b	0.299	6.92	0.51	NO
Bis(2-ethylhexyl)phthalate	NA	4.22E+03	NA	2,300	NA

Notes:

Kd for organics calculated using foc of 0.0028 (numerical average of all sediment samples).

Kds are from: USEPA, 1996b (first preference); Superfund Chemical Data Matrix (USEPA, 1996c) (second preference); Texas Risk Reduction Program Concept Document 2, Volume 1, Appendix VII, 1996 (third preference); TERRA Model, Oak Ridge National Laboratory, 1984 (fourth preference — primary reference for inorganics).

Kd = normalized partitioning coefficient.

SSL = sediment screening level.

DF = dilution factor.

a = USEPA Saltwater Surface Water Chronic Screening Value (1995a).

b = FDEP Class II Water Quality Criteria (1996).

The presence of sediment contaminants above sediment benchmark levels (see Table 10-16-5) validates the sediment transport pathway, and by inference the surface water pathway. Thallium was the only parameter to exceed its water quality criteria in surface water.

Groundwater Discharge Pathway

Based on potentiometric analysis, the following sources can contribute contamination to Wetland 17 through this pathway:

• Discharge from Site 1. Groundwater at this site has been shown to be contaminated, thus the pathway is considered valid.

Transport within the Wetland

Surface Water/Sediment Migration Pathway

The configuration of the wetland, along with landform analysis, indicates that surface water and sediment movement is towards Bayou Grande. However, tidal fluctuations can create a temporary

NAS Pensacola Site 41

Section 10: Site-Specific Evaluations

August 31, 2000

landward movement. Therefore, both sediment and surface water contaminants can be expected

to remain mobile.

Sediment Leaching to Surface Water Pathway

One pesticide and one semivolatile exceeded their sediment benchmark levels, but neither exceeded

their SSL and corresponding detections of these constituents in surface water were not noted.

Given the lack of parameters above SSLs and surface water quality criteria, this pathway is

considered invalid.

Transport from the Wetland

Surface water and sediment movement can be expected to occur from the wetland into

Bayou Grande, and sediment contamination will remain mobile.

10.16.4 Ecological Risk Assessment

HQs for Wetland 17 sediment samples are presented in Table 10-16-2. Phase IIA sediment sample

results compared to the appropriate sediment benchmark levels revealed HQs above 1 for the

pesticide gamma-BHC (1.59) at sample location 1703, and the SVOC bis(2-ethylhexyl)phthalate

(12.64) at sample location 1702. Phase IIA results of the single wetland 17 surface water sample

revealed a HQ greater than 1 for thallium (2.59). HQs greater than 1 indicate the potential for

excess risk.

Wetland 17 is classified as a blue-coded wetland (E/A&H, 1995a). Contaminants detected in the

blue-coded wetlands were isolated and were generally below screening or reference values. In

addition, contaminant exceedances did not appear to be related to IR sites. Therefore, the

blue-coded wetlands were not studied further in Phase IIB/III. Color-codes, groupings and

rationale for classification are described in Section 7.

10-16-10

10.16.5 Human Health Risk Assessment

10.16.5.1 Samples Included

Sediment

041M170101, 041M170201, 041M170301

Surface Water

041W170101

10.16.5.2 Current and Future Land Use

Wetland 17 is a small estuarine wetland on the south shoreline of Bayou Grande. The wetland is incorporated into the nature trail that traverses the northern part of the Site 1 area. A wooden bridge leads to a covered gazebo that sits on the northern side of Wetland 17. Accordingly, since Wetland 17 has been set aside for recreational use by NAS Pensacola personnel, all trespasser scenarios are valid.

10.16.5.3 Fish Tissue COPCs

No fish tissue data were available for this wetland, and this exposure pathway would likely be incomplete; therefore, no COPCs were identified.

10.16.5.4 Sediment COPCs

As shown in Table 10-16-6, no sediment COPCs were identified.

10.16.5.5 Surface Water COPCs

As shown in Table 10-16-7, the following surface water COPC was identified.

Thallium

10-16-11

TABLE 10-16-6 OCCURRENCE, DISTRIBUTION, AND SELECTION OF CHEMICALS OF POTENTIAL CONCERN NAS PENSACOLA SITE 41

Scenario Timeframe: Current and Future

Medium: Sediment
Exposure Medium: Sediment
Exposure Point: Welfand 17 Sediment

		(1)		(1)							(2)	(3)	(4)		(5)		(6)
CAS Number	Chemical	Minimum Concentration	Minimum Qualifier	Maximum Concentration	Maximum Qualifier	Units	Location of Maximum Concentration	Detection Frequency	Range of Detection Limit	MEAN	Concentration Used for Screening	Background Value	Adolescent Site Trespasser PRG	Residential Soil RBC	Poter ARAR/ Sour	BC COP	
72548	4,4'-DDD	0.2300	J	0.2300	J	UG/KG	041M170101	1 / 3	0.19 - 0.21	0.23	0.23	N/A	92000	2700	C N/	NO	BSL.
72559	4,4'-DDE	0.3000		0.3000		UG/KG	041M170101	1 / 3	0.19 - 0.21	0.30	0,3	N/A	65000	1900	C N/	. NO	BSL
7429905	Aluminum (Al)	438.0000		842.00		MG/KG	041M170201	3 / 3	NAV	598.67	842	N/A	320000	7800	N N/	NO	BSL
11096825	Aroclor-1260	0.7000	J	2.80		UG/KG	041M170201	3 / 3	NAV	1.46	2,8	N/A	11000	320	C N/	NO	BSL
7440382	Arsenic (As)	0.2700	J	0.58	J	MG/KG	041M170201	3 / 3	NAV	0.40	0.58	N/A	15	0.43	C N/	. NO	BSL
7440393	Barium (Ba)	0.4800	J	0.73	J	MG/KG	041M170201	3 / 3	NAV	0.57	0.73	N/A	22000	550	N N/	. NO	BSL
117817	bis(2-Ethylhexyl)phthalate (2300.0000		2300.0000		UG/KG	041M170201	1 / 3	370.00 - 450.00	2300.00	2300	N/A	1600000	46000	C N/	. NO	BSL
7440702	Calcium (Ca)	57.5000	J	129.00		MG/KG	041M170101	3 / 3	NAV	87.57	129	N/A	N/A	N/A	N/	. NO	EN
108907	Chlorobenzene	2.0000	J	2.0000	J	UG/KG	041M170101	1 / 3	12.00 - 13.00	2.00	2	N/A	6300000	160000	N N/	NO	BSL
7440473	Chromium (Cr)	2.1000		3.60		MG/KG	D41M170101	3 / 3	NAV	2.90	3.6	N/A	1600	23	N N/	NO	BSL
7440484	Cobalt (Co)	0.1400	J	0.1700	J	MG/KG	041M170201	2 / 3	0.13 - 0.13	0.16	0.17	N/A	19000	470	N N/	NO	BSL
7440508	Copper (Cu)	0.7500	J	1.30	J	MG/KG	041M170301	3 / 3	NAV	0.97	1.3	N/A	13000	310	N N/	NO	BSL
58899	gamma-BHC (Lindane)	0.2000	J	0.5100	1	UG/KG	041M170301	2 / 3	0.11 - 0.11	0.36	0.51	N/A	17000	490	C N/	NO	BSL
7439896	Iron (Fe)	467.0000		1190.00		MG/KG	041M170301	3 / 3	NAV	794.67	1190	N/A	N/A	N/A	N/A	NO	EN
7439921	Lead (Pb)	2.2000		3.40		MG/KG	041M170201	3 / 3	NAV	2.60	3.4	N/A	400	400	N/	NO	BSL
7439954	Magnesium (Mg)	114.0000	J	320.00	J	MG/KG	041M170201	3 / 3	NAV	198.00	320	N/A	N/A	N/A	N/	. NO	EN
7439965	Manganese (Mn)	0.8000	J	2.40		MG/KG	041M170101	3 / 3	NAV	1,63	2.4	N/A	15000	1100	N N/	. NO	BSL
7440097	Potassium (K)	39.1000	J	119.00	J	MG/KG	041M170101	3 / 3	NAV	72.27	119	N/A	N/A	N/A	N/A	. I NO	l EN
7440235	Sodium (Na)	275.0000	J	1350.00	i	MG/KG	041M170101	3 / 3	NAV	712.67	1350	N/A	N/A	N/A	N/A	. I no	EN
7440280	Thallium (TI)	0.3100	J	0.3100	J	MG/KG	041M170101	1 / 3	0.25 - 0.26	0.31	0.31	N/A	22	0.55	N N/	NO	BSL
7440622	Vanadium (V)	1,4000	J	2.10	J	MG/KG	041M170201	3 / 3	NAV	1.70	2.1	N/A	2200	55	N N/		BSL
7440666	Zinc (Zn)	1.8000		4.20		MG/KG	041M170101	3 / 3	NAV	2.80	4.2	N/A	95000	2300	N N/	L	BSL

(1) Minimum/maximum detected concentration

(2) Maximum concentration used as screening value.

(3) Background values were not developed for this media.

(d) PRGs for size trespasser scenario calculated based on equations and parameters presented in Section 8 of this report.

(5) Residential soil RBCs presented in Region III Risk-Based Concentration Tables, (USEPA, 1998).

(6) Rationale Codes Selection Reason: Above Screening Levels (ASL)

Deletion Reason: Below Screening Levels (BSL)

six-Based Concentration Tables, (L Above Screening Levels (ASL) Below Screening Levels (BSL) Background Levels (BKG) No Toxicity Information (NTX) Essential Nutrient (EN)

Definitions:

N/A = Not Applicable

NAV = Not Available

NAV = NOL AVAISABLE
COPC = Chemical of Potential Concern

ARAR/IBC = Applicable or Releveant and Appropriate Requirement/ To Be Considered

OSWER = Office of Solid Waste and Emergency Response

J = Estimated Value

C = Caretnogenic N Noncarcinogenic

TABLE 10-16-7 OCCURRENCE, DISTRIBUTION, AND SELECTION OF CHEMICALS OF POTENTIAL CONCERN NAS PENSACOLA SITE 41

Scenario Timeframe: Current and Future

Medium: Surface Water Exposure Medium: Surface Water Exposure Point: Wetland 17 Surface Water

CAS Number	Chemical	(1) Minimum Concentration	Minimum Qualifier	(1) Maximum Concentration	Maximum Qualifier	Units	Location of Maximum Concentration	Delection Frequency	Range of Detection Limits	Mean	(2) Concentration Used for Screening	ĺ	(3) Adolescent Site Trespasser PRG	Tap Water RBC	Potential ARAR/TBC Source	COPC Flag	(5) Rationale for Contaminent Delection or Selection
7440382	Arsenic (As)	2.200	٦	2.2000	J	UG/L	041W170101	1 / 1	NAV	2.2	2.2	N/A	5.6	0 045 C	N/A	NO	BSL
7440393	Barium (Ba)	10.600) l	10.6000	J	UG/L	041W170101	1 / 1	NAV	10.6	10.6	N/A	8300	26000 N	N/A	NO	BSL
7440702	Calcium (Ca)	108000.000	0	106000.0000	0	UG/L	041W170101	1 / 1	NAV	106000	105000	N/A	N/A	N/A	N/A	NO	EN
7439896	Iron (Fe)	283.000	0	263.0000	٥	UG/L	041W170101	1 / 1	NAV	263	253	N/A	N/A	N/A	N/A	NO	EN
7439954	Magnesium (Mg)	355000,000	0	356000.0000	٥	UG/L	041W170101	1 / 1	NAV	356000	356000	N/A	N/A	N/A	N/A	NO	EN
7439965	Manganese (Mn)	7.400	J	7.4000	J	UG/L	041W170101	1 / 1	NAV	7.4	7.4	N/A	2400	73 N	N/A	NQ	BSL
75092	Methylene chloride	38.000	D	38,0000	D	UG/L	041W170101	1 / 1	NAV	38	38	N/A	1000	4.1 C	N/A	NO	B5L
7440097	Potassium (K)	109000.000	0	109000.0000	0	UG/L	041W170101	1 / 1	NAV	109000	109000	N/A	N/A	N/A	N/A	NO	EN
7440235	Sodium (Na)	3040000.000	0	3040000.0000	0	UG/L	041W170101	1 / 1	NAV	3040000	3040000	N/A	N/A	N/A	N/A	NO	EN
7440280	Thallium (TI)	16.300	0	16.3000	0	UG/L	041W170101	1 / 1	NAV	16.3	16.3	N/A	8.3	18 N	N/A	YES	AŞL
7440666	Zinc (Zn)	4.700	J	4.7000	J	UG/L	041W170101	1 / 1	NAV	4.7	4.7	N/A	36000	1100 N	N/A	NO	BSL

(1) Minimum/meximum detected concentration

(2) Maximum concentration used as acreening value.

(3) PRGs for adolescent site trespasser scenario calculated using equations and parameters presented in Section 8 of this report.

(4) Tap water RBCs presented in Region III Risk-Based Concentration Tables, (USEPA, 1998).

(5) Rationale Codes Selection Reason: Above

Selection Reason: Above Screening Levels (ASL)
Deletion Reason: Below Screening Levels (BSL)

Background Levels (BKG)

Background Levels (BKG)
Essential Nutrient (EN)
No Toxicity Information (NTX)

Definitions:

N/A = Not Applicable

NAV = Not Available

COPC = Chemical of Potential Concern

ARAR/TBC = Applicable or Releveant and Appropriate Requirement/ To Be Considered

J = Estimated Value

C = Carcinogenic

N = Noncarcinogenic

10.16.5.6 Risk Characterization

As shown in Table 10-16-8, thallium is the only contributor to hazard index estimates for the

surface water pathway under the adolescent trespasser scenario. The hazard index was estimated

to be 0.2. As discussed in Section 8 a COC was considered to be a constituent that contributed

to a pathway of concern that exceeded unity (one), as a result, thallium was not considered a COC.

10.16.5.7 Remedial Goal Options

No COCs were identified for Wetland 17, and as a result, no RGOs were calculated.

10.16.6 Conclusions and Recommendations

Wetland 17 is classified as a blue-coded wetland, where contaminants were mostly isolated,

generally below benchmark or reference values, and did not appear to be related to IR sites. The

blue-coded wetlands were not studied further in Phase IIB/III.

The HHRA found no fish tissue or sediment COPCs at Wetland 17. Thallium was considered a

surface water COPC; however the hazard index was estimated to be 0.20, and thallium was

therefore not considered a COC. No RGOs were therefore calculated for this wetland.

Wetland 17 is incorporated into the nature trail that traverses the northern part of the Site 1 area.

Since the wetland has been set aside for recreational use by NAS Pensacola personnel, all

trespasser scenarios are valid. However, the HHRA found the human health risk to be negligible

at this wetland. Because of the limited overall ecological risk at Wetland 17, and the negligible

human health risk at this wetland, no further action is recommended for Wetland 17.

10-16-14

TABLE 10-16-8 RME CALCULATION OF NON-CANCER HAZARDS REASONABLE MAXIMUM EXPOSURE NAS PENSACOLA SITE 41

Scenario: Timeframe: Current and Future

Medium: Surface Water

Exposure Medium: Surface Water Exposure Point: Wetland 17 Receptor Population: Trespasser Receptor Age: Adolescent

					EPC Selected for					
Exposure	Chemical of Potential	Medium	Medium	Route EPC	Hazard	Iпtake	Intake	Reference	Reference	Hazard
Route	Concern	EPC Value	EPC Units	Value	Calculation	(Non-Cancer)	(Non-Cancer) Units	Dose	Dose Units	Quotient
Ingestion	Thallium	0.0163	MG/L	N/A	М	6.71E-06	mg/kg-day	7.00E-05	mg/kg-day	0.096
Dermal	Thallium	0.0163	MG/L		М	1.40E-06	mg/kg-day	1.40E-05	mg/kg-day	0.100
Total Hazard Index										0.20

EPC = Exposure Point Concentration

MG/L = Milligram per Liter

M = Medium-specific EPC selected for risk calculation.

This page intentionally left blank.

10.17 WETLAND 19

10.17.1 Site Description

Wetland 19 is at the southwest end of Redoubt Bayou, which drains to the north into Bayou Grande. Parsons and Pruitt divided this wetland into two parts, Wetlands 19A and 19B (USEPA, 1991). Wetland 19A is described as a palustrine emergent system and Wetland 19B as an estuarine emergent system. The area which makes up Wetlands 19A and 19B is approximately 2.2 acres in size. Wetland 19 is a confluence of the surface water drainage from Wetland 20. This system drains surface water from the northeast side Forrest Sherman Field and flows eastward through Wetland 19 into the southwest end of Redoubt Bayou. Surface water from Wetland 19A flows over a weir before discharging into Wetland 19B (an estuarine marsh), and then into Redoubt Bayou. A grassy right-of-way area running along portions of Wetland 19 is periodically mowed.

The IR site potentially affecting Wetland 19 is Site 16 (Brush Disposal Site), which has been used to dispose of brush and tree trimmings since late 1960s.

10.17.2 Nature and Extent

The methods for evaluating nature and extent are presented in Section 6. Figure 10-17-1 denotes the Phase IIA Wetland 19 sampling locations.

Sediment

Seventeen metals were detected in the Wetland 19 sediment samples. Arsenic exceeded the sediment benchmark level (7.24 ppm) at sample location 19A1 (15.7 ppm). Nine pesticides were detected in Wetland 19 sediment samples, including DDT and its metabolites, delta-BHC, dieldrin, endosulfan I, endrin, heptachlor epoxide, and gamma-Chlordane. The PCB Aroclor-1260 was also detected in Wetland 19 sediment samples. No pesticide or PCB concentration exceeded any appropriate level. Two SVOCs, fluoranthene and pyrene, were detected in Wetland 19

sediment samples below their benchmark levels. Chloromethane was the only VOC detected in

Wetland 19 sediment samples.

Table 10-17-1 shows the Wetland 19 Phase IIA sediment sample results (frequency of detection,

range of detected concentrations, and average detected concentration). Table 10-17-2 compares

detected concentrations at each sample location to sediment benchmark levels, and lists calculated

HQs for each parameter. Only the detected parameters with benchmark levels are presented in

Table 10-17-2. The HQs will be further discussed in the ecological risk section (Section 10.17.4).

Surface Water

Nineteen metals were detected in the Wetland 19 surface water samples. The metals aluminum

(111,000 ppb), arsenic (268 ppb), beryllium (4 ppb), chromium (99.5 ppb), copper (41.9 ppb),

iron (332,000 ppb), lead (86.9 ppb), mercury (0.59 ppb), and zinc (204 ppb) exceeded

surface water quality criteria sample location 1901. Aluminum (2,140 ppb), iron (4,030 ppb), and

lead (5.6 ppb) also exceeded criteria at sample location 1903. The only organic detection at

Wetland 19 was di-n-butylphthalate (28 ppb), which exceeded its surface water criteria (3 ppb)

at sample location 1901. Surface water samples collected were slightly turbid with readings of

41NTUs in Wetland 19A and 19NTUs in Wetland 19B.

Table 10-17-3 shows the Wetland 19 Phase IIA surface water sample results (frequency of

detection, range of detected concentrations, and average detected concentration). Table 10-17-4

compares detected concentrations at each sample location to surface water quality criteria and lists

calculated HQs for each parameter. The HQs will be further discussed in the ecological risk

section (Section 10.17.4).

10-17-2

Table 10-17-1
Phase IIA Detected Concentrations in Wetland 19 Sediments

3/3 3/3 3/3 1/3 3/3 1/3 3/3 3/3 3/3 3/3	494 - 18900 0.17 - 15.7 0.58 - 30.2 0.48 47.5 - 1720 1.2 - 16.5 3.4 0.78 - 10.7 545 - 16800 1.2 - 16.2 30.1 - 572 1.3 - 169 7	6790 5.57 10.51 0.48 639.5 6.9 3.4 4.36 6395 7.07 290.7 57.9 7 189.8
3/3 3/3 1/3 3/3 3/3 1/3 3/3 3/3 3/3 3/3	0.17 - 15.7 0.58 - 30.2 0.48 47.5 - 1720 1.2 - 16.5 3.4 0.78 - 10.7 545 - 16800 1.2 - 16.2 30.1 - 572 1.3 - 169 7	5.57 10.51 0.48 639.5 6.9 3.4 4.36 6395 7.07 290.7 57.9
3/3 1/3 3/3 3/3 1/3 3/3 3/3 3/3 3/3 1/3 3/3 1/3 3/3	0.58 - 30.2 0.48 47.5 - 1720 1.2 - 16.5 3.4 0.78 - 10.7 545 - 16800 1.2 - 16.2 30.1 - 572 1.3 - 169 7	10.51 0.48 639.5 6.9 3.4 4.36 6395 7.07 290.7 57.9
1/3 3/3 3/3 1/3 3/3 3/3 3/3 3/3 1/3 3/3 1/3 3/3	0.48 47.5 - 1720 1.2 - 16.5 3.4 0.78 - 10.7 545 - 16800 1.2 - 16.2 30.1 - 572 1.3 - 169 7 17.5 - 463	0.48 639.5 6.9 3.4 4.36 6395 7.07 290.7 57.9
3/3 3/3 1/3 3/3 3/3 3/3 3/3 1/3 3/3	47.5 - 1720 1.2 - 16.5 3.4 0.78 - 10.7 545 - 16800 1.2 - 16.2 30.1 - 572 1.3 - 169 7	639.5 6.9 3.4 4.36 6395 7.07 290.7 57.9
3/3 1/3 3/3 3/3 3/3 3/3 1/3 3/3	1.2 - 16.5 3.4 0.78 - 10.7 545 - 16800 1.2 - 16.2 30.1 - 572 1.3 - 169 7	6.9 3.4 4.36 6395 7.07 290.7 57.9
1/3 3/3 3/3 3/3 3/3 1/3 3/3	3.4 0.78 - 10.7 545 - 16800 1.2 - 16.2 30.1 - 572 1.3 - 169 7 17.5 - 463	3.4 4.36 6395 7.07 290.7 57.9
3/3 3/3 3/3 3/3 1/3 3/3	0.78 - 10.7 545 - 16800 1.2 - 16.2 30.1 - 572 1.3 - 169 7	4.36 6395 7.07 290.7 57.9
3/3 3/3 3/3 3/3 1/3 3/3	545 - 16800 1.2 - 16.2 30.1 - 572 1.3 - 169 7 17.5 - 463	6395 7.07 290.7 57.9
3/3 3/3 3/3 1/3 3/3	1.2 - 16.2 30.1 - 572 1.3 - 169 7 17.5 - 463	7.07 290.7 57.9
3/3 3/3 1/3 3/3	30.1 - 572 1.3 - 169 7 17.5 - 463	290.7 57.9 7
3/3 1/3 3/3	1.3 - 169 7 17.5 - 463	57.9
1/3 3/3	7- 17.5 - 463	7.5
3/3	17.5 - 463	
		189.8
3/3		
داد	18.6 - 805	320.2
3/3	0.99 - 35.4	12.96
3/3	1.4 - 30.6	12.27
2/3	0.55 - 1.2	0.88
1/3	0.71	0.71
1/3	0.34	0.34
2/3	1.1 - 4.2	2.65
2/3	0.11 - 0.31	0.21
2/3	0.2 - 0.21	0.21
1/3	5.3	5.3
1/3	0.27	0.27
1/3	1.3	1.3
2/3	0.22 - 26	13,11
1/3	28	28
1/3	28	28
	2/3 2/3 1/3 1/3 1/3 2/3	2/3 0.11 - 0.31 2/3 0.2 - 0.21 1/3 5.3 1/3 0.27 1/3 1.3 2/3 0.22 - 26

Note:

All results are in micrograms per kilogram (μ g/kg) or parts per billion (ppb), except for metals which are in milligrams per kilogram (mg/kg) or parts per million (ppm).

Table 10-17-2 Wetland 19 Phase IIA Sediment Concentrations Compared to Benchmark Levels

Sample Location Parameter		Detected Concentration	Sødiment Benchmark Value (SBV)	HO	SBV Reference
041M19A101					
Arsenic (MG/I	(G)	15.7	7.24	217	ab
Chromium (M		16.5	52.3	0.32	alt
Copper (MG/I		10.7	18.7	D.57	ab
4234-6	lane (UG/KG)	121	1.7	0.76	ä
Lead (MG/KG		(6.2	30.2	0.54	all
Nickel (MG/K)		7.0	15.9	0.44	ab
Zinc (MG/KG)		16 6	124	0.25	alı
HITCHITE STREET					
LAURE DE		244	Date	1000	
1000	Bain.	Itra	244		100
		1000000	100	-	400
1000	-	THE RESIDENCE			188
1000	-	1000	-	-	200
15	-	1000	Tin.	-	
Contract of the last		100		1700	100
NA DESCRIPTION		14.7	Part .	(Carrie	8.81
041M19E101	ma en				
	ALC:	200	Van		. Y.
4,4-DDD (UG		u 2 (1 22	0.58	ь
4.4 DDE (UD		(2	2.07	0.58	b
AA-DOT (UG	1.0	0.34 1	1.19	0.29	.6
Aroclor-1260	V-10-11-11-11-11-11-11-11-11-11-11-11-11-	A 2 4	21.5	0.19	ь
Arsenic (MG/I	7.90	0.8 1	7.24	0/11	a b
Chromium (M		3	52.3	0.06	ab
Copper (MG/		1.6.1	18.7	0.09	a b
Dieldrin (UG/)		0.21	0.72	0.29	b
Endan (UG/K		0.27 1	3,3	0,08	- 24
Pluoranthene		2R J	103	0.25	Ð
Lead (MG/KG	/ L	3.8	30.2	0.13	аb
Pyrena (UG/k		28 11	153	0.18	D
Zina /MG/KG		4.8	124	0.04	ab

Notes:

Basewide level for 4,4'-DDE is 40 ppb. Basewide level for 4,4'-DDD is 50 ppb. Basewide level for 4,4'-DDI is 20 ppb.

⁽a) USEPA Screening Concentration for Sediment EPA SSVs
(b) FDEP Sediment Quality Assessment Guidelines FDEP SQAGs
Some of the numbers in the table may vary because of rounding.
Besewide levels (detailed in Section 6) for DDT and its metabolities

Table 10-17-3
Phase IIA Detected Concentrations in Wetland 19 Surface Water

Parameter	Frequency of Detection	Range of Detected Concentrations	Average Detected Concentration		
Inorganics (μg/L)					
Aluminum (Al)	2/2	2140 - 111000	56570		
Antimony (Sb)	2/2	2 - 19.2	10.6		
Arsenic (As)	2/2	4.8 - 268	136.4		
Barium (Ba)	2/2	7.4 - 300	153.7		
Beryllium (Be)	1/2				
Calcium (Ca)	2/2	17200 - 21200	19200		
Chromium (Cr)	1/2	99,5	99.5		
Cobalt (Co)	1/2	38.5	38.5		
Copper (Cu)	1/2	41.9	41.9		
Iron (Fe)	2/2	4030 - 332000	168015		
Lead (Pb)	2/2	5.6 - 86.9	46.25		
Magnesium (Mg)	2/2	4570 - 36400	20485		
Manganese (Mn)	2/2	26.3 - 12700	6363.15		
Mercury (Hg)	1/2	0.59	0. 5 9		
Nickel (Ni)	1/2	25.8	25.8		
Potassium (K)	2/2	2720 - 11400	7060		
Sodium (Na)	2/2	4730 - 291000	147865		
Vanadium (V)	2/2	4.4 - 277	140.7		
Zinc (Zn)	2/2	7.1 - 204	105.55		
SVOCs (µg/L)					
Di-n-butylphthalate	1/2	28	28		

Note:

All results are in micrograms per liter ($\mu g/L$) or parts per billion (ppb).

Table 10-17-4 (1) Wetland 19 Phase IIA Surface Water Concentrations Compared to Water Quality Criteria

Notes:

(a) USEPA Water Quality Criteria (1995)
(b) FDEP Class III Water Quality Criteria (1996)

Some of the numbers in the table may vary because of rounding.

10.17.3 Fate and Transport

The pathways evaluated for the wetland specific fate and transport correlate to those identified in

the conceptual model presented in Section 9. These pathways include: surface water/sediment

transport into the wetland; groundwater discharge into the wetland; sediment/surface water

transport within the wetland; sediment leaching to surface water within the wetland; and

surface water/sediment transport from the wetland. Sediment transport and storm water runoff

data are lacking: thus many evaluations are qualitative in nature. The method of evaluation of the

leaching from sediment to surface water was presented in Section 9. Table 10-17-5 presents those

contaminants present in sediment above benchmark levels and their calculated SSLs.

Contaminants present in surface water above water quality criteria are presented in Table 10-17-4.

Transport into the Wetland

Surface Water/Sediment Pathway

Based on landform and watershed analysis, the following sources can contribute contamination to

Wetland 19 through this pathway:

Potential storm water runoff and sediment entrainment from the east end of the

E-W runway at Forrest Sherman Field, and a direct surface water connection to

Redoubt Bayou. Back flushing of surface water in a landward direction during high tides

and storm events can be expected.

The presence of sediment contaminants above sediment benchmark levels (see Table 10-17-5)

validates the sediment transport pathway, and by inference the surface water pathway.

Nine inorganics and one organic parameter above surface water quality criteria further validate

the pathway.

10-17-9

Table 10-17-5
Calculated Sediment Screening Values for Wetland 19

Parameter	USEPA or FDEP Surface Water Standard	Kd	SSL DF = 100	Maximum Concentration Detected	Leaching Potential DF = 100
Inorganics	(ppb)		(ррт)	(ррт)	
Arsenic	50 b	2.9E+01	145.7	15.7	NO

Notes:

Kd for organics calculated using foc of .064 (numerical average of all sediment samples).

Kds are from: USEPA, 1996b (first preference); Superfund Chemical Data Matrix (USEPA, 1996c) (second preference); Texas Risk Reduction Program Concept Document 2, Volume 1, Appendix VII, 1996 (third preference); TERRA Model, Oak Ridge National Laboratory, 1984 (fourth preference — primary reference for inorganics).

Kd = normalized partitioning coefficient.

SSL = sediment screening level.

DF = dilution factor.

USEPA Freshwater Surface Water Chronic Screening Value (1995a).

b = FDEP Class III Water Quality Criteria (1996).

Groundwater Discharge Pathway

Based on potentiometric analysis, the following sources can contribute contamination to Wetland 19 through this pathway:

• Discharge from Sites 16, 5, and 6. Groundwater at these sites has not been shown to be contaminated, thus the pathway is considered invalid.

Transport within the Wetland

Surface Water/Sediment Migration Pathway

The configuration of the wetland, along with landform analysis, indicates that surface water and sediment movement is towards Redoubt Bayou. However, tidal fluctuations can create a temporary landward movement. Therefore, both sediment and surface water contaminants can be expected to remain mobile.

Sediment Leaching to Surface Water Pathway

One inorganic — arsenic — exceeded its sediment benchmark level, but it did not exceed its SSL. Aluminum, arsenic, beryllium, chromium, copper, iron, lead, mercury, and zinc were present above surface water quality criteria, and except for arsenic, are attributable to the surface water/groundwater discharge pathway. Some measure of the arsenic present in surface water may be due to partitioning from sediment. The detection of arsenic in sediment and corresponding surface water suggests that the pathway is valid, but that the potential for arsenic to partition above surface water quality criteria is low.

Transport from the Wetland

Surface water and sediment movement can be expected to occur from the wetland into Bayou Redoubt, and sediment and surface water contamination will remain mobile.

10.17.4 Ecological Risk Assessment

HQs for Wetland 19 sediment samples are presented in Table 10-17-2. Phase IIA sediment results compared to the appropriate sediment benchmark levels revealed a HQ above 1 for arsenic (2.17). There were no other sediment inorganic or organic concentrations exceeding a HQ of 1 at Wetland 19. Phase IIA surface water results revealed HQs above 1 for aluminum (1,275.86), arsenic (5.36), beryllium (30.77), chromium (9.05), copper (5.37), iron (332.0), lead (50.82), mercury (49.17), and zinc (2.91) exceeded surface water quality criteria sample location 1901. Aluminum (24.60), iron (4.03), and lead (3.28) also had HQs above 1 at sample location 1903. The only organic detection with a HQ greater than 1 was di-n-butylphthalate (9.33), at sample location 1901.

Wetland 19 is classified as a blue-coded wetland (E/A&H, 1995a). Contaminants detected in the blue-coded wetlands were isolated and were generally below benchmark or reference values. In addition, contaminant exceedances did not appear to be related to IR sites. Therefore, the

blue-coded wetlands were not studied further in Phase IIB/III. Color-codes, groupings and rationale for classification are described in Section 7.

10.17.5 Human Health Risk Assessment

10.17.5.1 Samples Included

Sediment

041M19A101, 041M19A201, 041M19B101

Surface Water

041W190101, 041W190301

10.17.5.2 Current and Future Land Use

The area is in a sparsely populated area of the base, that is restricted to general access by the public. The area is also patrolled by base police. Exposure media includes surface water for occasional Navy or civilian workers, trespassers, or children who could find the area attractive. The adolescent trespasser and maintenance worker scenarios were considered to be conservatively

representative of potential exposure populations at this site.

10.17.5.3 Fish Tissue COPCs

No fish tissue data were available for this wetland, and this exposure pathway would likely be incomplete; therefore, no COPCs were identified.

10.17.5.4 Sediment COPCs

As shown in Table 10-17-6, the following sediment COPC was identified:

Arsenic

TABLE 10-17-6 OCCURRENCE, DISTRIBUTION, AND SELECTION OF CHEMICALS OF POTENTIAL CONCERN NAS PENSACOLA SITE 41

Scenario Timeframe. Current and Future

Medium: Sadiment Exposure Medium: Sediment Exposure Point: Wettend 19 Sediment

		(1)		(1)	 	T	/		T	1	(2)	(3)	(4)		(5)		-	(6)
CAS Number	Chemical	Minimum Concentration	Minimum Qualifier	Maximum Concentration	Maximum Qualifier	Units	Location of Maximum Concentration	Detection Frequency	Range of Delection Limits	MEAN	Concentration Used for Screening		Adolescent Ske Trespasser PRG	Commercial Maintenance Worker PRG	(0)	Potential ARAR/TBC Source	COPC Flag	Rationale for Contaminant Delection or Selection
72548	4,4'-DDD	0.7100		0.7100		UG/KG	041M19B101	1 / 3	0.21 - 1.40	0.71	0.71	N/A	92000	57000	С	N/A	NO	BSL
72559	4,4'-DDE	0.5500		1.2000		UG/KG	041M19A201	2 / 3	1.40 - 1.40	0.88	1.2	N/A	65000	40000	C	N/A	NO	BSL
50293	4,4'-DDT	0 3400	J	0.3400	J	UGAKG	041M19B101	1 / 3	0.21 - 1.40	0.34	0,34	N/A	65000	40000	С	N/A	NO	BSL
7429905	Aluminum (Al)	494.0000		18900.00	l	MG/KG	041M19A201	3 / 3	NAV	6790	18900	N/A	320000	490000	N	N/A	NO	BSL
11095825	Aroclor-1260	1.1000	J	4.2000	J	UG/KG	041M19A201	2 / 3	14.00 - 14.00	2,65	4.2	N/A	11000	6900	c	N/A	NO	BSL
7440382	Arsenic (As)	0.1700	J	15.70		MG/KG	041M19A101	3 / 3	NAV	6	15.7	N/A	15	9.2	c	N/A	YES	ASL
7440393	Barium (Ba)	0.5800	J	30,20	J	MG/KG	041M19B101	3 / 3	NAV	11	30.2	N/A	220D0	34000	N	N/A	NO	BSL
7440417	Beryllium (Be)	0.4800	J	0.4800	J	MG/KG	041M19A101	1 / 3	0.07 - 0.07	0.48	0.48	N/A	630	980	N	N/A	NO	BSL
7440702	Calcium (Ca)	47.5000	J	1720.00		MG/KG	041M19A201	3 / 3	NAV	640	1720	N/A	N/A	N/A	1	N/A	NO	EN EN
74873	Chioromethane	2.0000	J	2.0000	J	UG/KG	041M19A201	1 / 3	13.00 - 77.00	2.00	2	N/A	1700000	1100000	С	N/A	NO	BSL
7440473	Chromium (Cr)	1,2000		16.50	i	MG/KG	041M19A101	3 / 3	NAV	7	16.5	N/A	1600	2500	N	N/A	NO	BSL
7440484	Cobalt (Co)	3.4000	J	3,4000	j	MG/KG	041M19A101	1 / 3	0.13 - 0.14	3.40	3.4	N/A	19000	29000	N	N/A	NO	BSL
7440508	Copper (Cu)	0.7800	j j	10.70	ļ	MG/KG	041M19A201	3 / 3	NAV	4	10.7	N/A	13000	20000	N	N/A	NO	BSL
319858	delta-BHC	0.1100	J	0.3100	J	ug/kg	041M19A201	2 / 3	0.68 - 0.68	0.21	0.31	N/A	12000	7600	c	N/A	NO	BSL
60571	Dieldrin	0.2000	J	0 2100	J	UG/KG	041M19B101	2 / 3	1.40 - 1.40	0.21	0.21	N/A	1400	860	c	N/A	NO	BSL
959988	Endosulfan I	5.3000	J	5.3000	j	UG/KG	041M19A101	1 / 3	0.10 - 0.11	5.30	5.3	N/A	1900000	2900000	N	N/A	NO	BSL
72208	Endrin	0,2700	ز	0.2700	را	ug/kg	041M19B101	1 / 3	0.21 - 1.40	0.27	0.27	N/A	95000	150000	N	N/A	NO	BSL
205440	Fluoranthene	28.0000	j	28.0000	J	UG/KG	041M19B101	1 / 3	40.00 - 270.00	28.00	28	N/A	13000000	20000000	N	N/A	NO	BSL
5103742	gamma-Chlordane	1.3000	J	1.3000	را	UG/KG	041M19A101	1 / 3	0.10 - 0.11	1.30	1.30	N/A	63000	39000	c	N/A	NO	BSL
1024573	Heptachlor epoxide	0.2200	J	26.0000	DJ	UG/KG	041M19B101	2 / 3	0.10 - 0.10	13.11	26	N/A	2400	1500	č	N/A	NO	BSL
7439896	Iron (Fe)	545,0000		16800.00		MG/KG	041M19A101	3 / 3	NAV	6395	16800	N/A	N/A	N/A	Ĭ	N/A	NO	EN
7439921	Lead (Pb)	1,2000		16.20	ŀ	MG/KG	041M19A101	3 / 3	NAV	7	16.2	N/A	400	400	N	OSWER	NO	BSL
7439954	Magnesium (Mg)	30,1000	J	572.00	J	MG/KG	D41M19A101	3 / 3	NAV	291	572	N/A	N/A	N/A	'`	N/A	NO	EN
7439965	Manganese (Mn)	1,3000		169.00	· ·	MG/KG	041M19B101	3 / 3	NAV	58	169	N/A	15000	23000	N	N/A	NO	BSL
7440020	Nickel (Ni)	7,0000	J	7.0000	J	MG/KG	041M19A101	1 / 3	0.60 - 0.63	7.00	7	N/A	6300	9800	N	N/A	NO	BSL
7440097	Polassium (K)	17.5000	Ĵ	463.00	j	MG/KG	041M19A101	3 / 3	NAV	190	463	N/A	N/A	N/A	"	N/A	NO	EN
129000	Pyrene	28,0000	J	28,0000	j	UG/KG	041M19B101	1 / 3	40.00 - 270.00	28.00	28	N/A	9500000	15000000	N	N/A	NO	BSL
7440235	Sodium (Na)	18.6000	J	805.00	_	MG/KG	041M19A101	3 / 3	NAV 270.00	320	805	N/A	9300000 N/A	N/A	"	N/A	NO	EN
7440622	Vanadium (V)	0,9900	J	35,40		MG/KG	041M19A101	3 / 3	NAV	13	35.4	N/A	2200	3400	N	N/A	NO	BSL
7440666	Zinc (Zn)	1,4000	-	30.60		MG/KG	041M19B101	3 / 3	NAV	12	30.6	N/A	95000	150000	N	N/A	NO	BSL
-	VII. 1	1		00.00	L	Timovico	04 114 130 10 1	9 / 3	1 3474	12	1 30.0	14//4	30000	100000	-13	IN/A	INU	BOL

(1) Minimum/maximum detected concentration

(2) Maximum concentration used as screening value.

(3) Background concentrations were not calculated for this media.

(4) PRGs for site trespasser scenario calculated based on equations and parameters presented in Section 8 of this report.

(5) PRGs for commercial maintenance worker scenario calculated based on evations and parameters presented Section 8 of this report.

(6) Rationale Codes

Se Above Screening Levels (ASL)

Queletion Reason: Below Screening Levels (BSL)

Background Levels (BKG) No Toxicity Information (NTX)

Definitions:

N/A = Not Applicable

NAV = Not Available

COPC = Chemical of Potential Concern

ARAR/TBC = Applicable or Releveant and Appropriate Requirement/ To Be Considered

OSWER = Office of Solid Waste and Emergency Response

J = Estimated Value

C = Carrinogenic

N Noncarcinogenic

10.17.5.5 Surface Water COPCs

As shown in Table 10-17-7, the following surface water COPCs were identified:

- Arsenic
- Lead
- Manganese

10.17.5.6 Risk Characterization

Adolescent Trespasser

As shown in Tables 10-17-8 and 10-17-9, arsenic is the only contributor to risk estimates for the sediment and surface water pathways under the adolescent trespasser scenario. Table 10-17-13 summarizes the risk and hazard estimates for Wetland 19. The cumulative risk estimated for this wetland is 2.5E-5. Arsenic and manganese were the primary contributors to hazard index for the adolescent trespasser scenario. The hazard index was estimated to be 1.2. Arsenic was identified as a COC for both sediment and surface water based on its contribution to the cumulative risk estimate for this wetland. Arsenic and manganese were identified as COCs for surface water based on their contribution to hazard index estimates. Tables 10-17-8 through 10-17-12 detail cancer risk estimates and noncancer hazard estimates for this wetland under an adolescent trespasser scenario. Although exposure would likely be acute or subchronic, these hazard estimates were developed for completeness, and RGOs were developed below. Risk managers could consider game fish tissue data from the lower end of Wetland 19 to be a data gap.

Maintenance Worker

As shown in Tables 10-17-13 and 10-17-15, arsenic is the only contributor to risk estimates for the sediment and surface water pathways under the maintenance worker scenario. Table 10-17-17 summarizes the risk and hazard estimates for Wetland 19. The cumulative risk estimated for this wetland is 4E-5 and the hazard index was estimated to be 0.4. Arsenic was identified as a COC for both sediment and surface water based on its contribution to the cumulative risk estimate for this wetland. Tables 10-17-13 through 10-17-16 detail cancer and noncancer hazard estimates for this wetland under a maintenance worker scenario.

TABLE 10-17-7 OCCURRENCE, DISTRIBUTION, AND SELECTION OF CHEMICALS OF POTENTIAL CONCERN NAS PENSACOLA SITE 41

Scenario Timeframe: Current and Future Medium: Surface Water Exposure Medium: Surface Water Exposure Point: Wetland 19 Surface Water

			,		T-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1								_				
CAS Number	Chemical	(1) Minimum Concentration	Minimum Qualifier	(1) Махітит Concentration	Maximum Qualifier	Units	Location of Maximum Concentration	Detection Frequency	Range of Detection Limits	Mean	(2) Concentration Used for Screening	Background Value	Adolescent Site Trespesser PRG	Commercial Maintenance Worker PRG	Potential ARAR/TBC Source	COPĆ Flag	(5) Rationale for Conteminant Delection or Selection
7429905	Aluminum (Al)	2140.000		111000.0000		UG/L	041W190101	2 / 2	NAV	56570.00	111000	N/A	120000	250000	N/A	NO	BSL
7440360	Antimony (Sb)	2.000	J	19,2000	J	UG/L	041W190101	2 / 2	NAV	10.60	19.2	N/A	48	100	N/A	NO	BSL
	Arsenic (As)	4.800	J	268.0000	l	UG/L	041W190101	2 / 2	NAV	136.40	268	N/A	5.6	4.7	N/A	YES	ASL
7440393	Barium (Ba)	7.400	J	300.0000		UG/L	041W190101	2 / 2	NAV	153.70	300	N/A	8300	18000	N N/A	NO	BSL
	Beryllium (Be)	4.000	J	4.0000		UG/L	041W190101	1 / 2	NAV	4.00	4	N/A	240	500	C N/A	NO	BSL
	Calcium (Ca)	17200.000		21200.0000	1 1	UG/L	041W190101	2 / 2	NAV	19200.00	21200	N/A	N/A	N/A	N/A	NO	EN
7440473	Chromium (Cr)	99.500		99,5000		UG/L	041W190101	1 / 2	NAV	99.50	99.5	N/A	360	760	N/A	NO	BSL
7440484	Cobalt (Co)	38.500	J	38.5000		UG/L	041W190101	1 / 2	NAV	38.50	38.5	N/A	7100	15000	N/A	NO	BSL
7440508	Copper (Cu)	41.900		41,9000	1 1	UG/L	041W190101	1 / 2	NAV	41. 9 0	41.9	N/A	4800	10000	N/A	NO	BSL
84742	Di-n-butylphthalate	28.000		28.0000	I I	UG/L	041W190101	1 / 2	NAV	28.00	28	N/A	480	1500	N N/A	NO	BSL
7439896	iron (Fe)	4030,000	1	332000.0000	1	UG/L	D41W190101	2 / 2	NAV	168015.00	332000	N/A	N/A	N/A	N/A	NO	EN
7439921	Lead (Pb)	5.800	i	86.9000		UG/L	041W190101	2 / 2	NAV	46.25	86,9	N/A	15	15	N N/A	YES	ASL
7439954	Magnesium (Mg)	4570.000	J	36400.0000		UG/L	041W190301	2 / 2	NAV	20485.00	36400	N/A	N/A	N/A	N/A	NO	EN
7439965	Manganese (Mn)	26.300		12700.0000	i i	UG/L	041W190101	2 / 2	NAV	6363.15	12700	N/A	2400	5000	N N/A	YES	ASL
7439976	Mercury (Hg)	0.590		0.5900		UG/L	041W190101	1 / 2	NAV	0.59	0.59	N/A	36	76	N N/A	NO	BSL
7440020	Nickel (Ni)	25.800	J	25.8000		UG/L	041W190101	1 / 2	NAV	25.80	25.8	N/A	2400	5000	N N/A	NO	BSL
7440097	Potassium (K)	2720.000	J	11400,0000		UG/L	041W190301	2 / 2	NAV	7060.00	11400	N/A	N/A	N/A	N/A	NO	EN
7440235	Sodium (Na)	4730.000	J	291000.0000		UG/L	041W190301	2 / 2	NAV	147865.00	291000	N/A	N/A	N/A	N/A	NO	EN
7440622	Vanadium (V)	4.400	J	277.0000	1	UG/L	041W190101	2 / 2	NAV	140.70	277	N/A	830	1800	N N/A	NO	BSL
7440666	Zinc (Zn)	7.100	J	204.0000		UG/L	041W190101	2 / 2	NAV	105,55	204	N/A	36000	76000	N N/A	NO	BSL

- (1) Minimum/maximum detected concentration
- (2) Maximum concentration used as screening value.
- (3) RBCs for adolescent site trespasser scenario calculated using values presented in Region III Risk-Based Concentration Tables, (USEPA, 1998).
- (4) RBCs for commercial maintenance worker scenario calculated using values presented in Region III Risk-Based Concentration Tables, (USEPA, 1998).
- (5) Rationale Codes

Selection Reason: Above Screening Levels (ASL)

Deletion Reason: Below Screening Levels (BSL)

Background Levels (BKG) Essential Nutrient (EN) No Toxicity Information (NTX) Definitions: N/A = Not Applicable

COPC = Chemical of Potential Concern

ARAR/TBC = Applicable or Releveant and Appropriate Requirement/ To Be Considered

J = Estimated Value

C = Carcinogenic

N = Noncarcinogenic

TABLE 10-17-8 CALCULATION OF CANCER RISKS REASONABLE MAXIMUM EXPOSURE NAS PENSACOLA SITE 41

Scenario: Timeframe, Current

Medium: Sediment

Exposure Medium: Sediment Exposure Point: Wetland 19 Receptor Population: Trespasser Receptor Age: Adolescent

Exposure Route	Chemical of Potential Concern	Medium EPC Value	Medium EPC Units	Route EPC Value	EPC Selected for Hazard Calculation	Intake (Cancer)	Intake (Cancer) Units	Cancer Slope Factor	Slope Factor Units	Cancer Risk
Ingestion	Arsenic	15.7	MG/KG	N/A	М	7.10E-07	mg/kg-day	1.5	(mg/kg-day) ⁻¹	1.07E-06
Dermal	Arsenic	15.7	MG/KG	N/A	М	2.90E-08	mg/kg-day	7.5	(mg/kg-day) ⁻¹	2.18E-07

Total Risk All Exposure Routes/Pathways 1.28E-06

EPC = Exposure Point Concentration

MG/KG = Milligram per Kilogram

TABLE 10-17-9 **CALCULATION OF NON-CANCER HAZARDS** REASONABLE MAXIMUM EXPOSURE NAS PENSACOLA SITE 41

Scenario: Timeframe: Current

Medium: Sediment

Exposure Medium: Sediment Exposure Point: Wetland 19 Receptor Population: Trespasser Receptor Age: Adolescent

					EPC Selected for						
Exposure	Chemical of Potential	Medium	Medium	Route EPC	Hazard	Intake	Intake	Reference	Reference	Hazard	
Route	Concern	EPC Value	EPC Units	Value	Calculation	(Non-Cancer)	(Non-Cancer) Units	Dose	Dose Units	Quotient	
Ingestion	Arsenic	15.7	MG/KG	N/A	М	5.00E-06	mg/kg-day	3.00E-04	mg/kg-day	0.0167	
Dermal	Arsenic	15.7	MG/KG	N/A	М	2.00E-07	mg/kg-day	6.00E-05	mg/kg-day	0.0033	
Total Hazard Index Across All Exposure Routes/Pathways											

EPC = Exposure Point Concentration

MG/KG = Milligram per Kilogram

TABLE 10-17-10 RME CALCULATION OF NON-CANCER HAZARDS REASONABLE MAXIMUM EXPOSURE NAS PENSACOLA SITE 41

Scenario: Timeframe: Current and Future

Medium: Surface water

Exposure Medium: Surface water Exposure Point: Wetland 19 Receptor Population: Trespasser Receptor Age: Adolescent

Exposure Route	Chemical of Potential Concern	Medium EPC Value	Medium EPC Units	Route EPC Value	EPC Selected for Hazard Calculation	Intake (Cancer)	Intake (Cancer) Units	Cancer Slope Factor	Slope Factor Units	Cancer Risk
Ingestion	Arsenic	0.268	MG/L	N/A	M	1.60E-05	mg/kg-day	1.5	(mg/kg-day) ⁻¹	2.40E-05
Dermal	Arsenic	0.268	MG/L	N/A	М	3.28E-06	mg/kg-day	7.5	(mg/kg-day) ⁻¹	2.46E-05
<u> </u>				'		<u> </u>		 	Total Risk	4.86E-05

EPC = Exposure Point Concentration

MG/L = Milligram per Liter

TABLE 10-17-11 RME CALCULATION OF NON-CANCER HAZARDS REASONABLE MAXIMUM EXPOSURE NAS PENSACOLA SITE 41

Scenario: Timeframe: Current and Future

Medium: Surface Water

Exposure Medium: Surface Water Exposure Point: Wetland 19 Receptor Population: Trespasser Receptor Age: Adolescent

Exposure	Chemical of Potential	Medium	Medium	Route EPC	EPC Selected for Hazard	Intake	Intake	Reference	Reference	Hazard
Route	Concern	EPC Value		Value	Calculation	(Non-Cancer)	(Non-Cancer) Units	Dose	Dose Units	Quotient
Ingestion	Arsenic	0.268	MG/L	N/A	M	1.10E-04	mg/kg-day	3.00E-04	mg/kg-day	0.37
	Manganese	12.7	MG/L	N/A	М	5.22E-03	mg/kg-day	2.30E-02	mg/kg-day	0.23
Dermal	Arsenic	0.268	MG/L		М	2.29E-05	mg/kg-day	6.00E-05	mg/kg-day	0.38
	Manganese	12.7	MG/L		м	1.09E-03	mg/kg-day	4.60E-03	mg/kg-day	0.24
										1.21
Total Hazard Index										

EPC = Exposure Point Concentration

MG/L = Milligram per Liter

TABLE 10-17-12 SUMMARY OF RECEPTOR RISKS AND HAZARDS FOR COPCS REASONABLE MAXIMUM EXPOSURE NAS PENSACOLA SITE 41

Scenario Timeframe: Current and Future Receptor Population. Site Trespasser Receptor Age: Adolescent

Medium	Exposure Medium	Exposure Point	Chemical		Carcinogenic Risk		Chemical	Non-carcii	nogenic Hazar	d Quotient	
				Ingestion	Dermal Contact	Total		Primary Target Organ	Ingestion	Dermał Contact	Total
Sediment	Sediment	Wetland 19	Arsenic	1.07E-06	2.18E-07	1.28E-06	Arsenic	skin	0.017	0.0033	0.020
		İ	(Total)	1.07E-06	2.18E-07	1.28E-06	(Tota	1)	0.017	0.0033	0.020
Surface Water	Surface Water	Wetland 19	Arsenic	2.40E-05	2.46E-05	2.40E-05	Arsenic	skin	0.37	0.38	0.75
							Manganese	Central nervous system	0.23	0.24	0.46
			(Total)	2.40E-05	2.46E-05	2.40E-05	(Tota	u)	0.59	0.62	1.21
			Total Risk Acros	s All Pathways		2.53E-05		Total Hazard Index Across	All Pathways		1.23

TABLE 10-17-13 CALCULATION OF CANCER RISKS REASONABLE MAXIMUM EXPOSURE NAS PENSACOLA SITE 41

Scenario: Timeframe: Current

Medium: Sediment

Exposure Medium: Sediment Exposure Point: Wetland 19

Receptor Population: Maintenance Worker

Receptor Age: Adult

Exposure Route	Chemical of Potential Concern	Medium EPC Value	Medium EPC Units	Route EPC Value	EPC Selected for Hazard Calculation	Intake (Cancer)	Intake (Cancer) Units	Cancer Slope Factor	Slope Factor Units	Cancer Risk
Ingestion	Arsenic	15 .7	MG/KG	N/A	М	1.10E-06	mg/kg-day	1.5	(mg/kg-day) ⁻¹	1.65E-06
Dermal	Arsenic	15.7	MG/KG	N/A	М	4.70E-08	mg/kg-day	7.5	(mg/kg-day) ⁻¹	3.53E-07

Total Risk All Exposure Routes/Pathways 2.00E-06

EPC = Exposure Point Concentration

MG/KG = Milligram per Kilogram

TABLE 10-17-14 CALCULATION OF NON-CANCER HAZARDS REASONABLE MAXIMUM EXPOSURE NAS PENSACOLA SITE 41

Scenario: Timeframe: Current

Medium: Sediment

Exposure Medium: Sediment Exposure Point: Wetland 19
Receptor Population: Maintenance Worker
Receptor Age: Adult

					EPC Selected for							
Exposure	Chemical of Potential	Medium	Medium	Route EPC	Hazard	Intake	Intake	Reference	Reference	Hazard		
Route	Concern	EPC Value	EPC Units	Value	Calculation	(Non-Cancer)	(Non-Cancer) Units	Dose	Dose Units	Quotient		
Ingestion	Arsenic	15.7	MG/KG	N/A	М	3.20E-06	mg/kg-day	3.00E-04	mg/kg-day	0.011		
Dermal	Arsenic	15.7	MG/KG	N/A	М	1.30E-07	mg/kg-day	6.00E-05	mg/kg-day	0.0022		
Total Hazard Index Across All Exposure Routes/Pathways 0												

Total Hazard Index Across All Exposure Routes/Pathways|| 0.013

EPC = Exposure Point Concentration

MG/KG = Milligram per Kilogram

TABLE 10-17-15 RME CALCULATION OF NON-CANCER HAZARDS REASONABLE MAXIMUM EXPOSURE NAS PENSACOLA SITE 41

Scenario: Timeframe: Current and Future

Medium: Surface water

Exposure Medium: Surface water Exposure Point: Wetland 19

Receptor Population: Maintenance Worker

Receptor Age: Adult

Exposure Route	Chemical of Potential Concern	Medium EPC Value		Route EPC Value	EPC Selected for Hazard Calculation	Intake (Cancer)	Intake (Cancer) Units	Cancer Slope Factor	Slope Factor Units	Cancer Risk
Ingestion	Arsenic	0.268	MG/L	N/A	M	2.50E-05	mg/kg-day	1.5	(mg/kg-day) ⁻¹	3.75E-05
Dermal	Arsenic	0.268	MG/L	N/A	М	2.53E-06	mg/kg-day	7.5	(mg/kg-day) ⁻¹	1.90E-05
	<u> </u>					·		<u> </u>	Total Risk	5.65E-05

EPC = Exposure Point Concentration

MG/L = Milligram per Liter

TABLE 10-17-16 RME CALCULATION OF NON-CANCER HAZARDS REASONABLE MAXIMUM EXPOSURE NAS PENSACOLA SITE 41

Scenario: Timeframe: Current and Future

Medium: Surface Water

Exposure Medium: Surface Water Exposure Point: Wetland 19 Receptor Population: Trespasser Receptor Age: Adolescent

Exposure	Chemical of Potential	Medium	Medium	Route EPC	EPC Selected for Hazard	Intake	Intake	Reference	Reference	Hazard
Route	Concern	1	EPC Units	Value	Calculation	(Non-Cancer)			Dose Units	
Noute	Concern	EFC value	EPC UNIS	value	Calculation	(Non-Cancer)	(Non-Cancer) Units	Dose	Dose units	Quotient
Ingestion	Arsenic	0.268	MG/L	N/A	M	7.10E-05	mg/kg-day	3.00E-04	mg/kg-day	0.237
	Manganese	12.7	MG/L	N/A	М	3.36E-03	mg/kg-day	2.30E-02	mg/kg-day	0.146
Dermal	Arsenic	0.268	MG/L		М	7.09E-06	mg/kg-day	6.00E-05	mg/kg-day	0.118
	Manganese	12 .7	MG/L		М [3.36E-04	mg/kg-day	4.60E-03	mg/kg-day	0.0730
								Tot	al Hazard Index	0.57

EPC = Exposure Point Concentration

MG/L = Milligram per Liter

TABLE 10-17-17 SUMMARY OF RECEPTOR RISKS AND HAZARDS FOR COPCs REASONABLE MAXIMUM EXPOSURE NAS PENSAÇOLA SITE 41

Scenario Timeframe: Current and Future Receptor Population: Maintenance Worker Receptor Age: Adult

Medium	Exposure Medium	Exposure Point	Chemical		Carcinogenic Ris	ς.	Chemical	Non-carcin	ogenic Hazaro	Dermal Contact 0.0022 0.0022 0.118 0.073	
				Ingestion	Dermal Contact	Total		Primary Target Organ	Ingestion	_	Total
Sediment	Sediment	Wetland 19	Arsenic	1.65E-06	3.53E-07	2.00E-06	Arsenic	skin	0.011	0.0022	0.013
			(Tota	1.65E-06	3.53E-07	2.00E-06	(Total)		0.011	0.0022	0.013
Surface Water	Surface Water	Wetland 19	Arsenic	3.75E-05	1.90E-05	5.65E-05	Arsenic Manganese	skin central nervous system	0.237 0.146		0.237 0.146
			(Tota) 3.75E-05	1.90E-05	5.65E-05	(Total)	•	0.383	0.191	0.383
			Total Risk Acre	ss All Wetlands		5.85E-05]	otal Hazard Index Across	All Wetlands		0.40

Section 10: Site-Specific Evaluations

August 31, 2000

Lead Risk Characterization

A conservative exposure scenario was developed to assess the significance of surface water

concentrations of lead at Wetland 19. This scenario involves a child (age 6 to 7) who accompanies

an older sibling to the wetland one day a week for the year. Exposure to Wetland 19 surface water

was addressed as an additional exposure relative to typical exposures encountered at the child's

place of residence. This additional exposure was presented as an "alternate" source within the

constructs of the Lead Model. The standard default assumptions in the lead model were kept to

simulate background lead exposures. This was done to provide a conservative estimate of daily

intake from sources unrelated to Wetland 19.

The assumption was made that this child would incidentally ingest 0.05 liters of surface water per

visit. Within the Lead Model, an alternate source was entered to account for this exposure as

previously discussed. The bioavailability of lead ingested from the alternate source

(Wetland 19 surface water) was equal to that of drinking water lead ingested from the standard

residential default source. Assuming incidental ingestion of 0.05 liters of surface water once per

week with a lead concentration of 268 μ g/L, the annual alternate source exposure was estimated

to be 1.91 μ g lead/day. Table 10-17-18 presents the lead model output for a child 6 to 7 years old

under these exposure conditions.

Figure 10-17-2 shows the probability percentage of blood lead levels for the hypothetical child

receptor. Based on this model output, the geometric mean blood level is estimated to be

2.9 μ g/dL, and the probability of blood lead levels in excess of 10 μ g/dL is 0.35%. USEPA

generally considers media concentrations that result in probability percentage estimates of 5% or

less sufficiently protective of potential child receptors. As a result, surface water lead

concentrations at Wetland 19 would not require specific action under the hypothetical exposure

scenario.

10-17-26

Figure 10-17-2 Probability Percentage of Blood Lead Levels

Final Remedial Investigation Report NAS Pensacola Site 41 Section 10: Site-Specific Evaluations August 31, 2000

This page intentionally left blank.

Table 10-17-18 Lead Model (Version 0.99d) Inputs and Results NAS Pensacola, Wetland 19 Pensacola, Florida

AIR CONCENTRATION: 0.100 $\,\mu g$ Pb/m3 DEFAULT

Indoor AIR Pb Conc: 30.0 percent of outdoor.

Other AIR Parameters:

Age	Time Outdoors (hr)	Vent. Rate (m3/day)	Lung Abs. (%)
0-1	1.0	2.0	32.0
1-2	2.0	3.0	32.0
2-3	3.0	5.0	32.0
3-4	4.0	5.0	32.0
4-5	4.0	5.0	32.0
5-6	4.0	7.0	32.0
6-7	4.0	7.0	32.0

DIET: DEFAULT

DRINKING WATER Conc: 4.00 µg Pb/L DEFAULT

WATER Consumption: DEFAULT

SOIL & DUST: Soil: constant conc. Dust: constant conc.

,	Age	Soil (µg Pb/g)	House Dust (μgPb/g)
	0-1	200.0	200.0
	1-2	200.0	200.0
	2-3	200.0	200.0
	3-4	200.0	200.0
	4-5	200.0	200.0
	5-6	200.0	200.0
	6-7	200.0	200.0

Additional Dust Sources: None DEFAULT

Alternative Source Intake: Wetland 19 surface water

6-7: 1.91 μ g Pb/day

MATERNAL CONTRIBUTION: Infant Model Maternal Blood Conc: 2.50 μ g Pb/dL

CALCULATED BLOOD Pb and Pb UPTAKES:

YEAR	Blood Level (μg/dL)	Total Uptake (μg/day)	Soil+Dust Uptake (µg/day)	Diet Uptake (µg/day)	Water Uptake (µg/day)	Alt. Source Uptake (µg/day)	Air Uptake (µg/day)
0.5-1	4.1	7.60	4.68	2,54	0.37	0.00	0.02
1-2	4.5	10.93	7.36	2.63	0.91	0.00	0.03
2-3	4.2	11,44	7.44	2.98	0.96	0.00	0.06
3-4	4.0	11.48	7.53	2.90	0.99	0.00	0.07
4-5	3.4	9.65	5.69	2.85	1.04	0.00	0.07
5-6	3.0	9.39	5.16	3.03	1.11	0.00	0.09
6-7	2.9	10.35	4.87	3.34	1.13	0.91	0.09

10.17.5.7 Remedial Goal Options

RGOs were developed in accordance with USEPA Region IV Supplemental Guidance to RAGS Bulletin 5, Remedial Options (USEPA, 1996a). Arsenic was identified as a COC for both sediment and surface water for Wetland 19. Because arsenic was identified as a COC for both media based only on cancer risk estimates and not based on hazard index estimates, only risk based RGOs were developed.

Adolescent Trespasser

As shown in Table 10-17-8, the maximum sediment concentration of 15.7 mg/kg-day, used as an exposure point concentration, resulted in a risk estimate of 1.3E-6 for arsenic. Using a linear ratio, a target risk of 1E-6 would result from 12.24 mg/kg. Therefore, 122.4 mg/kg and 1224 mg/kg represent target risks of 1E-5 and 1E-4, respectively.

An exposure point concentration of 0.268 mg/L for arsenic in surface water resulted in a risk estimate of 2.4E-5, as shown in Table 10-17-10. Using a linear ratio, 0.0056 mg/L would correspond with a target risk of 1E-6. Therefore, 0.056 mg/L and 0.56 mg/L represent target risks of 1E-5 and 1E-4, respectively. An exposure point concentration of 0.268 mg/L for arsenic in surface water resulted in a hazard estimate of 0.77, as shown in Table 10-17-10. Using a linear ratio, 0.36 mg/L would correspond with a target hazard of 1. Therefore, 0.036 mg/L and 1.08 mg/L represent target hazards of 0.1 and 3, respectively. An exposure point concentration of 12.7 mg/L for manganese in surface water resulted in a hazard estimate of 0.46, as shown in Table 10-17-10. Using a linear ratio, 24 mg/L would correspond with a target hazard of 1. Therefore, 2.4 mg/L and 72 mg/L represent target hazards of 0.1 and 3, respectively.

Maintenance Worker

As shown in Table 10-17-13, the sediment exposure point concentration of 15.7 mg/kg-day resulted in a risk estimate of 2E-6 for arsenic. Using a linear ratio, a target risk of 1E-6 would

result from 7.48 mg/kg. Therefore, 74.8 mg/kg and 748 mg/kg represent target risks of 1E-5 and 1E-4, respectively. A surface water exposure point concentration of 0.268 mg/L resulted in a risk estimate of 5.65E-5, as shown in Table 10-7-15. Using a linear ratio, 0.0047 mg/L would correspond with a target risk of 1E-6. Therefore, 0.047 mg/L and 0.47 mg/L represent target risks of 1E-5 and 1E-4, respectively.

10.17.6 Conclusions and Recommendations

Wetland 19 was classified as a blue-coded wetland because contaminants were mostly isolated, generally below benchmark or reference values, and did not appear to be related to an IR site.

The HHRA identified arsenic as the only sediment COC at Wetland 19. The HHRA also identified arsenic, lead and manganese as surface water COCs.

Based on the isolated exceedance of the beachmark level, Wetland 19 was recommended and approved for NFA. As documented in the September 18, 1996 Eco Meeting Minutes, and the September 19 and 20, 1996 Partnering Team Minutes,

Final Remedial Investigation Report NAS Pensacola Site 41 Section 10: Site-Specific Evaluations August 31, 2000

This page intentionally left blank.

10.18 WETLAND 52

10.18.1 Site Description

Wetland 52 is at the southern end of Forrest Sherman Field and on the northern side of

Radford Blvd., encompassing an area of approximately 100 acres. Parsons and Pruitt divided this

wetland into five distinct areas, Wetlands 52A, 52B, 52C, 52D, and 52E (USEPA, 1991). All

sites are palustrine in nature, with vegetative types from emergent to forested scrub-shrub.

A stream passes west to east along the border between Wetlands 52A and 52B. This stream

continues across both sections of Wetland 52D, through Wetland 52E, emptying into

Sherman's Inlet after passing under Radford Blvd. This stream originates in Wetland 48 and

follows a topographic low across Wetlands 52 A/B, which contains a dense titi forest.

Surface water from the southern half of Wetland W1 also drains into Wetland 52A. Wetland W1

is located to the west of the north/south runway of Forrest Sherman Field, near UST 18 (the

former Crash Crew Training Area). The area between Wetland 52D east and west is mowed and

maintained as an emergency overrun for the north/south runway at the nearby airfield.

Wetland 52D is saturated year round. The stream running through Wetland 52 ultimately

discharges into Sherman's Inlet, and is tidally influenced in its lower portions.

The IR site potentially affecting Wetland 52 is UST 18, the former crash crew training area.

Contamination at UST 18 was determined to not be migrating offsite, and natural attenuation was

selected and approved as the remedial action.

10.18.2 Nature and Extent

The methods for evaluating nature and extent are presented in Section 6. Figure 10-18-1 denotes

the Phase IIA Wetland 52 sampling locations.

Final Remedial Investigation Report NAS Pensacola Site 41 Section 10: Site-Specific Evaluations August 31, 2000

Sediment

Seventeen metals were detected in Wetland 52 sediment samples. No metals exceeded a sediment benchmark level at Wetland 52. Thirteen pesticides detected in Wetland 52 sediment samples, including 4,4'-DDT and its metabolites, aldrin, dieldrin, endosulfan I, endosulfan sulfate, endrin, alpha/delta/gamma-BHC, and alpha/gamma-chlordane. No concentration of 4,4'-DDT or its metabolites exceeded basewide levels (see Section 6). Dieldrin exceeded its sediment benchmark level (0.72 ppb) at sample location 52A1 (9.5 ppb), and gamma-BHC exceeded its sediment level (0.32 ppb) at 52E1 (0.43 ppb). The PCB Aroclor-1260 was also detected in Wetland 52 sediment samples below its benchmark level. Twenty SVOCs were detected in Wetland 52 sediment samples, including 16 high and low molecular weight PAHs. Nine PAHs exceeded appropriate sediment benchmark criteria, including benzo(a)anthracene (100 ppb), chrysene (130 ppb), and fluoranthene (140 ppb) at sample location 52E1, and 2-methylnaphthalene (50 ppb), acenaphthene (77 ppb), anthracene (100 ppb), fluoranthene (130 ppb), fluorene (94 ppb), naphthalene (100 ppb), and phenanthrene (240 ppb) at sample location 52E3. Bis(2-ethylhexyl)phthalate was also detected above its sediment benchmark level (182 ppb) at sample locations 52A1 (360 ppb) and 52E1 (260 ppb). Two VOCs, acetone (a common laboratory contaminant) and toluene, were detected in Wetland 52 sediment samples.

Table 10-18-1 shows the Wetland 52 Phase IIA sediment sample results (frequency of detection, range of detected concentrations, and average detected concentration). Table 10-18-2 compares detected concentrations at each sample location to sediment benchmark levels, and lists calculated HQs for each parameter. Only detected parameters with benchmark levels are presented in Table 10-18-2. The HQs will be further discussed in the ecological risk section (Section 10.18.4).

Table 10-18-1
Phase IIA Detected Concentrations in Wetland 52 Sediments

Parameter	Frequency of Detection	Range of Detected Concentrations	Average Detected Concentration
Inorganics (mg/kg)			
Aluminum (Al)	5/5	667 - 6230	3061.4
Arsenic (As)	1/5	0.31	0.31
Barium (Ba)	5/5	2.2-43.3	14.98
Calcium (Ca)	5/5	526 - 3670	1897.2
Chromium (Cr)	<i>5/5</i> ₁		3:32
Cobalt (Co)	3/5	0.21 - 1.4	0.62
Copper (Cu)	5/5'	0,92 - 6.4	2.984
Iron (Fe)	5/5	361 - 2300	1158.6
Lead (Pb)	5/5	2.6+.1 <i>7.7</i>	, 7:36 ↓ ∰
Magnesium (Mg)	5/5	110 - 1280	613
Manganese (Mn)	5/5	2 - 15.8	9.08
Nickel (Ni)	4/5	0.99 - 5.2	2.35
Potasşium (K)	5/5	22,2 - 160;	80.46
Selenium (Se)	4/5	0.73 - 10.2	3.69
Sodium (Na)	3/5	61.1 - 169	124.37
Vanadium (V)	5/5	1.1 - 6.6	4.1
Zinc (Zn)	415	3.2 - 25.5 _i .	11.18
Pesticides and PCBs (μg/kg)			
4,4'-DDD	3/5	0.45 - 6.1	2.35
4,4'-DDE	1/5	7	7
4,4'-DDT	1/5	1.3	1.3
Aldrin	1/5	2.8	2.8
Aroclor-1260	2/ 5	3.3 - 3/7	3,5
Dieldrin	1/5	9.5	9.5
Endosulfan I	2/5	0.39.75.77	3.05(W
Endosulfan sulfate	1/5	1.2	1.2
Endrin	5 -2/5	1.7-2.4	2.05
alpha-BHC	1/5	0.14	0.14
alpha-Chlordage	ale de Lais de de Lais de la company	0.34	A 2 14 10846 18 2 3 1

Table 10-18-1
Phase IIA Detected Concentrations in Wetland 52 Sediments

Parameter	Frequency of Detection	Range of Detected Concentrations	Average Detected Concentration	
Pesticides and PCBs (µg/kg) (Continued)			
delta-BHC	1/5	0.61	0.61	
gamma-BHC (Lindane)	1/5	0.43	0.43	
gamma-Chlordane	V S	0.91	0.91	
SVOCs (μg/kg)				
2-Methylnaphthalene	1/5	50 _{ee} .	50	
4-Methylphenol (p-Cresol)	2/5	110 - 170	140	
Acenaphthene	* 1/5. 🛊	The Table	T. Tr	
Anthracene	1/5	100	100	
Benzo(a)anthracene	2/5	26 - 100 ₄	63	
Benzo(a)pyrene	1/5	64	64	
Benzo(b)fluoranthene	1/5	190	190	
Benzo(g,h,i)perylene	1/5	45	45	
Benzo(k)fluoranthene	1/5	61	61	
Carbazole	1/5	45	45	
Chrysene	.1/5	130	130	
Di-n-butylphthalate	3/5	49 - 150	89	
Dibenzofuran	18 1 1 1 15	72	72	
Fluoranthene	2/5	130 - 140	135	
Fluorene	1/5	94	94	
Indeno(1,2,3-cd)pyrene	1/5	51	51	
Naphthalene	1/5	100	100	
Phenanthrene	1/5	240	240	
Pyrene	2/5	82 - 140	1117	
bis(2-Ethylhexyl)phthalate (BEHP)	5/5	50 - 360	192	
VOCs (μg/kg)				
Acetone	1/5	1300	1300	
Toluene	1/5	21	21	

Note

All results are in micrograms per kilogram ($\mu g/kg$) or parts per billion (ppb), except for metals which are in milligrams per kilogram (mg/kg) or parts per million (ppm).

Table 10-18-2 Wetland 52 Phase IIA Sediment Concentrations Compared to Benchmark Levels

Sample Location	Parameter	Detected Concentration	Sediment Benchmark Value (SBV)	но	SBV Reference
041M52A101					
bis(2-Ethylfiax	yi)phthalare (BEHP) (UG/KG)	360 1	182	1/98	ь
Chromium (M	G/KG)	421	52 3	0.08	ab
Copper (MG/I	¢G)	394	187	0.21	a 0
Dieldrin (UG/)	(G)	951	0.72	13:19	ь
gamma-Chloro	tane (UG/KG)	1911	1.7	0.54	a
Lead (MG/KG	;)	7.1	30,8	0,24	āb
MINISTRE.					
A PRINT NAME		1000			100
Charles I	And in contrast of	COLUMN TO SERVICE STATE OF THE PARTY OF THE	10 may 1	100	THE REAL PROPERTY.
-	STREET, SQUARE, SQUARE,	TWO IS	0.00	also I	100
-		The second	The second	-	100
Other Birth		2000	Appropriate to the same of the		III WI
High Law		100	THE RESERVE	-	mark.
I like boots		241	-	100	
Date make			TW III	200	100
THE PERSON		200	4	ME	11,86
D41M52E101					
4,45DDD (UG	UKG)	8/1 193	1,22	5.00	E
4,4-DDE (UG		7. 10	2.07	3.38	6
4.4'-DDT (UG		1.3	1.15	1.00	b
	acene (UG/KG)	100	74.8	1.34	h
Benzo(a)pyrer	A THE RESERVE ASSESSMENT AND A SECOND ASSESSMENT ASSESS	64	88.6	0.72	h
The second secon	yi)phihalate (BEHP) (UG/KG)	260 J	182	1 43	b
Chromium (M	The state of the s	1/6	523	0.03	e b
Chrystene (UC	12. 8	1/40	IOB	1.20	b
Copper (MG/)		2.1	18.7	0.11	a b
Fluorantheno		760	113	1,24	b
	Lindane) (LIG/LG)	0.43 J	0.32	1.34	b
Lead (MG/KG		37	30.2	0.19	ab
Nickel (MG/N		0.99.3	15.9	0.06	ab
Pyrene (UG/R		1,40	953	0.92	ь
Zinc (MG/KG)		53	124	0.04	an
041M52E261		h., 2		2.25 (0.00)	
4,4"-DOD (UC	(16G)	0.51 3	122	6.42	6

Basewide level for 4 A'-DDE is 10 ppb Basewide level for 4 4'-DDD is 50 ppb

Basewide level for 4 4'-DDT is 20 ppb

⁽a) USEPA Screening Concentration for Sediment - EPA SSVs
(b) FDEP Sediment Quality Assessment Guidelines - FDEP SQAGs
Some of the numbers in the table may vary because of rounding Basewide levels (detailed in Section 6) for DDT and its metabolities

Table 10-18-2 Wetland 52 Phase IIA Sediment Concentrations Compared to Benchmark Levels

Sample Location	Paramotor	Detacted Concentration	Sediment Benchmark Value (SBV)	HQ	SBV Reference	
Lambour	LOWIN TO THE	ER.C	200 IF 500	0.0	-	
Amelican S		40.0	201	No.	THE REAL PROPERTY.	
Will be to	STREET, SQUARE	THE OWNER OF THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER, THE OWNER,	TOTAL TOTAL	1000	-	
Observed the	~ 100	ACT .	N.C.	2000	100	
DOM: NO	- NOT 18.1	TAX TO	100	11/4/01	(48)	
James Julyan		1000	100	C MAG	340	
THE MINH		140.00	Tal.	200	1.06	
Mark 2000	CORP. FOR THE	0.7	24	The second	146	
De Securi		1200	100	35	(32)	
//41M52E301						
2-Methylnapht	halane (UG/KG)	50	20.2	2.48	ž,	
Acanaphthene		77	6.71	11.48	b	
Anthracene (L	10.70	700	46.9	2,13	- 69	
Arsenic (MG/		0.31 1	7.24	0.04	ab	
And the second of the second o	igene (UG/KG)	26 3	74.8	D 35	B	
-9-1-1	yl)phthatate (BEHP) (IJG/KG)	50 J	182	D 27	18	
Chromium (M		2.9	52.3	D 06	an	
Copper (MG/II		17.1	18.7	0.09	ah	
Fluoranthene		130	1113	1.15	. 6	
Filiurena (UG)	K(S)	94	212	4.43		
Lead (MG/KG		2.6	30.2	0.09	a b	
Naphthalene i		100	34.6	2.89	10	
Nickel (MG/Kr	(m) (m) (m) (m)	1.5.3	159	0.10	ab	
Phenanthrena	(UG/KG)	240	B5 7	2.77	EX.	
Pyrene (UG/N		82	153	0.54	- 6	
Zine (MG/KG)		35.5	124	0.21	a b	

Notes

Some of the numbers in the table may vary because of rounding. Basewide levels (detailed in Section 6) for DDT and its metabolites

Basewide evel for 4,4'-DDE is 10 ppb. Basewide evel for 4,4'-DDD is 50 ppb. Basewide level for 4,4'-DDT is 20 ppb.

⁽a) USEPA Screening Concentration for Sediment - EPA SSVs

⁽b) FDEP Sediment Quality Assessment Guidelines : FDEP SQAGs

Surface Water

Eleven metals were detected in Wetland 52 surface water samples. Aluminum exceeded its water quality criteria (87 ppb) at sample locations 52A1 (116 ppb) and 52E1 (2,580 ppb). Iron also exceeded the appropriate surface water quality criteria (1,000 ppb) at sample location 52E3 (1,220 ppb). No organics were detected in Wetland 52 surface water samples.

Table 10-18-3 shows the Wetland 52 Phase IIA surface water sample results (frequency of detection, range of detected concentrations, and average detected concentration). Table 10-18-4 compares detected concentrations at each sample location to surface water quality criteria and lists calculated HQs for each parameter. Only the detected parameters with water quality criteria are listed in Table 10-18-4. The HQs will be further discussed in the ecological risk section (Section 10.18.4).

Table 10-18-3
Phase IIA Detected Concentrations in Wetland 52 Surface Water

Parameter	Frequency of Detection	Range of Detected Concentrations	Average Detected Concentration
Inorganics (μg/L)			
Aluminum (AI)	2/2	116 - 2580	1348
Barium (Ba)	2/2	4.9 - 6.6	5.75
Calcium (Ca)	2/2	808 - 10800	5804
Copper (Cu)	1/2	6.4	6.4
Iron (Fe)	1/2	1220	1220
Magnesium (Mg)	2/2	854 - 912	883
Manganese (Mn)	2/2	8.2 - 10.5	9.35
Potassium (K)	2/2	349 - 589	469
Sodium (Na)	2/2	2670 - 5260	3965
Vanadium (V)	1/2	2.7	2.7
Zinc (Zn).	172	12.4	12.4

Note:

All results are in micrograms per liter ($\mu g/L$) or parts per billion (pph).

Table 10-18-4 (1) Weiland 52 Phase IIA Surface Water Concentrations Compared to Water Quality Criteria

Sample Location	Parameter	MOU	Detected Concentration	Water Quality Criteria	на	Criteria Reference
MATERIAL PROPERTY.	(Technologie	775	TO THE			- 1
-		-	1984	2.00	1000	100
HE JUL		LOSII.		10.00	-1075	-10
041W52E301	Freshwater					
Aluminum		DG/L	2,580.0	87.0	29.65517	a
Iran		UG/L	1.220 0	0.000,1	1.22	a.b
Zinc		n.ear	12.4	70.2	0.17664	ab

Notes

⁽a) USEPA Water Quality Criteria (1995)
(b) FOEP Class III Water Quality Criteria (1996)
Some of the numbers in the table may vary because of rounding.

10.18.3 Fate and Transport

The pathways evaluated for the wetland specific fate and transport correlate to those identified in the conceptual model presented in Section 9. These pathways include: surface water/sediment transport into the wetland; groundwater discharge into the wetland; sediment/surface water transport within the wetland; sediment leaching to surface water within the wetland; and surface water/sediment transport from the wetland. Sediment transport and storm water runoff data are lacking: thus the evaluation is qualitative in nature. The method of evaluation of the leaching from sediment to surface water was presented in Section 9. Table 10-18-5 presents those contaminants present in sediment above benchmark levels and their calculated SSLs. Contaminants present in surface water above water quality criteria are presented in Table 10-18-4.

Transport into the Wetland

Surface Water/Sediment Pathway

Based on landform and watershed analysis, the following sources can contribute contamination to Wetland 52 through this pathway:

• Potential storm water runoff and sediment entrainment from the UST Sites S (the jet fuel pipeline associated with IR Site 19), O (UST-18; the former crash crew training area), and from the south end of the north/south runway at Forrest Sherman Field. Additionally, there is a direct surface water connection with Pensacola Bay, and back flushing of surface water will occur during periods of high tides and storm surge.

The presence of sediment contaminants above benchmark levels (see Table 10-18-2) validates the sediment transport pathway, and by inference the surface water pathway. Additionally, the presence of one inorganic present in surface water above standards further validates the pathway.

Table 10-18-5
Calculated Sediment Screening Values for Wetland 52

Parameter	USEPA or FDEP Surface Water Standard	Kd	SSL DF = 100	Maximum Concentration Detected	Leaching Potential DF = 100
Organics	(ppb)		(ppb)	(ppb)	
4,4 DDE	10.5	6.87E+04	7,21E+07	7	NO NO
4,4 DDD	0.0064 a	1.54E+04	9.86E+03	6.1	NO
4,4 DDT	0.001 ~ *	4.04E+04	4.04E+03	1,3	NO =
Dieldrin	0.0019 a, b	3.29E+02	62.53	9.5	NO
Gamma BHC	₽	16:46	₹Í32 .75	0,43	NO _
Gamma-Chlordane	0.0043 a, b	1.85E+4	7.4E+03	0.91	NO
2-methylnaphthalene:	NA.	1,15B+02	, NA	50	Year' NA
Anthracene	110,000 b	4.54E+02	5E+06	100	NO
Acenapthene	17?	1.2E+02	2.04E+05	77	NO
Benzo(a)anthracene	0.031 b	6.11E+03	1.89E+04	100	NO
Chrysene	0.031 в	6.11E+03	1.89E+04	130	NO
Fluoranthene	39.82	1.65E+03	6.57E+06	140	NO
Fluorene	14,000 b	2.12E+02	2.97E +08	94	NO V
Naphthalene	62 °	3.07E+01	1.9E+05	100	NO
Phenanthrene	0.031 b	4,61E+02	1.43E+03	240	NO
Bis(2-ethylhexyl)phthalate	0.3*	2.32E+05	6.96E+06	360	NO

Notes:

Kd for organics calculated using foc of 0.154 (numerical average of all sediment samples).

Kds are from: USEPA, 1996b (first preference); Superfund Chemical Data Matrix (USEPA, 1996c) (second preference); Texas Risk Reduction Program Concept Document 2, Volume 1, Appendix VII, 1996 (third preference); TERRA Model, Oak Ridge National Laboratory, 1984 (fourth preference — primary reference for inorganics).

Kd = normalized partitioning coefficient.

SSL = sediment screening level.

DF = dilution factor.

a = USEPA Freshwater Surface Water Chronic Screening Value (1995a).

b = FDEP Class III Water Quality Criteria (1996).

Groundwater Discharge Pathway

Based on potentiometric analysis, the following sources can contribute contamination to

Wetland 52 through this pathway:

• Discharge from UST O. Groundwater at this site has been shown to be contaminated, thus

the pathway is considered valid.

Transport within the Wetland

Surface Water/Sediment Migration Pathway:

The configuration of the wetland, along with landform analysis, indicates that surface water and

sediment movement is towards Pensacola Bay. However, tidal fluctuations can create a

temporary landward movement. Therefore, both sediment and surface water contaminants can be

expected to remain mobile.

Sediment Leaching to Surface Water Pathway

Five pesticides and 10 semivolatiles exceeded their benchmark levels, but none exceeded their SSL

and corresponding detections of these constituents in surface water were not noted. Aluminum

and iron were the only parameters in surface water above standards, and they are likely

attributable to the surface water/groundwater discharge pathway. Given the lack of parameters

above SSLs and surface water standards, this pathway is considered invalid.

Transport from the Wetland

Surface water and sediment movement can be expected to occur from the wetland into

Pensacola Bay, and sediment and surface water contamination.

10.18.4 Ecological Risk Assessment

HQs for Wetland 52 sediment samples are presented in Table 10-18-2. Phase IIA sediment results

compared to the appropriate sediment benchmark levels revealed HQs above 1 for the pesticides

4,4'-DDD (5.0), 4,4'-DDE (3.38), and 4,4'-DDT (1.09) at sample location 52E1, respectively.

However, as noted in the nature and extent discussion, these concentrations of 4,4'-DDT and its

metabolites were below basewide levels. Other pesticides with HQs greater than 1included:

dieldrin (13.19) at sample location 52A1, and gamma-BHC (1.34) at 52E1. Nine PAHs had HQs

greater than 1, including benzo(a)anthracene (1.34), chrysene (1.20), and fluoranthene (1.24) at

sample location 52E1, and 2-methylnaphthalene (2.48), acenaphthene (11.48), anthracene (2.13),

fluoranthene (1.15), fluorene (4.43), naphthalene (2.89), and phenanthrene (2.77) at

sample location 52E3. HQs were above 1 for bis(2-ethylhexyl)phthalate at sample locations 52A1

(1.98) and 52E1 (1.43). Phase IIA surface water results revealed HQs above 1 for aluminum at

sample locations 52A1 (1.33) and 52E1 (29.66). The HQ was also greater than 1 for iron at

sample location 52E3 (1.22). HQs greater than 1 indicate the potential for excess risk.

Wetland 52 is a blue-coded wetland (E/A&H, 1995a). Contaminants detected in the blue-coded

wetlands were isolated and were generally below benchmark or reference values. In addition,

contaminant exceedances did not appear to be related to IR sites. Therefore, the blue-coded

wetlands were not studied further in Phase IIB/III. Color-codes, groupings and rationale for

classification are described in Section 7.

10.18.5 Human Health Risk Assessment

10.18.5.1 Samples Included

Sediment

041M52A101, 041M52D101, 041M52E101, 041M52E201, 041M52E301

Surface Water

041W52A101, 041W52E301

10.18.5.2 Current and Future Land Use

Wetland 52 is south of Forrest Sherman Field, and is inaccessible to the public due to its locality,

and the dense vegetation and swampy conditions within the wetland. A gravel access road, not

open to the public, traverses the north side of Wetland 52A. A wide grassy median separates the

wetland from Radford Blvd. Wetland 52D is encompassed by a runway over run for the airfield.

The area surrounding Wetland 52E is largely swampy. An occasional trespasser might visit the

area, and maintenance workers occasionally clear vegetation out of drainage ditches traversing the

area.

10.18.5.3 Fish Tissue COPCs

No fish tissue data were available for this wetland, and this exposure pathway would likely be

incomplete; therefore, no COPCs were identified.

10.18.5.4 Sediment COPCs

As shown in Table 10-18-6, no sediment COPCs were identified.

10.18.5.5 Surface Water COPCs

As shown in Table 10-18-7, no surface water COPCs were identified.

10.18.5.6 Risk Summary

No COPCs were identified for Wetland 52; therefore no formal human health risk assessment was

conducted for Wetland 52.

TABLE 10-18-6 CCURRENCE, DISTRIBUTION, AND SELECTION OF CHEMICALS OF POTENTIAL CONCERN NAS PENSACOLA SITE 41

Scenario Timeframe: Current and Future

Medium: Sediment Exposure Medium: Sediment Exposure Point: Wedend 52 Seniment

	Exposure Point: Wedend 52 Seniment																	
		(1)		(1)			Location of				(2)	(3)	(4)	Commercial	(5)	Polantial		(6) Retionale for
CAS Number	Chemical	Minimum Concentration	Minimum Qualifler	Maximum Concentration	Maximum Qualifler	Lints	Madmum Concentration	Detection Frequency	Range of Detection Limits	MEAN	Concentration Used for Screening	Background Value	Adolescent Site Trespesser PRG	Maintenance Worker PRG		ARAR/TBC Source	COPC Plag	Contaminent Detection or Selection
91576	2-Methylnaphthalene	50.0000		50.0000		UG/KG		1 / 5	52.00 - 270.00	50	50	N/A	6300000	95000000	И	N/A	NO	BSL
72548	4,4'-DDD	0.4500	ı	6.1000	עם	UG/KG	041M5ZE101	3 / 5	0.24 - 1.40	2.35	6.1	N/A	92000	57000	С	N/A	NO	BSL
72559	4,4'-DDE	7,0000	ם	7,0000	D	ngwe	041M52E101	1 / 5	0.24 - 1.40	7	7	N/A	65000	41000	С	N/A	NO	BSL
50293	4,4'-DDT	1.3000	ا ر	1.3000	١,	UG/KG	041M52E101	1 / 5	0.24 - 1.40	1,3	1.3	N/A	65000	41000	С	N/A	NO	BSL
106445 83329	4-Methylphenol (p-Cresol) Acenaphthene	110.0000 77.0000	J	170,0000 77,0000	J	UG/KG UG/KG	041M52E101 041M52E301	2 / 5	480.00 - 2700.00 25.00 - 130.00	140 77	170 77	N/A N/A	1600000 19000000	2500000 29000000	N	N/A N/A	NO NO	B2L B2L
67641	Acetone	1300.0000		1300 0000		UG/KG	041M52E301	1 / 5	29.00 - 130,00 29.00 - 200,00	1300	1300	N/A N/A	32000000	48000000	N	N/A N/A	NO	BZF
309002	Aldrin	2.8000	ر ا	2.8000	J	UG/KG	041M52A101	1 / 5	0.12 - 0.22	2.8	2.8	N/A	1300	810	C	N/A	NO	BSL
319846	aiona-BHC	0.1400	j	0.1400	Ĭ	UG/KG	041M5ZE301	1 / 5	0.13 - 0.69	0.14	0.14	N/A	3500	2200	C	N/A	NO	BSL
5103719	alpha-Chlordane	0.3400	j	0.3400	Ĭ.	UG/KG	041M52E201	1 / 5	0.12 - 0.69	0.34	0.34	N/A	63000	39000	c	N/A	NO	BSL
7429905	Aluminum (Al)	667,0000	'	8230.00		MG/KG	041M52A101	5 / 5	NAV	3051.4	6230	N/A	320000	490000	Ň	N/A	NO	BSL
120127	Anthracene	100,0000		100,0000		UG/KG	041M52E301	1 / 5	52.00 - 270.00	100	100	N/A	95000000	150000000	N	N/A	NO	BSL
11096825	Arocior-1260	3.3000	J	3,7000	J	UG/KG	041M52E201	2 / 5	2.40 - 14.00	3.5	3.7	N/A	11000	6900	c	N/A	NO	BSL
7440382	Arsenic (As)	0.3100	J	0.3100	J	MG/KG	041M52E301	1 / 5	0.18 ~ 0.86	0.31	0.31	N/A	15	9.Z	С	N/A	NO	BSL
7440393	Barium (Ba)	2,2000	J	43.30	J	MG/KG	041M52E301	5 / 5	NAV	14.98	43.3	N/A	22000	34000	N	N/A	NO	BSL
56553	Benzo(a)anthracene	25.0000	J.	100.0000		UG/KG	041M52E101	2 / 5	84.00 - 270.00	63,00	100	N/A	30000	19000	С	N/A	NO	BSL
50328	Benzo(a)pyrene	64,0000		64.0000		UG/KG	041M52E101	1 / 5	48,00 - 270,00	64,00	64	N/A	3000	1900	С	N/A	NO	BSL
205992	Benzo(b)fluoranthene	190,0000		190.0000		UG/KG	041M52E101	1 / 5	48,00 - 270,00	190,00	190	N/A	30000	19000	C	N/A	NO	BSL
191242	Benzo(g,h,i)perylene	45,0000	J	45_0000	J	UG/KG	041M52E101	1 / 5	48.00 - 270.00	45.00	45	N/A	8500000	15000000	N	N/A	NO	BSL
207089	Benzo(k)fluoranthene	51.0000		61,0000		UGAKG	041M52E101	1 / 5	48,00 × 270,00	61,00	61	N/A	300000	190000	С	N/A	NO	BSL
7440417	Beryllium (Be)	0.5800	J	0.6850	1	MG/KG	041M52A101	1 / 5	0.07 - 0.42	0.68	0.68	N/A	630	980	N	N/A	NO	BSL
117817	bis(2-Ethylhexyl)phthalate (B	50.0000	l i	360.00	J	UG/KG	041M52E301	5 / 5	NAV	192.00	360	N/A	1800000	980000	C	, N/A	NO	BSL
7440702	Calcium (Ca)	526.0000		3670.00		MG/KG	041M52E301	5 / 5	NAV	1897.20	3670	N/A	N/A	N/A		N/A	NO	EN
86746	Carbazole	45,0000	J	45,0000	J	UG/KG	041M5ZE301	1 / 5	520.00 - 2700.00	45.00	45	N/A	1100000	690000	С	N/A	NO	BSL
7440473	Chromium (Cr)	1.2000		6.70	1	MG/KG	041M52D101	5 / 5	NAV	3.32	6.7	N/A	1500	2500	N	N/A	NO	BSL
218019	Chrysene	130.0000		130.0000	Ι.	UG/KG	041M5ZE101	1 / 5	48.00 - 270.00	130.00	130	N/A	3000000	1900000	C	N/A	NO	BŞL
7440484 7440508	Cobalt (Co)	0.2100		1.4000	J	MG/KG		3 / 5	0.22 - 0.84	0,62	1.4	N/A	19000	29000	N	N/A	NO	BSL,
319868	Copper (Cu) detta-BHC	0.9200 0.6100	J	6,40 0,6100	J	MG/KG UG/KG	041M52A101 041M52D101	5 / 5	0,12 - 0,69	2,98 0,51	6.4 0.61	N/A N/A	13000 12000	20000 7500	N	N/A N/A	NO NO	BSL BSL
132549	Dibenzofuran	72,0000		72.0000	j	UG/KG		1 / 5	520.00 - 2700.00	72.00	72	N/A	1300000	2000000	N:	N/A	NO	BSL
60571	Dieldrin	9.5000	j	9,5000	ľ	UG/KG	041M5ZA101	1 / 5	0,24 - 0,45	9.50	9.5	N/A	1400	860	C	N/A	NO	BSL.
84742	Di-n-butylohthalate	49.0000]	150.0000	ľ	UG/KG		3 / 5	480.00 - 840.00	89.00	150	N/A	32000000	49000000	N	N/A	NO	BSL
959988	Endosulfan i	0.3900	انا	5,7000	lj	UG/KG	•	2 / 5	0.13 - 0.22	3,05	5.7	N/A	1900000	2900000	N	N/A	NO	B5L
1031078	Endosulfen sutlate	1,2000	ازا	1,2000	ز ا	UG/KG	041M52E301	1 / 5	0.26 - 1.40	1.20	1.2	N/A	1900000	2900000	N	N/A	NO	BSL
72208	Endrin	1,7000	j	2,4000	Ĵ	UG/KG	041M52E201	2 / 5	0.24 - 1.40	2,05	2.4	N/A	95000	150000	N	N/A	NO	BSL
206440	Fluoranthene	130,0000		140,0000		UGAKG	041M52E301	2 / 5	84,00 - 270,00	135.00	140	N/A	13000000	20000000	N	N/A	NO	BSL
86737	Fluorene	94.0000		94.0000		UGAKG	041M52E301	1 / 5	25.00 - 130.00	94.00	94	N/A	13000000	20000000	N	N/A	NO	BSL
58899	gamma-BHC (Lindane)	0,4300	J	0.4300	J	UG/KG	041M52E101	1 / 5	0.12 - 0.69	0.43	0.43	N/A	17000	11000	С	N/A	NO.	BSL
5103742	gamma-Chlordane	0.9100	J	0.9100	J	UG/KG	041M52A101	1 / 5	0,12 - 0.22	0,91	0.91	N/A	17000	11000	С	N/A	NO.	BSL
193395	Indeno(1,2,3-cd)pyrene	51,0000	J	51.0000	J	UG/KG	041M52E101	1 / 5	48.00 - 270.00	51,00	51	N/A	30000	19000	C	N/A	NO	BSL
7439896	Iron (Fe)	361.0000		2300,00		MG/KG	041M52A101	5 / 5	NAV	1156.60	2300	N/A	N/A	N/A		N/A	NO	EN
7439921	Lead (Pb)	2.6000		17.70		MG/KG		5 / 5	NAV	7.36	17.7	N/A	400	400		OSWER	NO	8SL
7439954	Magnesium (Mg)	110.0000	J	1280.00	J	MG/KG	041M52A101	5 / 5	NAV	613,00	1280	N/A	N/A	N/A		N/A	NO	EN
7439965	Manganese (Mn)	2.0000		15,80		MG/KG	041M52E301	5 / 5	NAV	9.08	15.8	N/A	15000	23000	N	N/A	NO	Bal
91203 7440030	Naphthalene	100.0000	,	100,0000		UG/KG	041M52E301	1 / 5	52,00 - 270.00	100,00	100	N/A	13000000	20000000	N	N/A	NO	B5L
7440020 85018	Nickel (Ni) Phenanthrene	0.9900 240.0000	J	5.2000	J	MG/KG	041M52E301	4 / 5	3.90 - 3.90	2.35	5.2	N/A	5300	9800	N	N/A	NO	BSL
7440097	Potassium (K)	22.2000		240.0000 160.00	J	UG/KG	041M5ZE301	1 / 5	52.00 - 270.00	240,00	240	N/A	9500000	15000000	N	N/A	NO	BSL EN
129000	Pyrene (K)	82.0000 82.0000	'	140.000	J	MG/KG UG/KG	041M5ZE301 041M5ZE101	5 / 5	NAV 270.00	80.46	160	N/A	N/A	N/A		N/A	NO	ÉN
7782492	Selenium (Se)	0.7300	ارا	10,2000	J	MG/KG	041M52E101	2 / 5 4 / 5	84.00 - 270.00 0.37 - 0.37	111.00 3.69	140 10,2	N/A N/A	9500000 1600	15000000 2500	N	N/A N/A	NO NO	BSL BSL
7440235	Sodium (Na)	61.1000		169,0000	J	MG/KG		3 / 5	14.60 - 23.20	124,37	189	N/A N/A	1600 N/A	2500 N/A	~	N/A	NO	EN
108883	Toluene	21.0000		21,0000	J	UG/KG		1 / 5	14.00 - 23,20	21.00	21	N/A	63000000	98000000	N	N/A	NO	BSL
7440522	Vanadium (V)	1.1000	ا ز ا	5.E0	J	MG/KG		5 / 5	14.00 - 71.00 NAV	4,10	0,6	N/A	2200	3400	N	N/A	NO	BSL
7440666	Zinc (Zn)	3,2000		25.5000	•	MG/KG	041M52E201	4 / 5	1.70 - 1.70	11.18	25.5	N/A	95000	150000	N	N/A	NO	BSL
, 444000	Sent to Cong 91	3.2000	1	43.5000		maina	U- INDUEZUI	, , 5	1.70 - 1.70	11.10	£3.3	N/A	90000	120000	N	N/A	NO	BSL

⁽¹⁾ Minimum/maximum detected concentration

(6) Rationale Codes Sciention Reason: Above Screaning Levels (ASL) Deletion Reason: Balow Screening Levels (BSL) Background Levels (BXC) No Todally information (NTX) Exemples Nutrient (EN)

Definitions:

N/A = Not Applicable

NAV = Not Available

COPG = Chemical of Potential Concern

ARAR/TBC = Applicable or Relevant and Appropriate Requirement/ To Be Considered OSWER = Office of Solid Weste and Emergency Response

J = Estimated Value

C = Carelhoganie N Noncarcinoganie

⁽²⁾ Maximum consentration good as acrearing value.

⁽³⁾ No background values were developed for this media.

⁽⁴⁾ PRGs for site trespessor scenario calculated based on equations and parameters presented in Section 8 of this report.

⁽⁵⁾ PRGs for commercial maintenance worker scenario calculated based on equations and parameters presented in Section 8 of this report.

TABLE 10-18-7 OCCURRENCE, DISTRIBUTION, AND SELECTION OF CHEMICALS OF POTENTIAL CONCERN NAS PENSACOLA SITE 41

Scenario Timeframe: Current and Future Medium: Surface Water Exposure Medium: Surface Water Exposure Point: Wetland 52 Surface Water

		THE RESERVE OF THE PERSON NAMED IN		***************************************			THE RESERVE AND ADDRESS OF THE PARTY OF THE						T-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	T. M. L. C. C. C. C. C. C. C. C. C. C. C. C. C.		THE RESIDENCE OF THE PARTY OF		
CAS Number	Chemical	(1) Minimum Concentration	Minimum Qualifier	(1) Maximum Concentration	Maximum Qualifier	Units	Location of Maximum Concentration	Detection Frequency	Range of Detection Limits	Mean	Concentration Used for Screening	Background Value	(3) Adolescent Site Trespasser PRG	Commercial Maintenance Worker PRG	(4)	Potential ARAR/TBC Source	COPC Flag	(5) Rationale for Contaminant Delection or Selection
7429905	Aluminum (Al)	116,00	J	2580.00		UG/L	041W52E301	2 / 2	NAV	1348.00	2580.00	N/A	120000	250000	N	N/A	NO	BSL
7440393	Barium (Ba)	4.90	J	6.60	J	UG/L	041W52A101	2 / 2	NAV	5.75	6.60	N/A	8300	18000	N	N/A	NO	BSL
7440702	Calcium (Ca)	808.00	J	10800.00	[UG/L	041W52E301	2 / 2	NAV	5804.00	10800.00	N/A	N/A	N/A	- 1	N/A	NO	EN
7440508	Copper (Cu)	6.40	J	6.40	J	UG/L	Q41W52A101	1 / 2	NAV	6.40	6.40	N/A	4800	10000	N	N/A	NO	BSL
7439896	Iron (Fe)	1220.00		1220.00		UG/L	041W52E301	1 / 2	NAV	1220.00	1220.00	N/A	N/A	N/A		N/A	NO	EN
7439954	Magnesium (Mg)	854.00	J	912.00	J	UG/L	041W52A101	2 / 2	NAV	883.00	912,00	N/A	N/A	N/A		N/A	NO	EN
7439965	Manganese (Mn)	8.20	J	10.50	i J	UG/L	041W52A101	2 / 2	NAV	9.35	10,50	N/A	2400	5000	N	N/A	NO	BSL
7440097	Potassium (K)	349.00	J	589.00	J	UGAL	041W52A101	2 / 2	NAV	469.00	589,00	N/A	N/A	N/A		N/A	NO	EN
7440235	Sodium (Ne)	2670,00	1	5260.00		UG/L	041W52A101	2 / 2	NAV	3965.00	5260.00	N/A	N/A	N/A		N/A	NO	EN
7440622	Vanadium (V)	2.70	J	2.70	J	UG/L	041W52E301	1 / 2	NAV	2.70	2,70	N/A	830	1800	N	N/A	NO.	BSL
7440666	Zinc (Zn)	12.40	J	12.40	J	UG/L	041W52E301	1 / 2	NAV	12.40	12,40	N/A	36000	76000	N	N/A	NO	BSL

(1) Minimum/maximum detected concentration

(2) Maximum concentration used as screening value.

(4) PRGs for site trespasser scenario calculated based on equations and parameters presented in Section 8 of this report.

(5) PRGs for commercial maintenance worker scenario calculated based on equations and parameters presented in Section 8 of this report.

(6) Rationale Codes

Selection Reason: Above Screening Levels (ASL)

Deletion Reason: Below Screening Levels (BSL)

Background Levels (BKG) No Toxicity Information (NTX) Essential Nutrient (EN)

Definitions: N/A = Not Applicable

NAV = Not Available

COPC = Chemical of Potential Concern

ARAR/TBC = Applicable or Releveant and Appropriate Requirement/ To Be Considered

J = Estimated Value

C = Carcinogenio

N = Noncarcinogenic

10.18.6 Conclusions and Recommendations

Wetland 52 was classified as a blue-coded wetland, because contaminants were mostly isolated and did not appear to be related to an IR site. Since no COPCs were identified for Wetland 52, no formal HHRA was conducted.

The type of contaminants detected (PAHs), indicate that the contamination found at Wetland 52 is likely related to storm water runoff from the NAS Fuel Farm, UST-18, and Forrest Sherman Field areas. Because the contamination cannot be tied to an IR site, Wetland 52 is referred to NAS Pensacola as documented in the September 18, 1996 Eco Meeting Minutes, and the September 19 and 20, 1996 Partnering Team Minutes and will not be assessed further in the Site 41 remedial investigation.

10.19 WETLAND 56

10.19.1 Site Description

Wetland 56 is south of Radford Boulevard near the Oak Grove Campground (Site 39).

Parsons and Pruitt divided this wetland into two areas, Wetlands 56A and 56B (USEPA, 1991).

Wetland 56A is described as palustrine emergent wetland in the back end of Sherman's Inlet.

Wetland 56B is described as an estuarine emergent marsh along the littoral areas of

Sherman's Inlet.

Surface water from Wetland 56 drains into Pensacola Bay via Sherman's Inlet. Wetland 56A

receives storm water from Forrest Sherman Field and has an active National Pollution Discharge

Elimination System (NPDES) permit at the storm water outlet, indicating it is a sampling station.

Vegetation associated with Wetland 56A includes saw grass (Cladium jamaicense) and cattails

(Typha latifolia). Black needlerush (Juncus roemerianus) is the dominant foliage in Wetland 56B.

The northern edges of Wetland 56 are adjacent to the right-of-way for Radford Blvd., and are

maintained by base landscaping contractors.

The IR site potentially affecting Wetland 56 is Site 39 (Oak Grove Campground). An interim

removal action removed contaminated soil at the site in 1994, and the site was approved for no

further action. Storm water runoff from Forrest Sherman Field may also contribute contaminants

to Wetland 56.

10.19.2 Nature and Extent

The methods for evaluating nature and extent are presented in Section 6. Figure 10-19-1 denotes

the Phase IIA Wetland 56 sampling location.

Sediment

Sixteen metals were detected in the single Wetland 56 sediment sample. No metals exceeded a

sediment benchmark level at Wetland 56. Five pesticides were detected in the Wetland 56

10-19-1

sediment sample, including 4,4'-DDT and its metabolites, endrin, and gamma-BHC. The

4,4'-DDD concentration (53 ppb) slightly exceeded its basewide level (50 ppb). 4,4'-DDT

(2.8 ppb) and 4,4'-DDE (5.3 ppb) were both below their basewide concentrations of 20 ppb and

40 ppb respectively. Basewide levels are described in Section 6. Gamma-BHC (0.4 ppb)

exceeded its sediment benchmark level (0.32 ppb). No PCBs were detected in the Wetland 56

sediment sample. Two SVOCs (pyrene and bis(2-ethylhexyl)phthalate) were detected below their

sediment benchmark levels. No VOCs were detected in the Wetland 56 sediment sample.

Table 10-19-1 shows the Wetland 56 Phase IIA sediment sample results (frequency of detection,

range of detected concentrations, and average detected concentration). Table 10-19-2 compares

detected concentrations at each sample location to sediment benchmark levels, and lists calculated

HQs for each parameter. Only the detected parameters with benchmark levels are presented in

Table 10-19-2. The HQs will be further discussed ecological risk section (Section 10.19.4).

Surface Water

Eight metals were detected in the single Wetland 56 surface water sample. Aluminum (596 ppb)

was the only parameter to exceed its surface water metals concentration (87 ppb). No organics

were detected in the Wetland 56 surface water sample.

Table 10-19-3 shows the Wetland 56 Phase IIA surface water sample results (frequency of

detection, range of detected concentrations, and average detected concentration). Table 10-19-4

compares detected concentrations at each sample location to surface water quality criteria and lists

calculated HQs for each parameter. Only the parameters with water quality criteria are presented

in Table 10-19-4. The HQs will be further discussed ecological risk section (Section 10.19.4).

10-19-2

Table 10-19-1
Phase IIA Detected Concentrations in Wetland 56 Sediments

Parameter	Frequency of Detection	Range of Detected Concentrations	Average Detected Concentration
Inorganics (mg/kg)			
Aluminum (Al)	1/1	2560	2560
Arsenic (As)	1/1	0.33	0.33
Barium (Ba)	% 1/1 .	3.3	3,3
Calcium (Ca)	1/1	682	682
Chromium (Cr)	1/1]	3.1	3.1
Cobalt (Co)	1/1	0.3	0.3
Copper (Cu)	1/1	3,1	3.1 (1.4) which
Iron (Fe)	1/1	1210	1210
Lead (Pb)	1/1	9.4	9.4
Magnesium (Mg)	1/1	82.1	82.1
Manganese (Mn)	1/1	3.2	3.2
Nickel (Ni)	1/1	1.4	1.4
Potassium (K)	1/1	52	52
Selenium (Se)	1/1	2.4	2.4
Vanadium (V)	1/1	4	4
Zinc (Zn)	1/1	5.9	5.9
Pesticides and PCBs (µg/kg)			
4,4'-DDD	1/1	53	53
4,4'-DDE	1/1	5.3	5.3
4,4'-DDT	1/1	2.8	2.8
Endrín	1/1	0.39	0.39
gamma-BHC (Lindane)	1/1	0.4	0:4
SVOCs (μg/kg)			
Pyrene	1/1	36	36
bis(2-Ethylhexyl)phthalate (BEHP)	1/1	51	51

Note:

All results are in micrograms per kilogram ($\mu g/kg$) or parts per billion (ppb), except for metals which are in milligrams per kilogram (mg/kg) or parts per million (ppm).

Table 10-19-2 Wetland 56 Phase IIA Sediment Concentrations Compared to Benchmark Levels

Sample Location	Parameter	Detected Concentration	Sediment Benchmark Value (SBV)	HQ	SBV Reference
041M56A101					
4,4'-DDD (UG	s/KG)	53 D	1.22	43.44	ь
4,4'-DDE (UG	i/KG)	5.3 DJ	2.07	2.56	ь
4,4'-DDT (UG	/KG)	2.8	1.19	2.35	b
Arsenic (MG/	KG)	0.33 J	7.24	0.05	a b
bis(2-Ethylhex	yi)phthalate (BEHP) (UG/KG)	51 J	182	0.28	b
Chromium (M	G/KG)	3.1	52.3	0.06	аb
Copper (MG/I	(G)	3.1	18.7	0.17	аb
Endrin (UG/K	G)	0.39 J	3.3	0.12	а
gamma-BHC ((Lindane) (UG/KG)	0.4 J	0.32	1.25	b
Lead (MG/KG	3)	9.4	30.2	0.31	аb
Nickel (MG/K	G)	1.4 J	15.9	0.09	аb
Pyrene (UG/k	(G)	36 J	153	0.24	ь
Zinc (MG/KG))	5.9	124	0.05	аb

Notes:

⁽a) USEPA Screening Concentration for Sediment - EPA SSVs (b) FDEP Sediment Quality Assessment Guidelines - FDEP SQAGs Some of the numbers in the table may vary because of rounding. Basewide levels (detailed in Section 6) for DDT and its metabolites Basewide level for 4,4'-DDE is 40 ppb. Basewide level for 4,4'-DDD is 50 ppb. Basewide level for 4,4'-DDT is 20 ppb.

Table 10-19-3
Detected Concentrations in Wetland 56 Surface Water

Parameter	Frequency of Detection	Range of Detected Concentrations	Average Detected Concentration
Inorganics (µg/L)			
Aluminum (Al)	1/1	596	596
Barium (Ba)	1/1	4.4	4.4
Calcium (Ca)	1/1	12700	12700
Iron (Fe)	1/1	682	682
Magnesium (Mg)	1/1	40 (1710)	1710
Manganese (Mn)	1/1	11.2	11.2
Potassium (K)	1/1	676	676
Sodium (Na)	1/1	9730	9730

Note:

All results are in micrograms per liter $(\mu g/L)$ or parts per billion (ppb).

10.19.3 Fate and Transport

The pathways evaluated for the wetland specific fate and transport correlate to those identified in the conceptual model presented in Section 6. These pathways include: surface water/sediment transport into the wetland; groundwater discharge into the wetland; sediment/surface water transport within the wetland; sediment leaching to surface water within the wetland; and surface water/sediment transport from the wetland. Sediment transport and storm water runoff data are lacking: thus many evaluations are qualitative in nature. The method of evaluating leaching from sediment to surface water was presented in Section 9. Table 10-19-5 presents those contaminants present in sediment above SSVs and their calculated SSLs. Contaminants present in surface water above appropriate standards were previously presented in Table 10-19-4.

Transport into the Wetland

Surface Water/Sediment Pathway

Sources — Based on landform and watershed analysis, the following sources can contribute contamination to Wetland 56 through this pathway:

Table 10-19-4 (1)

Wetland 56

Phase IIA Surface Water Concentrations Compared to Water Quality Criteria

Sample Location	Parameter	UOM	Detected Concentration	Water Quality Criteria	HQ	Criteria Reference
041W56A101	Freshwater	***************************************				
Aluminum		UG/L	596.0	87.0	6.85057	а
Iron		UG/L	682.0	1,000.0	0.682	аb

Notes:

(a) USEPA Water Quality Criteria (1995)
(b) FDEP Class III Water Quality Criteria (1996)
Some of the numbers in the table may vary because of rounding.

Table 10-19-5
Calculated Sediment Screening Values for Wetland 56

Parameter	USEPA or FDEP Surface Water Standard	Kd	SSL DF = 100	Maximum Concentration Detected	Leaching Potential DF = 100
Organics	(ppb)		(ppb)	(ppb)	
4,4'-DDE	10.5 *	5.68E+04	5.96E+07	5.3	NO
4,4'-DDD	0.0064 *	1.27E+04	8.13E+03	53	NO
4,4'-DDT	0.001 a.b	3.34E+04	3,340	2.8	NO
Gamma BHC	0.08 a, b	1.36E+01	109.9	0.4	NO_

Notes:

Kd for organics calculated using foc of 0.0126 (numerical average of all sediment samples).

Kds are from: USEPA, 1996b (first preference); Superfund Chemical Data Matrix (USEPA, 1996c) (second preference); Texas Risk Reduction Program Concept Document 2, Volume 1, Appendix VII, 1996 (third preference); TERRA Model, Oak Ridge National Laboratory, 1984 (fourth preference — primary reference for inorganics).

Kd = normalized partitioning coefficient.

SSL = sediment screening level.

DF = dilution factor.

USEPA Freshwater Surface Water Chronic Screening Value (1995a).

b = FDEP Class III Water Quality Criteria (1996).

• Storm water runoff and sediment entrainment from Site 39 and the southern portions of Forrest Sherman Field. Additionally, this wetland is directly connected to Wetland 52E and to Pensacola Bay, thus some back flushing of surface water during high tides and storm surge events can be expected.

The presence of sediment contaminants above SSVs (see Table 10-19-4) validates the sediment transport pathway, and by inference the surface water pathway.

Groundwater Discharge Pathway

Sources — Based on potentiometric analysis, the following sources can contribute contamination to Wetland 56 through this pathway:

• Discharge from Site 39. However, groundwater at this site has not been shown to be contaminated, thus the pathway is considered invalid.

Transport within the Wetland

Surface Water/Sediment Migration Pathway

The configuration of the wetland, along with landform analysis, indicates that surface water and

sediment movement is towards Pensacola Bay. However, tidal fluctuations can create a

temporary landward movement. Therefore, both sediment and surface water contaminants can

remain mobile.

Sediment Leaching to Surface Water Pathway

Four pesticides exceeded their SSV (see Table 10-19-4). None of these pesticides exceeded the

calculated SSL and corresponding detections of them were not noted in the surface water sample.

Additionally, only aluminum was above its water quality criteria in surface water. Therefore, this

pathway is considered invalid, and sediment contamination is not expected to partition to

surface water.

Transport from the Wetland

Surface water and sediment movement can be expected to occur from the wetland into

Pensacola Bay, therefore contamination will be mobile and not remain within the wetland.

10.19.4 Ecological Risk Assessment

HQs for Wetland 56 sediment samples are presented in Table 10-19-2. Phase IIA sediment sample

results compared to the appropriate sediment benchmark levels revealed HQs above 1 for

4,4'-DDD (43.44), 4,4'-DDE (2.56), and 4,4'-DDT (2.35), respectively. As noted in the

nature and extent discussion, the concentration of 4,4'-DDD in the single Wetland 56 sediment

sample was slightly above the basewide level. The concentrations for 4,4-DDE and 4,4'-DDT

were below basewide levels. The HQ was also greater than 1 for gamma-BHC (1.25). Phase IIA

surface water results revealed a HQ greater than 1 for aluminum (6.85) at Wetland 56. HQs

greater than 1 indicate the potential for excess risk.

10-19-10

Wetland 56 is a blue-coded wetland (E/A&H, 1995a). Since contaminants detected in the

blue-coded wetlands were isolated, generally below benchmark or reference values, and did not

appear to be related to IR sites, the blue-coded wetlands were not studied further in Phase IIB/III.

Color-codes, groupings and rationale for classification are described in Section 7.

10.19.5 Human Health Risk Assessment

10.19.5.1 Samples Included

Sediment

041M56A101

Surface Water

041W56A101

10.19.5.2 Current and Future Land Use

Wetland 56 is at the upstream end of Sherman's Inlet, a small estuarine inlet through which

surface and storm water from the Wetland 52 complex drains into the Intercoastal Waterway of

Pensacola Bay. The Oak Grove Campground abuts the wetland to the east, and

Radford Boulevard is directly north. A jogging trail parallels Radford Blvd, just north of this

wetland. The area may be used by Navy and civilian personnel who happen to be in the area for

work related duties or children who find the area attractive. No routine grounds maintenance

activities have been reported in this area, therefore, the maintenance worker scenario was not

included in this risk assessment. There is no recreational or fishing use.

10.19.5.3 Fish Tissue COPCs

No fish tissue data were available for this wetland, and this exposure pathway would likely be

incomplete; therefore, no COPCs were identified.

10-19-11

10.19.5.4 Sediment COPCs

As shown in Table 10-19-6, no sediment COPCs were identified.

10.19.5.5 Surface Water COPCs

As shown in Table 10-19-7, no surface water COPCs were identified.

10.19.5.6 Risk Summary

No COPCs were identified following the screening comparisons described in Section 8 and presented above. As a result, no formal human health risk assessment was conducted for Wetland 56.

10.19.6 Conclusions and Recommendations

Wetland 56 was classified as a blue-coded wetland because contaminants were mostly isolated, and did not appear to be related to an IR site. Since no COPCs were identified for Wetland 56, no formal HHRA was conducted.

Because the contamination cannot be tied to an IR site, Wetland 56 was referred to NAS Pensacola as documented in the September 18, 1996 Eco Meeting Minutes, and the September 19 and 20, 1996 Partnering Team Minutes. However based on comparison to the basewide DDT, DDD and DDE concentrations, no further action is proposed for this wetland.

TABLE 10-19-5 OCCURRENCE, DISTRIBUTION, AND SELECTION OF CHEMICALS OF POTENTIAL CONCERN NAS PENSACOLA SITE 41

Scenario Timeframe: Current and Future Medium: Sediment Exposure Medium: Sediment Exposure Point: Welland 56 Sediment

		(1)		(1)						(2)	(3)	(4)		(5)		(8)
CAS Number	Chemical	Minimum Concentration	Minimum Qualifier	Maximum Concentration	Maximum Qualifier	Units	Location of Maximum Concentration	Detection Frequency	MEAN	Concentration Used for Screening	Background Value	Adolescent Site Trespasser PRG	Commercial Maintenance Worker PRG	Potentia ARAR/TB Source	COPC Flag	Rationale for Contaminant Delection or Selection
72548	4,4'-DDD	53.0000	D	53.0000	D	UG/KG	041M56A101	1 / 1	53.00	53	N/A	92000	57000	C N/A	NO	BSL.
72559	4,4'-DDE	5.3000	DJ	5,3000	DJ	UG/KG	041M56A101	1 / 1	5.30	5.3	N/A	65000	41000	C N/A	NO	BSL
50293	4,4'-DDT	2.8000		2.8000		UG/KG	041M56A101	1 / 1	2.80	2.8	N/A	65000	41000	C N/A	NO	BSL
	Aluminum (Al)	2560,0000		2560,0000		MG/KG	041M56A101	1 / 1	2560,00	2560	N/A	320000	490000	N/A	NO	BSL
7440382	Arsenic (As)	0.3300	J	0.3300	J	MG/KG	041M56A101	1 / 1	0.33	0.33	N/A	15	9.2	C N/A	NO	BSL
7440393	Barium (Ba)	3,3000	J	3.3000	J	MG/KG	041M56A101	1 / 1	3.30	3.3	N/A	22000	34000	N N/A	NO	BSL
117817	bis(2-Ethylhexyl)phthalate (BEHP)	51,0000	J	51.0000	J	UG/KG	041M56A101	1 / 1	51.00	51	N/A	1600000	980000	C N/A	NO	BSL
7440702	Calcium (Ca)	682,0000		682.0000		MG/KG	041M56A101	1 / 1	682.00	682	N/A	N/A	N/A	N/A	NO	EN
7440473	Chromium (Cr)	3.1000		3,1000		MG/KG	041M56A101	1 / 1	3,10	3.1	N/A	1600	2500	N N/A	NO	BSL
7440484	Cobalt (Co)	0.3000	J	0.3000	J	MG/KG	041M56A1D1	1 / 1	0.30	0.3	N/A	19000	29000	N/A	NO	BSL
7440508	Copper (Cu)	3.1000		3,1000		MG/KG	041M56A101	1 / 1	3,10	3.1	N/A	13000	20000	N N/A	NO	BSL
72208	Endrin	0.3900	J	0.3900	J	UG/KG	041M56A101	1 / 1	0.39	0.39	N/A	95000	150000	N N/A	NO	BSL
58899	gamma-BHC (Lindane)	0.4000	J	0,4000	J	UG/KG	041M56A101	1 / 1	0.40	0.4	N/A	17000	11000	C N/A	NO	BSL
7439896	iron (Fe)	1210,0000		1210.0000		MG/KG	041M56A101	1 / 1	1210.00	1210	N/A	N/A	N/A	N/A	NO	EN
7439921	Lead (Pb)	9,4000		9.4000		MG/KG	041M56A101	1 / 1	9.40	9.4	N/A	400	400	OSWE	NO	BSL
7439954	Magnesium (Mg)	82,1000	J	82,1000	J	MG/KG	041M56A101	1 / 1	82.10	82.1	N/A	N/A	N/A	N/A	NO	EN
7439965	Manganese (Mn)	3.2000		3.2000	ļ	MG/KG	041M56A101	1 / 1	3,20	3.2	N/A	15000	23000	N/A	NO	BSL
7440020	Nickel (Ni)	1.4000	J	1.4000	J	MG/KG	041M56A101	1 / 1	1.40	1.4	N/A	6300	9800	N N/A	NO	BSL
7440097	Potassium (K)	52,0000	J	52.0000	J	MG/KG	041M56A101	1 / 1	52.00	52	N/A	N/A	NA	N/A	NO	EN
129000	Pyrene	36.0000	J	36.0000	J	UG/KG	041M56A101	1 / 1	36.00	36	N/A	9500000	15000000	N/A	NO	BSL
7782492	Selenium (Se)	2.4000	J	2.4000	J	MG/KG	041M56A101	1 / 1	2.40	2.4	N/A	1600	2500	N N/A	NO	BSL
7440622	Vanadium (V)	4.0000		4.0000		MG/KG	041M56A101	1 / 1	4.00	4	N/A	2200	3400	N N/A	NO	BSL
7440666	Zinc (Zn)	5,9000		5.9000		MG/KG	041M56A101	1 / 1	5.90	5.9	N/A	95000	150000	N N/A	NO	BSL

- (1) Minimum/maximum detected concentration
- (2) Maximum concentration used as screening value.
- (3) No background values were developed for this media.
- (4) PRGs for site trespasser scenario calculated based on equations and parameters presented in Section 8 of this report.
- (5) PRGs for commercial maintenance worker scenario calculated based on equations and parameters presented in Section 8 of this report.

(6) Rationale Codes Selection Reason:

Above Screening Levels (ASL)

Deletion Reason: Below Screening Levels (BSL)

Background Levels (BKG) No Toxicity Information (NTX) Essential Nutrient (EN)

Definitions:

N/A = Not Applicable

NAV = Not Avallable

COPC = Chemical of Potential Concern

ARAR/TBC = Applicable or Releveant and Appropriate Requirement/ To Be Considered

OSWER = Office of Solid Waste and Emergency Response

J = Estimated Value

C = Carcínogenic

N Noncarcinogenic

TABLE 10-19-7 OCCURRENCE, DISTRIBUTION, AND SELECTION OF CHEMICALS OF POTENTIAL CONCERN NAS PENSACOLA SITE 41

Scenario Timeframe: Current and Future Medium: Surface Water Exposure Medium: Surface Water Exposure Point: Wetland 58 Surface Water

CAS Number	Chemical	(1) Minimum Concentration	Minimum Qualifier	(1) Maximum Concentration	Maximum Qualifier	Units	Location of Maximum Concentration	Detection Frequency	Range of Detection Limits	Mean	(2) Concentration Used for Screening	Background Value	(3) Adolescent Site Trespasser PRG	Commercial Maintenance Worker PRG	Potential ARAR/TBC Source	COPC Flag	(5) Rationale for Contaminant Delection or Selection
7429905	Aluminum (Al)	596.00		596.00		UG/L	041W56A101	1 / 1	NAV	596.00	596.00	N/A	120000	250000 N	N/A	NO	BSL
7440393	Barium (Ba)	4.40	J	4.40	ارا	UG/L	041W56A101	1 / 1	NAV	4.40	4.40	N/A	8300	18000 N	N/A	NO	BSL
7440702	Calcium (Ca)	12700.00		12700.00	1 1	UG/L	041W56A101	1 / 1	NAV	12700.00	12700.00	N/A	N/A	N/A	N/A	NO	EN :
7439896	iron (Fe)	682.00		682.00		UG/L	041W56A101	1 / 1	NAV	682.00	682.00	N/A	N/A	N/A	N/A	NO	EN
7439954	Magnesium (Mg)	1710.00	J	1710.00	J	UG/L	041W56A101	1 / 1	NAV	1710.00	1710.00	N/A	N/A	N/A	N/A	NO	EN
7438965	Manganese (Mn)	11.20	J	11.20	J	UG/L	041W56A101	1 / 1	NAV	11.20	11,20	N/A	2400	5000 N	N/A	NO ·	BSL
7440097	Potassium (K)	676.00	J	676.00	J	UG/L	041W56A101	1 / 1	NAV	676.00	676.00	N/A	N/A	N/A	N/A	NO	EN
7440235	Sodium (Na)	9730,00		9730.00		UGAL	041W56A101	1 / 1	NAV	9730.00	9730.00	N/A	N/A	N/A	N/A	NO	EN

(1) Minimum/maximum detected concentration

(2) Maximum concentration used as screening value.

(4) PRGs for alte trespessor scenario calculated based on equations and parameters presented in Section 8 of this report.

(5) PRGs for commercial maintenance worker scansolo calculated based on equations and parameters presented in Saction 8 of this report

(6) Retionale Codes

Selection Reason: Above Screening Levels (ASL)

Deletion Reason; Below Screening Levals (BSL)

Beckground Levels (BKG) No Toxicity Information (NTX) Essential Nutrient (EN)

Definitions: N/A = Not Applicable

NAV = Not Available

COPC = Chemical of Potential Concern

ARAR/TBC = Applicable or Releveent and Appropriate Requirement/ To Be Considered

J = Estimated Value

C = Carcinogenic

N = Nancercinogenic

10.20 WETLAND 57

10.20.1 Site Description

Wetland 57 is north of the Oak Grove Campground (Site 39), and due south of Forrest Sherman Field. Parsons and Pruitt described this area as a palustrine forested emergent system, containing slash pine (*Pinus elliotti*) and sweet bay magnolia (*Magnolia virginiana*) (USEPA, 1991). This area serves as a minor drainage pathway for the surrounding area and may actually be considered a drainage ditch.

No IR sites are in the immediate vicinity of Wetland 57. The closest site is Site 39 (Oak Grove Campground Site), on the western side of the Oak Grove Campground. An IRA

removed contaminated soil at this site in 1994, and the site was approved for no further action.

10.20.2 Nature and Extent

The methods for evaluating nature and extent are presented in Section 6. Figure 10-20-1 denotes

the Phase IIA Wetland 57 sampling location.

Sediment

Eighteen metals were detected in the single Wetland 57 sediment sample. Mercury (0.14 ppm)

exceeded its sediment benchmark level (0.13 ppm). Six pesticides were detected in Wetland 57

sediment, including 4,4'-DDT and its metabolites, aldrin, and beta/gamma-BHC. 4,4'-DDT and

its metabolites exceeded their benchmark levels, but were below their basewide levels. The

basewide levels are described in Section 6. Gamma-BHC (0.4 ppb) exceeded its

sediment benchmark level (0.32 ppb). Aroclor-1260 was detected below its benchmark level.

Three SVOCs, benzo(b)fluoranthene, fluoranthene, and pyrene, were detected below their

benchmark levels. Acetone, a common laboratory contaminant, was also detected at Wetland 57.

10-20-1

Table 10-20-1 shows the Wetland 57 Phase IIA sediment sample results (frequency of detection,

range of detected concentrations, and average detected concentration). Table 10-20-2, which

presents only the parameters with benchmark levels, compares detected concentrations at each

sample location to sediment benchmark levels, and lists calculated HQs for each parameter. The

HQs will be further discussed in the ecological risk section (Section 10.20.4).

Surface Water

Twelve metals were detected in the single Wetland 57 surface water sample.

Aluminum (7,390 ppb), iron (7,360 ppb) and lead (16.9 ppb) exceeded surface water quality

criteria. Methylene chloride, a common laboratory contaminant, was also detected below its

surface water quality criteria.

Table 10-20-3 shows the Wetland 57 Phase IIA surface water sample results (frequency of

detection, range of detected concentrations, and average detected concentration). Table 10-20-4,

which presents only the parameters with quality criteria, compares detected concentrations at each

sample location to surface water quality criteria and lists calculated HQs for each parameter. The

HQs will be further discussed ecological risk section (Section 10.20.4).

10.20.3 Fate and Transport

The pathways evaluated for the wetland specific fate and transport correlate to those identified in

the conceptual model presented in Section 9. These pathways include: surface water/sediment

transport into the wetland; groundwater discharge into the wetland; sediment/surface water

transport within the wetland; sediment leaching to surface water within the wetland; and

surface water/sediment transport from the wetland. Sediment transport and storm water runoff

data are lacking, thus the evaluation is qualitative in nature. The method of evaluating leaching

from sediment to surface water was presented in Section 9. Table 10-20-5 presents those

contaminants present in sediment above SSVs and their calculated SSLs. Contaminants present

in surface water above appropriate standards were presented in Table 10-20-4.

10-20-2

Table 10-20-1
Phase IIA Detected Concentrations in Wetland 57 Sediments

Parameter	Frequency of Detection	Range of Detected Concentrations	Average Detected Concentration
Inorganics (mg/kg)			
Aluminum (Al)	1/1	5520	5520
Arsenic (As)	1/1	1.6	1.6
Barium (Ba)	1/1	11.3 _{1.4}	* 11.3
Calcium (Ca)	1/1	2 7 20	272 0
Chromium (Cr)	1/1	4.8	4.8
Cobalt (Co)	1/1	0.45	0.45
Copper (Cu)	1/1	4.9	4.9
Iron (Fe)	1/1	3790	3790
Lead (Pb)	1/1	17.7	17.7
Magnesium (Mg)	1/1	214	214
Manganese (Mn)	1/1	15.8	15.8
Mercury (Hg)	1/1	0.14	0.14
Nickel (Ni)	1/1	2	2
Potassium (K)	1/1	117	117
Selenium (Se)	1/1	1,6	1.6
Sodium (Na)	1/1	48.8	48.8
Vanadium (V)	1/1	9.2	9.2
Zinc (Zn)	1/1	14.7	14.7
Pesticides and PCBs (µg/kg)			
4,4'-DDD	1/1	3.3	3.3
4,4'-DDE	1/1	7.2	7.2
4,4'-DDT	1/1	1.2	1.2
Aldrin	1/1	0.2	0.2
Aroclor-1260	1/1	3.7	3.7
beta-BHC	1/1	0.19	0.19
gamma-BHC (Lindane)	1/1	0.4	0.4

Section 10: Site-Specific Evaluations

August 31, 2000

Table 10-20-1
Phase IIA Detected Concentrations in Wetland 57 Sediments

Parameter	Frequency of Detection	Range of Detected Concentrations	Average Detected Concentration
SVOCs (μg/kg)			
Benzo(b)fluoranthene	1/1	41	41
Fluoranthene	1/1	68	68
Pyrene	1/1	72	72
VOCs (μg/kg)			
Acetone	1/1	49	49

Nate:

All results are in micrograms per kilogram (μ g/kg) or parts per billion (ppb), except for metals which are in milligrams per kilogram (mg/kg) or parts per million (ppm).

Transport within the Wetland

Surface Water/Sediment Migration Pathway

The configuration of the wetland, along with landform analysis, indicates that the wetland is self-enclosed, and that surface water and sediment movement would be influenced primarily by storm water influx.

Sediment Leaching to Surface Water Pathway

Four pesticides and one inorganic exceeded their benchmark levels (see Table 10-20-5), but only one — mercury — exceeded its SSL. Mercury was not detected in the corresponding surface water, thus the potential for leaching is low even though the pathway is considered valid. Three inorganics were present in surface water above standards, but they are likely attributable to the surface water/groundwater migration pathway. Because one parameter exceeded its SSL, the sediment leaching pathway is valid, although the lack of this parameter in surface water suggests a low potential for partitioning.

Table 10-20-2
Wetland 57
Phase IIA Sediment Concentrations Compared to Benchmark Levels

Sample Location	Parameter	Detected Concentration	Sediment Benchmark Value (SBV)	HQ	SBV Reference
041M570101					
4,4'-DDD (UG/KG	3)	3.3 J	1.22	2.70	ь
4,4'-DDE (UG/KG	; 6)	7.2 J	2.07	3.48	ь
4,4'-DDT (UG/KG	i)	1.2 J	1.19	1.01	b
Aroclor-1260 (UG	G/KG)	3.7	21.6	0.17	b
Arsenic (MG/KG)		1.6	7.24	0.22	аb
Chromium (MG/K	(G)	4.8 J	52.3	0.09	аb
Copper (MG/KG)		4.9	18.7	0.26	аb
Fluoranthene (UC	G/KG)	68 J	113	0.60	b
gamma-BHC (Line	dane) (UG/KG)	0.4 J	0.32	1.25	b
Lead (MG/KG)		17.7	30.2	0.59	аb
Mercury (MG/KG)	0.14 J	0.13	1.08	аb
Nickel (MG/KG)		2 J	15.9	0.13	аb
Pyrene (UG/KG)		72	153	0.47	b
Zinc (MG/KG)		14.7	124	0.12	аb

Notes

Basewide level for 4,4'-DDT is 30 ppb.

⁽a) USEPA Screening Concentration for Sediment - EPA SSVs

⁽b) FDEP Sediment Quality Assessment Guidelines - FDEP SQAGs Some of the numbers in the table may vary because of rounding. Basewide levels (detailed in Section 6) for DDT and its metabolites Basewide level for 4,4'-DDE is 40 ppb.

Basewide level for 4,4'-DDD is 50 ppb.

Table 10-20-3
Phase IIA Detected Concentrations in Wetland 57 Surface Water

Parameter	Frequency of Detection	Range of Detected Concentrations	Average Detected Concentration
Inorganics (μg/L)			
Aluminum (Al)	 1/1	7390	7390
Barium (Ba)	1/1	25.3	25.3
Calcium (Ca)	1/1	19400	19400
Copper (Cu)	1/1	7.2	7.2
Iron (Fe)	1/1	7360	7360
Lead (Pb)	1/1	16.9	16.9
Magnesium (Mg)	1/1	1570	1570
Manganese (Mn)	1/1	134	134
Potassium (K)	1/1	1040	1040
Sodium (Na)	1/1	6470	6470
Vanadium (V)	 1/1	12.2	12.2
Zinc (Zn)	1/1	17.5	17.5
VOCs (μg/L)			
Methylene chloride	1/1	150	150

Note:

All results are in micrograms per liter (μ g/L) or parts per billion (ppb).

Transport from the Wetland

Due to the self-enclosed nature of the wetland, surface water and sediment movement will be confined to the wetland and contamination can be expected to remain within the wetland.

Transport into the Wetland

Surface Water/Sediment Pathway

Based on landform and watershed analysis, the following sources would contribute contamination to Wetland 57 through this pathway:

• Local runoff from Radford Boulevard paralleling the southern boundary of the base.

Table 10-20-4 (1) Wetland 57 Phase IIA Surface Water Concentrations Compared to Water Quality Criteria

Sample Location	Parameter	UOM	Detected Concentration	Water Quality Criteria	HQ	Criteria Reference
041W570101	Freshwater					
Aluminum		UG/L	7,390.0	87.0	84.94253	а
Copper		UG/L	7.2	7.8	0.92308	a b
iron		UG/L	7,360.0	1,000.0	7.36	аb
Lead		UG/L	16.9	1.71	9.88304	аb
Zinc		UG/L	17.5	70.2	0.24929	аb

Notes:

(a) USEPA Water Quality Criteria (1995)
(b) FDEP Class III Water Quality Criteria (1996)
Some of the numbers in the table may vary because of rounding.

Table 10-20-5
Calculated Sediment Screening Values for Wetland 5

Parameter	USEPA or FDEP Surface Water Standard	Kd	SSL DF = 100	Maximum Concentration Detected	Leaching Potential DF = 100
Inorganics	(ppb)		(ppm)	(ppm)	111000
Mercury	0.012 ^{a, b}	5.2E+01	0.0624	0.14	YES
Organics	(ppb)		(ppb)	(ppb)	
4,4'-DDE	10.5 *	1.16E+05	1.22E+08	7.2	NO
4,4'-DDD	0.0064 a	2.6E+04	1.69E+04	3.3	NO
4,4'-DDT	0.001 A b	6.85E+04	6.85E+03	1.2	NO A
Gamma BHC	0.08 a.b	27.88	2.24E+02	0.4	NO

Notes:

Kd for organics calculated using foc of 0.026 (numerical average of all sediment samples).

Kds are from: USEPA, 1996b (first preference); Superfund Chemical Data Matrix (USEPA, 1996c) (second preference); Texas Risk Reduction Program Concept Document 2, Volume 1, Appendix VII, 1996 (third preference); TERRA Model, Oak Ridge National Laboratory, 1984 (fourth preference — primary reference for inorganics).

Kd = normalized partitioning coefficient.

SSL = sediment screening level.

DF = dilution factor.

USEPA Freshwater Surface Water Chronic Screening Value (1995a).

b = FDEP Class III Water Quality Criteria (1996).

Groundwater Discharge Pathway

Based on potentiometric and landform analysis there are no known sources that would contribute contamination to Wetland 57 through this pathway. Therefore this pathway is considered invalid.

10.20.4 Ecological Risk Assessment

HQs for Wetland 57 sediment samples are presented in Table 10-20-2. Phase IIA sediment results compared to the appropriate sediment benchmark levels revealed a HQ above 1 for mercury (1.08). Sediment sample results compared to the appropriate sediment benchmark levels revealed HQs above 1 for 4,4'-DDD (2.7), 4,4'-DDE (3.48), and 4,4'-DDT (1.01), respectively. However, as noted in the nature and extent discussion, the concentrations of 4,4'-DDT and its metabolites were below basewide levels. The HQ was also greater than 1 for gamma-BHC (1.25).

Phase IIA surface water results revealed HQs greater than 1 for aluminum (84.94), iron (7.36),

and lead (9.88) at Wetland 57. HQs greater than 1 indicate a potential for excess risk.

Wetland 57 is a blue-coded wetland (E/A&H, 1995a). Since contaminants detected in the

blue-coded wetlands were isolated, generally below benchmark, basewide, or reference values,

and did not appear to be related to IR sites, the blue-coded wetlands were not studied further in

Phase IIB/III. Color-codes, groupings and rationale for classification are described in Section 7.

10.20.5 Human Health Risk Assessment

10.20.5.1 Samples Included

Sediment

041M570101

Surface Water

041W570101

10.20.5.2 Current and Future Land Use

Wetland 57 is north of the Oak Grove Campground, and serves as a drainage conveyance for the

wooded buffer between the campground and Radford Blvd., which passes the campground to the

north. Though a jogging trail passes by adjacent to this wetland, it lies in a thickly vegetated area

which would preclude any person from easily trespassing into the area. No routine

grounds maintenance activities appear to be performed here, and there is no recreational or fishing

use.

10.20.5.3 Fish COPCs Identified

No fish tissue data were available for this wetland, and this exposure pathway would likely be

incomplete; therefore, no COPCs were identified.

10-20-11

10.20.5.4 Sediment COPCs Identified

As shown in Table 10-20-6, no sediment COPCs were identified.

10.20.5.5 Surface Water COPCs Identified

As shown in Table 10-20-7, the following chemical was identified as a COPC:

Lead

10.20.5.6 Risk Characterization

Lead Risk Characterization

A conservative exposure scenario was developed to assess the significance of surface water concentrations of lead at Wetland 57. This scenario involves a child (age 6 to 7) who accompanies

an older sibling to the wetland one day a week for a year. Exposure to Wetland 57 surface water

was addressed as an additional exposure relative to typical exposures encountered at the

child's home. This additional exposure was presented as an "alternate" source within the

constructs of the Lead Model. The standard default assumptions in the Lead Model were kept

to simulate background lead exposures. This was done to provide a conservative estimate of

daily intake from sources unrelated to Wetland 57.

The assumption was made that this child would incidentally ingest 0.05 liters of surface water

during each visit. Within the Lead Model, an alternate source was entered to account for this

exposure as previously discussed. The bioavailability of lead ingested from the alternate source

(Wetland 57 surface water) was equal to that of drinking water lead ingested from the

standard residential default source. Assuming incidental ingestion of 0.05 liters of surface water

once per week with a lead concentration of 16.9 μ g/L, the annual alternate source exposure was

estimated to be 0.12 μ g lead/day. Table 10-20-8 presents the lead model output for a child 6 to

7 years old under these exposure conditions.

10-20-12

TABLE 10-20-6 OCCURRENCE, DISTRIBUTION, AND SELECTION OF CHEMICALS OF POTENTIAL CONCERN NAS PENSACOLA SITE 41

Scenario Timeframe: Current and Future Medium: Sediment Exposure Medium: Sediment Exposure Point: Welland 57 Sediment

	Chemical	Minimum Concentration	Minimum Qualifier	(1) Maximum Concentration	Maximum Qualifier	Units	Location of Maximum Concentration	Deter Frequ		Range of Detection Limits	MEAN	(2) Concentration Used for Screening	(3) Background Value	(4) Adolescent Site Trespasser PRG	Residential Soil RBC	(5)	Potential ARAR/TBC Source	COPC Flag	Rational Contam Dalectic
	4,4'-DDD	3.3000	J	3.3000	J	UG/KG	041M570101	1 /	1	NAV	3.3	3.3	N/A	92000	2700	С	N/A	NO	BS
72559	4,4'-DDE	7.2000	J	7.2000	J	UG/KG	041M570101	1 /	1	NAV	7.2	7.2	N/A	65000	1900	С	N/A	NO	BS
50293	4,4'-DDT	1,2000	J	1.2000	J	UG/KG	041M570101	1 /	1	NAV	1.2	1.2	N/A	65000	1900	С	N/A	NO	B:
	Acetone	49,0000		49.0000		UG/KG	041M570101	1 /	1	NAV	49	49	N/A	32000000	780000	N	N/A	NO	B
	Aldrin	0.2000	J	0.2000	J	UG/KG	041M570101	1 /	1	NAV	0.2	0.2	N/A	1300	38	С	N/A	NO	В
	Aluminum (AI)	5520,0000	1	5520.0000		MG/KG	041M570101	1 /	1	NAV	5520	5520	N/A	320000	7800	N	N/A	NO	В
	Aroclor-1260	3.7000	!	3.7000		UG/KG	041M570101	1 /	1	NAV	3.7	3.7	N/A	11000	320	С	N/A	NO	В
7440382	Arsenic (As)	1.5000		1.6000		MG/KG	041M570101	1 /	1	NAV	1.6	1.6	N/A	15	0.43	c	N/A	NO	В
7440393	Barium (Ba)	11.3000	J	11,3000	J	MG/KG	041M570101	1 /	1	NAV	11.3	11.3	N/A	22000	550	N	N/A	NO	В
205992	Benzo(b)fluoranthene	41.0000	J	41.0000	J	UG/KG	041M570101	1 /	1	NAV	41	41	N/A	30000	880	С	N/A	NO	В
319857 [beta-BHC	0.1900	J	0.1900	J	UG/KG	041M570101	1 /	1	NAV	0.19	0.19	N/A	12000	350	С	N/A	NO	В
440702	Calcium (Ca)	2720.0000		2720.0000		MG/KG	041M570101	1 /	1	NAV	2720	2720	N/A	N/A	N/A		N/A	NO	1 6
440473	Chromium (Cr)	4.8000	J	4.8000	J	MG/KG	041M570101	1 /	1	NAV	4.8	4.8	N/A	1600	23	N.	N/A	NO	В
7440484	Cobalt (Co)	0.4500	J	0.4500	J	MG/KG	041M570101	1 /	1	NAV	0.45	0.45	N/A	19000	470	N	N/A	NO	В
440508	Copper (Cu)	4.9000	İ	4.9000		MG/KG	041M570101	1 1	1	NAV	4.9	4.9	N/A	13000	310	N	N/A	NO	В
206440	Fluoranthene	68.0000	J	68,0000	J	UG/KG	041M570101	1 /	1	NAV	68	68	N/A	13000000	310000	N	N/A	NO	В
58899	gamma-BHC (Lindane)	0.4000	J	0.4000	J	UG/KG	041M570101	1 /	1	NAV	0.4	0.4	N/A	17000	490	C	N/A	NO	B
7 4398 96	Iron (Fe)	3790,0000		3790.0000		MG/KG	041M570101	1 /	1	NAV	3790	3790	N/A	N/A	N/A	_	N/A	NO	6
7439921	Lead (Pb)	17,7000	İ	17,7000		MG/KG	041M570101	1 /	. 1	NAV	17.7	17.7	N/A	400	400		OSWER	NO	B
	Magnesium (Mg)	214.0000	J	214,0000	J	MG/KG	041M570101	1 i /	· i	NAV	214	214	N/A	N/A	N/A		N/A	NO	E
7439965	Manganese (Mn)	15.8000		15.8000		MG/KG	041M570101	1 /	1	NAV	15.8	15.8	N/A	15000	1100	N	N/A	NO	B
7439976	Mercury (Hg)	0.1400	J	0.1400	J	MG/KG	041M570101	1 /	1	NAV	0.14	0.14	N/A	95	2.3	N	N/A	NO	B
7440020	Nickei (Ni)	2.0000	J	2.0000	J	MG/KG	041M570101	1 1	1	NAV	2	2	N/A	6300	160	N	N/A	NO	В
7440097	Potassium (K)	117,0000	ر	117,0000	Ĵ	MG/KG	041M570101	1 /	1	NAV	117	117	N/A	N/A	N/A		N/A	NO	1 6
129000	Pyrene	72,0000	l	72.0000	-	UG/KG	041M570101	1 1	1	NAV	72	72	N/A	9500000	230000	N	N/A	NO	В
7782492	Selenium (Se)	1.6000	1	1.6000		MG/KG	041M570101	1 1		NAV	1.6	1.6	N/A	1600	39	N	N/A	NO	В
	Sodium (Na)	48,8000	ر	48.8000	J	MG/KG	041M570101	1 7	' 1	NAV	48.8	48.8	N/A	N/A	N/A	.,	N/A	NO	
	Vanadium (V)	9.2000	•	9,2000	1	MG/KG	041M570101	li i	, i	NAV	9.2	9,2	N/A	2200	3400	N	N/A	NO	B
	Zinc (Zn)	14,7000		14 7000		MG/KG	041M570101	١, ,	1	NAV	14.7	14.7	N/A	95000	150000	N	N/A	NO	

TABLE 10-20-7 OCCURRENCE, DISTRIBUTION, AND SELECTION OF CHEMICALS OF POTENTIAL CONCERN NAS PENSACOLA SITE 41

Scenario Timeframe: Current and Future Medium: Surface Water Exposure Medium: Surface Water Exposure Point: Wetland 57 Surface Water

		(1)		(1)							(2)		(3)		(4)		(5)
CAS Number	Chemical	Minimum Concentration	Minimum Qualifier	Maximum Concentration	Maximum Qualifier	Unite	Location of Maximum Concentration	Detection Frequency	Range of Detection Limits	Mean	Concentration Used for Screening	Background Value	Adolescent Site Trespasser PRG	Tap Water RBC	Potentia ARAR/TE Source		Rationals for Contaminant Delection or Selection
7429905	Aluminum (Al)	7390.00	0	7390.00	0	UG/L	041W570101	1 / 1	NAV	7390.00	7390,00	N/A	120000	3700	N N/A	NO	BSL
7440393	Barium (Ba)	25.30	J	25.30	ا د	UG/L	041W570101	1 / 1	NAV	25.30	25.30	N/A	8300	260	N N/A	NO	BSL
7440702	Calcium (Ca)	19400.00	0	19400.00	0	UG/L	041W570101	1 / 1	NAV	19400.00	19400.00	N/A	N/A	N/A	N/A	NO	EN
7440508	Copper (Cu)	7.20	J	7.20	ı	UG/L	041W570101	1 / 1	NAV	7.20	7.20	N/A	4800	150	N N/A	NO	BSL
7439896	iron (Fa)	7360.00	0	7360 .00	0	UG/L	041W570101	1 / 1	NAV	7360.00	7360.00	N/A	N/A	N/A	N/A	NO	EN
7439921	Lead (Pb)	16,90	0	16,90	0	UG/L	041W570101	1 / 1	NAV	16.90	16.90	N/A	15	15	TTAL	YES	ASL
7439854	Magnesium (Mg)	1570.00	J	1570.00	J	UG/L	041W570101	1 / 1	NAV	1570.00	1570.00	N/A	N/A	N/A	N/A	NO	EN
7439965	Manganese (Mn)	134.00	0	134.00	0	UG/L	041W570101	1 / 1	NAV	134.00	134.00	N/A	2400	73	N N/A	NO	BSL
75092	Methylene chloride	150.00	D	150.00	ם	UG/L	041W570101	1 / 1	NAV	150.00	150,00	N/A	1000	4.1	C N/A	NO	BSL
7440097	Potassium (K)	1040.00	J	1040.00	J	UG/L	041W570101	1 / 1	NAV	1040.00	1040.00	N/A	N/A	N/A	N/A	NO	EN
7440235	Sodium (Na)	6470.00	0	6470.00	0	UG/L	041W570101	1 / 1	NAV	6470.00	6470.00	N/A	N/A	N/A	N/A	NO	EN
7440622	Vanadium (V)	12.20	J	12.20	J	UG/L	041W570101	1 / 1	NAV	12.20	12.20	N/A	830	26	N N/A	NO	BSL
7440666	Zinc (Zn)	17.50	J	17.50	j	UG/L	041W570101	1 / 1	NAV	17.50	17.50	N/A	36000	1100	N N/A	NO	BSL

(1) Minimum/maximum detected concentration

(2) Maximum concentration used as screening value.

(3) PRGs for adolescent site trespassor scenario calculated using equations and parameters presented in Section 8 of this report.

(4) Tap water RBCs presented in Region III Risk-Based Concentration Tables, (USEPA, 1998).

(5) Rationale Codes

Selection Reason: Above Screening Levels (ASL)

Deletion Reason: Below Screening Levels (BSL)

Background Levels (BKG) Essential Nutrient (EN) No Toxicity Information (NTX)

Definitions: N/A = Not Applicable

NAV = Not Available

COPC = Chemical of Potential Concern

ARAR/TBC = Applicable or Relevant and Appropriate Requirement/ To Be Considered

TTAL = Treatment technique action level

J = Estimated Value

C = Carcinogenic

N = Noncarcinogenie

Table 10-20-8 Lead Model (Version 0.99d) Inputs and Results NAS Pensacola, Wetland 57 Pensacola, Florida

LEAD MODEL Version 0.99d

AIR CONCENTRATION: 0.100 µg Pb/m3 DEFAULT

Indoor AIR Pb Conc: 30.0 percent of outdoor.

Other AIR Parameters:

Age	Time Outdoors (hr)	Vent. Rate (m3/day)	Lung Abs. (%)
0-1	1.0	2.0	32.0
1-2	2.0	3.0	32.0
2-3	3.0	5.0	32.0
3-4	4.0	5.0	32.0
4-5	4.0	5.0	32.0
5-6	4.0	7.0	32.0
 6-7	4.0	7.0	32.0

DIET: DEFAULT

DRINKING WATER Conc: $4.00~\mu g$ Pb/L DEFAULT

WATER Consumption: DEFAULT

SOIL & DUST:

Soil: constant conc. Dust: constant conc.

Age	Soil (µg Pb/g)	House Dust (μg Pb/g)
0-1	200.0	200.0
1-2	200.0	200.0
2-3	200.0	200.0
3-4	200.0	200.0
4-5	200.0	200.0
5-6	200.0	200.0
6-7	200.0	200.0

Additional Dust Sources: None DEFAULT

Alternative Source Intake: Wetland 57 surface water

6-7: 0.12 μg Pb/day

MATERNAL CONTRIBUTION: Infant Model Maternal Blood Conc: 2,50 µg Pb/dL

CALCULATED BLOOD Pb and Pb UPTAKES:

YEAR	Blood Level (μg/dL)	Total Uptake (μg/day)	Soil + Dust Uptake (µg/day)	Diet Uptake (μg/day)	Water Uptake (μg/day)	Alt, Source Uptake (μg/day)	Air Uptake (μg/day)
0.5-1:	4.1	7.60	4.68	2.54	0.37	0.00	0.02
1-2:	4.5	10.93	7.36	2.63	0.91	0.00	0.03
2-3:	4.2	11.44	7.44	2.98	0.96	0.00	0.06
3-4:	4.0	11.48	7.53	2.90	0.99	0.00	0.07
4-5:	3.4	9.65	5.69	2.85	1.04	0.00	0.07
5-6:	3.0	9.39	5.16	3.03	1.11	0.00	0.09
<u>6-7:</u>	2.7	9.53	4.89	3.36	1.13	0.06	0.09

Figure 10-20-2 shows the probability percentage of blood lead levels for the hypothetical child

receptor. Based on this model output, the geometric mean blood level is estimated to be

2.7 μ g/dL, and the probability of blood lead levels in excess of 10 μ g/dL is 0.25%. USEPA

generally considers media concentrations that result in probability percentage estimates of 5% or

less sufficiently protective of potential child receptors. As a result, surface water

lead concentrations at Wetland 57 would not require specific action under the hypothetical

exposure scenario.

10.20.5.7 Remedial Goal Options

No COCs were identified for Wetland 57, and as a result, no RGOs were calculated.

10.20.6 Conclusions and Recommendations

Wetland 57 is classified as a blue-coded wetland, where contaminants were mostly isolated,

generally below benchmark or reference values, and did not appear to be related to IR sites. The

blue-coded wetlands were not studied further in Phase IIB/III.

The HHRA identified no fish tissue or sediment COPCs. Lead was identified as a surface water

COPC. Under USEPA guidelines, surface water lead concentrations at Wetland 57 would not

require specific action under the hypothetical exposure scenario. Therefore, no COCs were

identified for Wetland 57 and no RGOs were calculated. Because no ecological or human health

risks are present at Wetland 57, no further action is recommended for this wetland.

10-20-16

Figure 10-20-2 Probability Plots for Blood Lead Levels Wetland 57

Final Remedial Investigation Report NAS Pensacola Site 41 Section 10: Site-Specific Evaluations August 31, 2000

This page intentionally left blank.

10.21 WETLAND 58

10.21.1 Site Description

Wetland 58 is near the shoreline of the intercostal waterway, southwest of Lighthouse Point and east of the Oak Grove Campground (Site 39). Parsons and Pruitt (USEPA, 1991) described this area as a palustrine shrub-scrub system with the dominant vegetation made up of titi (Cyrilla racemiflora) and buttonbush (Cephalanthus occidentalis).

Wetland 58 is adjacent to an isolated location of the Intercoastal Waterway at NAS Pensacola. It appears as a heavily vegetated interdunal swale, upgradient from the shoreline, and is seasonally saturated during the rainy season. A seaward breach allows surface water to run off into the Intercoastal Waterway. This wetland is a fresh water wetland and is not regularly tidally influenced. It does, however, appear to wash out during severe storms.

No IR sites exist in the immediate vicinity of Wetland 58.

10.21.2 Nature and Extent

The methods for evaluating nature and extent are presented in Section 6. Figure 10-21-1 denotes the Phase IIA Wetland 58 sampling location.

Sediment

Fifteen metals were detected in the single Wetland 58 sediment sample. No metals exceeded the sediment benchmark levels at Wetland 58. No pesticides were detected in the Wetland 58 sediment sample. The PCB Aroclor-1260 was detected below its sediment benchmark level. Thirteen SVOCs, mostly high-and low-molecular weight PAHs, were detected in Wetland 58 sediment samples. Six SVOCs exceeded benchmark criteria including 2-methylnapthalene (110 ppb), acenaphthene (110 ppb), anthracene (84 ppb), fluorene (120 ppb), naphthalene (220 ppb), and phenanthrene (250 ppb). The VOC acetone, a common laboratory

contaminant, was detected at Wetland 58. Table 10-21-1 shows the Wetland 58 Phase IIA sediment sample results (frequency of detection, range of detected concentrations, and average detected concentration). Table 10-21-2 compares detected concentrations at each sample location to sediment benchmark levels, and lists calculated HQs for each parameter. Only detected parameters with benchmark levels are presented in Table 10-21-2. The HQs will be further discussed ecological risk section (Section 10.21.4).

Surface Water

Eleven metals were detected in the single Wetland 58 surface water sample. Aluminum (1,090 ppb), iron (4,070 ppb), and lead (7.4 ppb) exceeded their surface water quality criteria at Wetland 58. No organics were detected in Wetland 58 surface water samples.

Table 10-21-3 shows the Wetland 58 Phase IIA surface water sample results (frequency of detection, range of detected concentrations, and average detected concentration). Table 10-21-4 compares detected concentrations at each sample location to surface water quality criteria and lists calculated HQs for each parameter. Only the parameters with quality criteria are presented in Table 10-21-4. The HQs will be further discussed ecological risk section (Section 10.21.4).

10.21.3 Fate and Transport

The pathways evaluated for the wetland specific fate and transport correlate to those identified in the conceptual model presented in Section 9. These pathways include: surface water/sediment transport into the wetland; groundwater discharge into the wetland; sediment/surface water transport within the wetland; sediment leaching to surface water within the wetland; and surface water/sediment transport from the wetland. Sediment transport and storm water runoff data are lacking; thus many evaluations are qualitative in nature. The method of evaluation of the leaching from sediment to surface water was presented in Section 9. Table 10-21-5 presents those contaminants present in sediment above benchmark levels and their calculated SSLs. Contaminants present in surface water above water quality criteria are presented in Table 10-21-4.

Table 10-21-1
Phase IIA Detected Concentrations in Wetland 58 Sediments

Parameter	Frequency of Detection	Range of Detected Concentrations	Average Detected Concentration
Inorganics (mg/kg)			
Aluminum (Al)	1/1	1360	1360
Arsenic (As)	1/1	0.27	0.27
Barium (Ba)	1/1	1,2	1,2
Calcium (Ca)	1/1	230	230
Chromium (Cr)	1/1	1.2	1.2
Copper (Cu)	1/1	1.8	1.8
Iron (Fe)	. 1./1	548	548
Lead (Pb)	1/1	7.8	7.8
Magnesium (Mg)	1/1	70	70
Manganese (Mn)	1/1	1.2	1.2
Nickel (Ni)	1/1	1.2	1.2
Potassium (K)	1/1	41.2	41.2
Selenium (Se)	1/1	0.41	0.41
Vanadium (V)	1/1	2.5	2.5
Zinc (Zn)	1/1	2.3	2.3
PCBs (μg/kg)			
Aroclor-1260	1/1	0.66	0.66
SVOCs (μg/kg)			
2-Methylnaphthalene	1/1	110	110
Acenaphthene	1/1	110	110
Anthracene	1/1	84	84
Butylbenzylphthalate	1/1	25	25
Carbazole	1/1	40	40
Di-n-butylphthalate	1/1	42	42
Dibenzofuran	1/1	88	88
Fluoranthene	1/1	110	110
Fluorene	1/1	120	120

Table 10-21-1
Phase IIA Detected Concentrations in Wetland 58 Sediments

Parameter	Frequency of Detection	Range of Detected Concentrations	Average Detected Concentration
SVOCs (µg/kg) (Continued)			
Naphthalene	1/1	220	220
Phenanthrene	1/1	250	250
Pyrene	1/1	70	70 .
bis(2-Ethylhexyl)phthalate (BEHP)	1/1	34	34
VOCs (μg/kg)			
Acetone	1/1	520	520

Notes:

All results are in micrograms per kilogram ($\mu g/kg$) or parts per billion (ppb), except for metals which are in milligrams per kilogram (mg/kg) or parts per million (ppm).

Transport into the Wetland

Surface Water/Sediment Pathway

Based on landform and watershed analysis, the following sources can contribute contamination to Wetland 58 through this pathway:

 Potential storm water runoff and sediment entrainment from Sites 39 and 4, and from roadways and paved areas on the southeast side of the N-S runway at Forrest Sherman Field.

The presence of sediment contaminants above benchmark levels (see Table 10-21-5) validates the sediment transport pathway, and by inference the surface water pathway. Additionally, copper, lead, and iron were present in surface water above standards, further validating the pathway.

Table 10-21-2
Wetland 58
Phase IIA Sediment Concentrations Compared to Benchmark Levels

Sample Location	Parameter	Detected Concentration	Sediment Benchmark Value (SBV)	HQ	SBV Reference
041 M 580101					
2-Methylnaphth	alene (UG/KG)	110	20.2	5. 45	ь
Aceпaphthene	(UG/KG)	110	6.71	16.39	ь
Anthracene (UC	3/KG)	84	46.9	1.79	ь
Aroclor-1260 (L	JG/KG)	0.66 J	21.6	0.03	ь
Arsenic (MG/K	G)	0.27 J	7.24	0.04	a b
bis(2-Ethylhexy)phthalate (BEHP) (UG/KG)	34 J	182	0.19	b
Chromium (MG	/KG)	1.2	52.3	0.02	аb
Copper (MG/K	3)	1.8	18.7	0.10	a b
Fluoranthene (l	JG/KG)	110	113	0.97	b
Fluorene (UG/N	(G)	120	21.2	5.66	b
Lead (MG/KG)		7.8	30.2	0.26	a b
Naphthalene (U	JG/KG)	220	34.6	6.36	b
Nickel (MG/KG	· · · · · · · · · · · · · · · · · · ·	1.2 J	15.9	0.08	аb
Phenanthrene ((UG/KG)	250	86.7	2.88	ь
Pyrene (UG/KG	S)	70	153	0.46	ь
Zinc (MG/KG)		2.3	124	0.02	аb

Notes:

⁽a) USEPA Screening Concentration for Sediment - EPA SSVs

⁽b) FDEP Sediment Quality Assessment Guidelines - FDEP SQAGs Some of the numbers in the table may vary because of rounding. Basewide levels (detailed in Section 6) for DDT and its metabolites Basewide level for 4,4'-DDE is 40 ppb. Basewide level for 4,4'-DDD is 50 ppb. Basewide level for 4,4'-DDT is 20 ppb.

Table 10-21-3
Phase IIA Detected Concentrations in Wetland 58 Surface Water

Parameter	Frequency of Detection	Range of Detected Concentrations	Average Detected Concentration
Inorganics (µg/L)			
Aluminum (Al)	1/1	1090	1090
Arsenic (As)	1/1	3.1	3.1
Barium (Ba)	1/1	3.4	3.4
Calcium (Ca)	1/1	9230	9230
Copper (Cu)	1/1	5.2	5.2
Iron (Fe)	1/1	4070	4070
Lead (Pb)	1/1	7.4	7.4
Magnesium (Mg)	1/1	4110	4110
Potassium (K)	1/1	1420	1420
Sodium (Na)	1/1	11400	11400
Vanadium (V)	1/1	10.6	10.6

Note:

All results are in micrograms per liter $(\mu g/L)$ or parts per billion (ppb).

Groundwater Discharge Pathway

Based on potentiometric analysis, the following sources can contribute contamination to Wetland 58 through this pathway:

• Discharge from Site 4. Groundwater from this site, however, has not been found to be contaminated, thus the pathway is considered invalid.

Transport within the Wetland

Surface Water/Sediment Migration Pathway

There does exist a small drainage feature on the southeast side of the wetland. This feature is likely active during very high water table events or storm surge recession. The likely migratory pathway for surface water and sediment is towards the Pensacola Bay. Therefore, both sediment and surface water contamination can be expected to remain mobile.

Table 10-21-4 (1) Wetland 58 Phase IIA Surface Water Concentrations Compared to Water Quality Criteria

Sample Location	Parameter	UOM	Detected Concentration	Water Quality Criteria	HQ	Criteria Reference
041W580101	Freshwater					
Aluminum		UG/L	1,090.0	87.0	12.52874	а
Arsenic		UG/L	3.1	50.0	0.062	b
Copper		UG/L	5.2	7.8	0,66667	a b
Iron		UG/L	4,070.0	1,000.0	4.07	a b
Lead		UG/L	7.4	1.71	4.32749	a b

(a) USEPA Water Quality Criteria (1995)
(b) FDEP Class III Water Quality Criteria (1996)
Some of the numbers in the table may vary because of rounding.

NAS Pensacola Site 41

Section 10: Site-Specific Evaluations

August 31, 2000

Table 10-21-5
Calculated Sediment Screening Values for Wetland 58

Parameter	USEPA or FDEP Surface Water Standard	Kd	SSL DF = 100	Maximum Concentration Detected	Leaching Potential DF = 100
Organics	(ppb)		(ppb)	(ppb)	
2-methylnaphthalene	NA	3.66E+01	NA	110	NO
Anthracene	110,000 ^b	1.44E+02	1.59E+09	84	NO
Acenapthene	17 *	3.82E+01	6.51E+04	110	NO
Fluorene	14,000 b	6.74E+01	9.45E+07	120	NO
Naphthalene	62 *	9.78	6.14E+04	220	NO
Phenanthrene	0.031 b	1.47E+02	4.56E+02	250	NO

Notes:

Kd for organics calculated using foc of 0.0127 (numerical average of all sediment samples).

Kds are from: USEPA, 1996b (first preference); Superfund Chemical Data Matrix (USEPA, 1996c) (second preference); Texas Risk Reduction Program Concept Document 2, Volume 1, Appendix VII, 1996 (third preference); TERRA Model, Oak Ridge National Laboratory, 1984 (fourth preference — primary reference for inorganics).

Kd = normalized partitioning coefficient.

SSL = sediment screening level.

DF = dilution factor.

a = USEPA Freshwater Surface Water Chronic Screening Value (1995a).

b = FDEP Class III Water Quality Criteria (1996).

Sediment Leaching to Surface Water Pathway

Six organics — all semivolatiles — exceeded their respective benchmark levels, but none exceeded their calculated SSL. None of the parameters that exceeded surface water criteria were present above benchmark levels in sediment (which are lower than a calculated SSL) indicating their provenance to be surface water migration. Therefore, this pathway is considered invalid and contaminants in sediment can be expected to remain within that media.

Transport from the Wetland

Surface water and sediment movement can be expected to occur from the wetland into the Bay system during periods of high water table or during storm surge recession.

10.21.4 Ecological Risk Assessment

HQs for Wetland 58 sediment samples are presented in Table 10-21-2. Phase IIA sediment results compared to the appropriate sediment benchmark levels revealed HQs above 1 for the SVOCs 2-methylnapthalene (5.45), acenaphthene (16.39), anthracene (1.79), fluorene (5.66), naphthalene (6.36), and phenanthrene (2.88). Phase IIA surface water results revealed HQs above 1 for aluminum (12.52), iron (4.07), and lead (6.32). HQs greater than 1 indicate the potential for excess risk.

Wetland 58 is a blue-coded wetland (E/A&H, 1995a). Since contaminants detected in the blue-coded wetlands were isolated, generally below screening or reference values, and did not appear to be related to IR sites, the blue-coded wetlands were not studied further in Phase IIB/III. Color-codes, groupings and rationale for classification are described in Section 7.

10.21.5 Human Health Risk Assessment

10.21.5.1 Samples Included

Sediment

041M580101

Surface Water

041W580101

10.21.5.2 Current and Future Land Use

Wetland 58 is on an isolate stretch of beach along the Intercoastal Waterway of Pensacola Bay. It lies approximately 0.5 miles east of Oak Grove Campground, and 0.5 miles west of a group of beach cabins rented by the base Morale, Welfare, and Recreation (MWR) department. The area is open to the public, so the adolescent trespasser scenario is valid. Hikers might venture into the area. Wetland 58 is not in an area which would be frequented by maintenance workers. A

dune restoration area lies to the south of Wetland 58, indicating that this area is likely going to

remain preserved in its natural state.

10.21.5.3 Fish Tissue COPCs

No fish tissue data were available for this wetland, and this exposure pathway would likely be

incomplete; therefore, no COPCs were identified.

10.21.5.4 Sediment COPCs

As shown in Table 10-21-6, no sediment COPCs were identified.

10.21.5.5 Surface Water COPCs

As shown in Table 10-21-7, no surface water COPCs were identified.

10.21.5.6 Risk Summary

No COPCs were identified form Wetland 58. As a result, no formal human health risk assessment

was conducted for Wetland 58.

10.21.6 Conclusions and Recommendations

Wetland 58 is classified as a blue-coded wetland, where contaminants were mostly isolated,

generally below benchmark or reference values, and did not appear to be related to IR sites. The

blue-coded wetlands were not studied further in Phase IIB/III. Since no COPCs were identified

for Wetland 58, no formal HHRA was conducted. Because no ecological or human health risks

are present at Wetland 58, no further action is recommended for this wetland.

10-21-12

TABLE 10-21-6 OCCURRENCE, DISTRIBUTION, AND SELECTION OF CHEMICALS OF POTENTIAL CONCERN NAS PENSACOLA SITE 41

Scenario Timeframe: Current and Future Medium: Sediment Exposure Medium: Sediment Exposure Point: Walland 58 Sediment

-																		
		(1)		(1)		1					(2)	(3)	(4)		(5)			(6)
CAS Number	Chemical	Minimum Concentration	Minimum Qualifler	Maximum Concentration	Maximum Qualifier	Units	Location of Maximum Concentration	Detection Frequency	Range of Detection Limits	MEAN	Concentration Used for Screening	Background Value	Adolescent Site Trespasser PRG	Residential Soil RBC		Potential ARAR/TBC Source	COPC Flag	Rationale for Contaminant Delection or Selection
	Acenaphthene	110.0000		110.0000		UG/KG	041M580101	1 / 1	NAV	110.00	110	N/A	19000000	470000	N	N/A	NO	BSL
67641	Acetone	520.0000		520,0000		UG/KG	041M580101	1 / 1	NAV	520.00	520	N/A	32000000	780000	N	N/A	NO	BSL
7429905	Aluminum (Al)	1360,0000		1360.0000		MG/KG	041M580101	1 / 1	NAV I	1360.00	1360	N/A	320000	7800	N	N/A	NO	BSL
120127	Anthracene	84,0000		84.0000		UG/KG	041M580101	1 / 1	NAV	84.00	84	N/A	95000000	2300000	N	N/A	NO	BSL
11096825	Aroclor-1260	0.6600	J	0.6600	J	UG/KG	041M580101	1 / 1	NAV	0.66	0.66	N/A	11000	320	cl	N/A	NO	BSL
7440382	Arsenic (As)	0.2700	J	0,2700	J	MG/KG	041M580101	1 / 1	NAV	0.27	0.27	N/A	15	0.43	cl	N/A	NO	BSL
7440393	Barium (Ba)	1.2000	J	1.2000	J	MG/KG	041M580101	1 / 1	NAV	1.20	1.2	N/A	22000	550	N	N/A	NO	BSL
117817	bis(2-Ethylhexyl)phthalate (BEHP)	34.0000	L	34.0000	J	UG/KG	041M580101	1 / 1	NAV	34.00	34	N/A	1600000	46000	cl	N/A	NO.	BSL
85687	Butylbenzylphthalate	25.0000	J	25.0000	J	UG/KG	041M580101	1 / 1	NAV	25.00	25	N/A	63000000	1600000	N	N/A	NO	BSL
7440702	Calcium (Ca)	230.0000	J	230.0000	J	MG/KG	041M580101	1 / 1	NAV	230.00	230	N/A	N/A	N/A		N/A	NO	EN
86748	Carbazole	40.0000	J	40.0000	J	UG/KG	041M580101	1 / 1	NAV	40.00	40	N/A	1100000	32000	cl	N/A	NO	BSL
7440473	Chromium (Cr)	1.2000		1.2000		MG/KG	041M580101	1 / 1	NAV	1.20	1.2	N/A	1600	23	N	N/A	NO	BSL
7440508	Copper (Cu)	1.8000		1,8000		MG/KG	041M580101	1 / 1	NAV	1.80	1.8	N/A	13000	310	N	N/A	NO	BSL
132649	Dibenzofuran	88.0000	J	88,0000	J	UG/KG	041M580101	1 / 1	NAV	88.00	88	N/A	1300000	31000	N	N/A	NO	BSL
84742	Di-n-butylphthalate	42.0000	J	42.0000	, j	UG/KG	041M580101	1 / 1	NAV	42.00	42	N/A	32000000	780000	N	N/A	NO	BSL
	Fluoranthene	110.0000		110,0000		UG/KG	041M580101	1 / 1	NAV	110.00	110	N/A	13000000	310000	N	N/A	NO	BSL
86737	Fluorene	120.0000		120.0000		UG/KG	041M580101	1 / 1	NAV	120.00	120	N/A	13000000	310000	N	N/A	NO	8SL
7439896	Iron (Fe)	548.0000		548.0000		MG/KG	041M580101	1 / 1	NAV	548.00	548	N/A	N/A	N/A	- 1	N/A	NO	EN
7439921	Lead (Pb)	7.8000		7.8000		MG/KG	041M580101	1 / 1	NAV	7.80	7.8	N/A	400	400	- 1	OSWER	NO	BSL
	Magnesium (Mg)	70.0000	J	70.000 0	J	MG/KG	041M580101	1 / 1	NAV	70.00	70	N/A	N/A	N/A	İ	N/A	NO	EN
7439965	Manganese (Mn)	1.2000		1.2000	l	MG/KG	041M580101	1 / 1	NAV	1.20	1.2	N/A	15000	1100	N	N/A	NO	BSL
91203	Naphthalene	220.0000		220.0000		UG/KG	041M580101	1 / 1	NAV	220.00	220	N/A	13000000	310000	N	N/A	NO	BSL
	Nickel (Ni)	1.2000	L	1,2000	J	MG/KG	041M580101	1 / 1	NAV	1.20	1.2	N/A	6300	160	N	N/A	NO	BSL
x 1	Phenanthrene	250.0000		250.0000		UG/KG	041M580101	1 / 1	NAV	250.00	250	N/A	9500000	230000	N	N/A	NO	BSL
	Potassium (K)	41.2000	J	41.2000	J	MG/KG	041M580101	1 / 1	NAV	41.20	41.2	N/A	N/A	N/A	i	N/A	NO	EN .
	Pyrene	70.0000		70.0000		UG/KG	041M580101	1 / 1	NAV	70.00	70	N/A	9500000	230000	N	N/A	NO	BSL
7782492	Selenium (Se)	0.4100	J	0.4100	J	MG/KG	041M580101	1 / 1	NAV	0.41	0.41	N/A	1600	39	N	N/A	NO	BSL
1 -	Vanadium (∀)	2.5000	J	2.5000	J	MG/KG	041M580101	1 / 1	NAV	2.50	2.5	N/A	2200	55	N	N/A	NO	BSL
7440666	Zinc (Zn)	2.3000		2.3000	L	MG/KG	041M580101	1 / 1	NAV	2.30	2.3	N/A	95000	2300	N	N/A	NO	BSL

- (1) Minimum/maximum detected concentration
- (2) Maximum concentration used as screening value.
- (3) Background values were not developed for this media.
- (4) PRGs for site trespasser scenario calculated based on equetions and parameters presented in Section 8 of this report.
- (5) Residential soil RBCs presented in Region III Risk-Based Concentration Tables, (USEPA, 1998).
- (8) Rationale Codes Selection Reason:

Above Screening Levels (ASL) Deletion Reason: Below Screening Levels (BSL)

Background Levels (BKG) No Toxicity Information (NTX) Essential Nutrient (EN)

Definitions:

N/A = Not Applicable

NAV = Not Available

COPC - Chemical of Potential Concern

ARAR/TBC = Applicable or Releveant and Appropriate Requirement/ To Be Considered

OSWER = Office of Solid Waste and Emergency Response

J = Estimated Value

C = Carcinogenic N Noncarcinogenic

TABLE 10-21-7 OCCURRENCE, DISTRIBUTION, AND SELECTION OF CHEMICALS OF POTENTIAL CONCERN NAS PENSACOLA SITE 41

Scenario Timeframe: Current and Future Medium: Surface Water Exposure Medium: Surface Water Exposure Point: Wetland 58 Surface Water

		(1)		(1)							(2)	1	(3)	(4)		(5)
CAS Number	Chemical	Minimum Concentration	Minimum Qualifier	Maximum Concentration	Maximum Qualifler	Units	Location of Maximum Concentration	Detection Frequency	Range of Detection Limits	Mean	Concentration Used for Screening	Background Value	Adolescent Site Traspasser PRG	Tap Water RBC	Potential ARAR/TBC Source	COPC Flag	Rationale for Contaminant Delection or Selection
7429905	Aluminum (Al)	1090.00		1090,00		UG/L	041W580101	1 / 1	NAV	1090.00	1090	N/A	120000	3700 N	N/A	NO	BSL
7440382	Arsenic (As)	3.10	J	3.10	J	UG/L	041W580101	1 / 1	NAV	3,10	3.1	N/A	5.6	0.045	N/A	NO	BSL
7440393	Barium (Ba)	3.40	J	3,40	ı	UG/L	041W580101	1 / 1	NAV	3.40	3.4	N/A	8300	260 N	I N/A	NO	BSL
7440702	Calcium (Ca)	9230.00		9230.00	1	UG/L	041W580101	1 / 1	NAV	9230.00	9230	N/A	N/A	N/A	N/A	NO	EN
7440508	Copper (Cu)	5,20	J	5.20	J	UG/L	041W580101	1 / 1	NAV	5.20	5.2	N/A	4800	150 N	I N/A	NO	BSL
7439896	Iron (Fe)	4070.00		4070.00		UGAL	041W580101	1 / 1	NAV	4070.00	4070	N/A	N/A	N/A	N/A	NO	EN
7439921	Lead (Pb)	7.40		7.40		UG/L	041W580101	1 / 1	NAV	7.40	7.4	N/A	15	15	TTAL	NO	BSL
7439954	Magnesium (Mg)	4110.00	J	4110.00	J	UG/L	041W580101	1 / 1	NAV	4110.00	4110	N/A	N/A	N/A	N/A	NO	EN
7440097	Potassium (K)	1420.00	J	1420.00	J	UG/L	041W580101	1 / 1	NAV	1420.00	1420	N/A	N/A	N/A	N/A	NO	EN
7440235	Sodium (Na)	11400.00	1	11400.00		UG/L	041W580101	1 / 1	NAV	11400.00	11400	N/A	N/A	N/A	N/A	NO	EN
7440622	Vanadium (V)	10.60	J	10.60	J	UG/L	041W580101	1 / 1	NAV	10.60	10.6	N/A	830	26 N	N/A	NO	BSL

(1) Minimum/maximum detected concentration

(2) Maximum concentration used as screening value.

(3) PRGs for adolescent site trespasser scenario calculated using equations and parameters presented in Section 8 of this report.

(4) Tap water RBCs presented in Region III Risk-Based Concentration Tables, (USEPA, 1998).

(5) Rationale Codes

Selection Reason: Above Screening Levels (ASL) Deletion Reason: Below Screening Levels (BSL)

Background Levels (BKG) Essential Nutrient (EN) No Toxicity Information (NTX)

Definitions: N/A = Not Applicable NAV = Not Available

COPC = Chemical of Potential Concern

ARAR/TBC = Applicable or Releveant and Appropriate Requirement/ To Be Considered

TTAL = Treatment technique action level

J = Estimated Value C = Carcinogenic

N = Noncarcinogenic

10.22 WETLAND 63B

10.22.1 Site Description

Wetland 63B is on the northeast side of former Chevalier Field (now the NATTC), along the shoreline of Pensacola Bay. Wetland 63B is bordered by Site 14 to the south, buildings and development to the west, and Pensacola Bay to the east. Parsons and Pruitt described this area as an estuarine emergent system (USEPA, 1991). The upland area surrounding Wetland 63B is vegetated with plants typically found in a disturbed area. The saturated area contains common reed (*Phragmites australis*) and sawgrass (*Cladium jamaicense*). Wetland 63B serves as a storm water drainage pathway for the southeastern portion of the former Chevalier Field area. The wetland is tidally influenced, has open standing water year round, and discharges to Pensacola Bay through a drainage channel about three feet wide.

IR sites potentially affecting Wetland 63B include Sites 13 and 14. Site 13 (Magazine Point Rubble Disposal Site) is north of Wetland 63B and extends along the eastern waterfront of Magazine Point and the northeast portion of former Chevalier Field (now NATTC). Site 14 (Dredge Spoil Fill) is adjacent to Wetland 63B to the south and was created between 1975 and 1977 as a dredge spoil deposition area (NEESA, 1983).

10.22.2 Nature and Extent

Sediment

The methods for evaluating nature and extent are presented in Section 6. Figure 10-22-1 denotes the Phase IIA Wetland 63B sampling locations.

Nineteen metals were detected in Wetland 63B sediment samples. No metals exceeded sediment benchmark levels at Wetland 63B. Three pesticides were detected in Wetland 63B sediment samples, including 4,4'-DDD/DDE and endosulfan sulfate. The DDT metabolites were below basewide levels (50 ppb and 40 ppb respectively). The basewide levels are presented in

August 31, 2000

Section 6. Endosulfan sulfate was also below its benchmark level. The PCB Aroclor-1260 was

detected in Wetland 63B sediment samples below its benchmark level. Fourteen SVOCs, mostly

high and low molecular weight PAHs, were detected in Wetland 63B sediment samples.

Four SVOCs exceeded sediment benchmark criteria, including the PAHs 2-methylnapthalene

(24 ppb), acenaphthene (39 ppb), fluorene (47 ppb), and phenanthrene (120 ppb). All of the

exceedances are at sample location 63B04. No VOCs were detected in Wetland 63B

sediment samples.

Table 10-22-1 shows the Wetland 63B Phase IIA sediment sample results (frequency of detection,

range of detected concentrations, and average detected concentration). Table 10-22-2 compares

detected concentrations at each sample location to sediment benchmark levels, and lists calculated

HQs for each parameter. Only the detected parameters with benchmark levels are presented in

Table 10-22-2. The HQs will be further discussed in the ecological risk section (Section 10.22.4).

Surface Water

Eleven metals were detected in the Wetland 63B surface water samples. Iron (1,560 ppb)

exceeded surface water quality criteria (300 ppb) at sample location 63B02. The only organic

detected in Wetland 63B surface water samples was the phthalate ester, di-n-butylphthalate

(22 ppb) which exceeded its surface water quality criteria (3.4 ppb), also at location 63B02.

Table 10-22-3 shows the Wetland 63B Phase IIA surface water sample results (frequency of

detection, range of detected concentrations, and average detected concentration). Table 10-22-4

compares detected concentrations at each sample location to surface water quality criteria and lists

calculated HQs for each parameter. Only the detected parameters with water quality criteria are

presented in Table 10-22-4. The HQs will be further discussed in the ecological risk section

(Section 10.22.4).

10-22-2

Table 10-22-1
Phase IIA Detected Concentrations in Wetland 63B Sediments

Parameter	Frequency of Detection	Range of Detected Concentrations	Average Detected Concentration
Inorganics (mg/kg)			
Aluminum (Al)	4/4	101 - 1960	650
Antimony (Sb)	1/4	0.25	0.25
Arsenic (As)	2/4	0:24 - 0:43	0.34
Barium (Ba)	4/4	0.71 - 4	1.7
Beryllium (Be)	, 1/4	0.1	0.1
Calcium (Ca)	4/4	191 - 3230	1315.5
Chromium (Cr)	4/4	0.34 - 5.2	1.94 - 1.94
Cobalt (Co)	2/4	0.2 - 0.42	0.31
Copper (Cu)	4/4	0.35 - 4.4	1.69
Iron (Fe)	4/4	112 - 1290	564.75
Lead (Pb)	4/4	0.95 - 13	4.413
Magnesium (Mg)	4/4	33.6 - 410	151.485
Manganese (Mn)	4/4	0.88 - 7.1	3.25
Nickel (Ni)	1/4	0.88	0.88
Potassium (K)	4/4	10.3 - 121	47.4
Selenium (Se)	1/4	0.4	0.4
Sodium (Na)	4/4	28.4 - 129	70.05
Vanadium (V)	4/4	0.35 - 3.9	1.5
Zinc (Zn)	4/4	0.79 - 13	_{ij} a 4.5 '
Pesticides and PCBs (μg/kg)			
4,4'-DDD	2/4	0.23 - 0.34	0.285
4,4'-DDE	3/4	0.27 - 0.37	0.3333
Aroclor-1260	4/4	1.2 - 6.3	3
Endosulfan sulfate	1/4	0.98	0.98
SVOCs (μg/kg)			
2-Methylnaphthalene		24 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	24
Acenaphthene	1/4	39	39

Table 10-22-1
Phase IIA Detected Concentrations in Wetland 63B Sediments

Parameter	Frequency of Detection	Range of Detected Concentrations	Average Detected Concentration
SVOCs (µg/kg) (Continued)			
Anthracene	1/4	44	44
Benzo(a)pyrene	1/4	39	39
Benzo(b)fluoranthene	1/4	56	56
Butylbenzylphthalate	1/4	29	29
Di-n-butylphthalate	1/4	27	27~
Dibenzofuran	1/4	34	34
Fluoranthene	3/4	41 - 86	62
Fluorene	1/4	47	47
Naphthalene	1/4	23	23
Phenanthrene	1/4	120	120
Pyrene	3/4	41 - 65	49
bis(2-Ethylhexyl)phthalate (BEHP)	3/4	33 - 97	57.33

Note:

All results are in micrograms per kilogram (μ g/kg) or parts per billion (ppb), except for metals which are in milligrams per kilogram (mg/kg) or parts per million (ppm).

10.22.3 Fate and Transport

The pathways evaluated for the wetland specific fate and transport correlate to those identified in the conceptual model presented in Section 9. These pathways include: surface water/sediment transport into the wetland; groundwater discharge into the wetland; sediment/surface water transport within the wetland; sediment leaching to surface water within the wetland; and surface water/sediment transport from the wetland. Sediment transport and storm water runoff data are lacking: thus the evaluation is qualitative in nature. The method of evaluating the leaching from sediment to surface water was presented in Section 9. Table 10-22-5 presents those contaminants present in sediment above benchmark levels and their calculated SSLs. Contaminants present in surface water above water quality criteria are presented in Table 10-22-4.

Table 10-22-2 Wetland 63B Phase IIA Sediment Concentrations Compared to Benchmark Levels

Sample Location	Parameter	Datacted Concentration	Sediment Benchmark Value (SBV)	НО	SBV Reference
OF THE PERSON NAMED IN			701		
		Secretary States		0.700	960
Annual State of State	40.	1075		90	-700
-		10000	100		
and the same of	30.	25000	100	-	100
1	-	. 10(11)		100	
The Person				-	
200		1.000	400	-	10
The second		100	20	349-	
-		100,000	20.0	100	11000
340		10.00	N/C		100
Description (L)		0.000		200	730
Newscool		0	100,000		- 70
		26.76	100000	1000	- 100
041M63B201					
4.4'-DDD (UG/KG)		Q:34 J	1:22	0.28	b
4.4-DDE (UG/KG)		0.27	2.07	0.13	b
Antimony (MG/KG		0.25 J	12	0.07	
Arador-1260 (UG/		1.5.4	21.6	0,07	B
Arsenic (MG/KG)	1000	0.24 ./	7.24	0.03	ab
	thalate (BEHP) (UG/KG)	42 J	182	0.23	T.
Chromium (MG/KL		13	52.3	0.02	ав
Copper (MG/KG)	,	1.0 J	18.7	0.06	ab
Fluoranthane (UG)	KG)	86	113	0.76	6
Lead (MG/KG)	021	1.8	30.2	0.08	ab
Pyrene (UG/KG)		66	153	0.42	b
Zinc (MG/KG)		3.6	124	0.02	a b
and the second					
ALC: NO		274.478	10000	14	-
The second	Commence of the	200	100	200	100
The same		200	200	100	100
The property		10.00	100	400	
The second		179.1	- 24	100	- 60
		36.	9-0-1	100	3.00
D41M63B4D1					
2-Methylnaphthaler	ie (UG/KG)	24 J	20.2	1 19	b
4.4'+DDD (UG/KG)	The second secon	0.83 1	1/23	0 19	b

Notes

Some of the numbers in the table may vary because of rounding.

Basewide levels (detailed in Section 6) for DDT and its metabolites.

Basewide level for 4.4'-DDE is 40 ppb. Basewide level for 4.4'-DDD is 50 ppb.

Basewide level for 4,4'-DDT is 20 pps.

⁽a) USEPA Screening Concentration for Sentiment - EPA SSVs.
(b) FDEP Sediment Quality Assessment Guidelines - FOEP SQAGs

Table 10-22-2
Wetland 63B
Phase IIA Sediment Concentrations Compared to Benchmark Levels

Sample Location	Parameter	Detected Concentration	Sediment Benchmark Value (SBV)	НQ	SBV Reference
4,4'-DDE (UG/KG)		0.37 J	2.07	0.18	b
Acenaphthene (UG	/KG)	39	6.71	5.81	ь
Anthracene (UG/K0	G)	44	46.9	0.94	ь
Aroclor-1260 (UG/h	(G)	3	21.6	0.14	b
bis(2-Ethylhexyl)pht	halate (BEHP) (UG/KG)	33 J	182	0.18	b
Chromium (MG/KG)	0.91	52.3	0.02	a b
Copper (MG/KG)		0.9 J	18.7	0.05	аb
Fluoranthene (UG/I	KG)	59	113	0.52	b
Fluorene (UG/KG)		47	21.2	2.22	b
Lead (MG/KG)		1.9	30.2	0.06	аb
Naphthalene (UG/k	(G)	23 J	34.6	0.66	b
Phenanthrene (UG	/KG)	120	86.7	1.38	b
Pyrene (UG/KG)		41 J	153	0.27	ь
Zinc (MG/KG)		1.6	124	0.01	аb

Notes:

⁽a) USEPA Screening Concentration for Sediment - EPA SSVs

⁽b) FDEP Sediment Quality Assessment Guidelines - FDEP SQAGs Some of the numbers in the table may vary because of rounding. Basewide levels (detailed in Section 6) for DDT and its metabolites Basewide level for 4,4'-DDE is 40 ppb. Basewide level for 4,4'-DDD is 50 ppb. Basewide level for 4,4'-DDT is 20 ppb.

Table 10-22-3
Phase IIA Detected Concentrations in Wetland 63B Surface Water

Parameter	Frequency of Detection	Range of Detected Concentrations	Average Detected Concentration
Inorganics (μg/L)			
Aluminum (AI)	2/2	157 - 1300	728.5
Arsenic (As)	1/2	3.1	3.1
Barium (Ba)	1/2	44.7 - 53	48.85
Calcium (Ca)	2/2	37800 - 39000	38400
Iron (Fe)	2/2	206 - 1560	883
Lead (Pb)	1/2	5.3	5.3
Magnesium (Mg)	2/2	10100 - 10600	10350
Manganese (Mn)	2/2	21.4 - 40.1	30.75
Sodium (Na)	2/2	64400 - 71700	68050
Vanadium (V)	1/2	3.5	3.5
Zinc (Zn)	2/2	4.8 - 13.7	9.25
SVOCs (μg/L)			
Di-n-butylphthalate	1/2	22	22

Note:

All results are in micrograms per liter $(\mu g/L)$ or parts per billion (ppb).

Transport into the Wetland

Surface Water/Sediment Pathway

Based on landform and watershed analysis, the following sources can contribute contamination to Wetland 63B through this pathway:

• Potential storm water runoff and sediment entrainment from Sites 13 and 14, and the eastern portions of Chevalier Field. The proximity of the wetland to Pensacola Bay indicates that there is a direct connection to the Bay during storm surge events.

The presence of sediment contaminants above benchmark levels (see Table 10-22-5) validates the sediment transport pathway, and by inference the surface water pathway. Additionally, the presence of one organic and one inorganic present in surface water above standards further validates the pathway.

Table 10-22-4 (1) Wetland 63B Phase IIA Surface Water Concentrations Compared to Water Quality Criteria

Sample Location	Parameter	DOW	Detected Concentration	Water Quality Criteria	На	Criteria Reference
4 (METH 20)	Appendix 1			B	M-74	
1000		100	Lang	Daniel	- Name	345
been.		T-MAGE	3.14	201	Street.	100
Distriction of		105	504500	34.	6904	2000
Per College		144	1444	2045	9.5	2000
Jed (N. Section	343	1000	41
		-	11.7	N.	125	
041W63B401	Saltwater					
Aluminum		UG/L	157 0	1,500 0	0.10467	b
Iran		UG/L	206.0	300.0	0.68667	· b
Zinc		UG/L	4.8	66.0	0,05581	ab

Notes:
(a) USEPA Water Quality Criteria (1995)
(b) FDEP Class III Water Quality Criteria (1996)
Some of the numbers in the table may vary because of rounding.

Table 10-22-5
Calculated Sediment Screening Values for Wetland 63B

Parameter	USEPA or FDEP Surface Water Standard	Kd	SSL Maximum Concentration DF = 100 Detected		Leaching Potential DF = 100
Organics	(ppb)				
2 Methylnaphthalene	NA	6.00e+01	NA	24	NO
Acenapthene	9.7 *	6.24e+01	6.07e+04	39	NO
Fluorene	14,000 b	1.10e+02	1.55e+08	47 ,	NO
Phenanthrene	0.031 b	2.40e +02	2.31e+03	120	NO

Notes:

Kd for organics calculated using foc of 0.008 (numerical average of all sediment samples).

Kds are from: USEPA, 1996b (first preference); Superfund Chemical Data Matrix (USEPA, 1996c) (second preference); Texas Risk Reduction Program Concept Document 2, Volume 1, Appendix VII, 1996 (third preference); TERRA Model, Oak Ridge National Laboratory, 1984 (fourth preference — primary reference for inorganics).

Kd = normalized partitioning coefficient.

SSL = sediment screening level.

DF = dilution factor.

a = USEPA Saltwater Surface Water Chronic Screening Value (1995a).

b = FDEP Class II Water Quality Criteria (1996).

Groundwater Discharge Pathway

Based on potentiometric analysis, the following sources can contribute contamination to Wetland 63B through this pathway:

• Discharge from Sites 13 and 14. However, groundwater from these sites has not been shown to be contaminated, thus the pathway is considered invalid.

Transport within the Wetland

Surface Water/Sediment Migration Pathway

The configuration of the wetland, along with landform analysis, indicates that the wetland is self-enclosed, and that surface water and sediment movement is influenced primarily by storm water influx. A direct connection to Pensacola Bay during storm events, however, would allow surface water and sediment to move out of the wetland and towards Pensacola Bay. Under

August 31, 2000

normal conditions, both sediment and surface water contaminants can be expected to be

constrained within the wetland.

Sediment Leaching to Surface Water Pathway:

Four SVOCs exceeded their sediment benchmark levels (see Table 10-22-5), but none of these

exceeded the calculated SSL and corresponding detections of these SVOCs were not seen in the

surface water samples. Iron and di-n-butyllpthalate were the only parameters above standards in

surface water, and they are likely attributable to the surface water/groundwater discharge pathway.

Given the absence of parameters above SSLs, this pathway is considered invalid.

Transport from the Wetland

Surface water and sediment movement, under normal conditions, is expected to be contained to

the wetland. However, storm events may allow a temporary connection to Pensacola Bay and

allow contaminants to move out of the wetland.

10.22.4 Ecological Risk Assessment

HQs for Wetland 63B sediment samples are presented in Table 10-22-2. Phase IIA sediment

sample results compared to the appropriate sediment benchmark levels revealed HQs above 1 for

the SVOCS 2-methylnapthalene (1.19), acenaphthene (5.81), fluorene (2.22), and phenanthrene

(1.38), all at sample location 63B04. Phase IIA surface water results revealed an HQ greater than

1 for iron (5.20), and di-n-butylphthalate (6.47), both at sample location 63B02. HQs greater than

1 indicate the potential for excess risk.

Wetland 63B is a blue-coded wetland (E/A&H, 1995a). Contaminants detected in the blue-coded

wetlands were isolated and were generally below benchmark or reference values. In addition,

contaminant exceedances did not appear to be related to IR sites. Therefore, the blue-coded

10-22-12

wetlands were not studied further in Phase IIB/III. Color-codes, groupings and rationale for classification are described in Section 7.

10.22.5 Human Health Risk Assessment

10.22.5.1 Samples Included

Sediment

041M63B101, 041M63B201, 041M63B301, 041M3B401

Surface Water

041W63B201, 041W63B401

10.22.5.2 Current and Future Land Use

Wetland 63B is on the northeast side of the NATTC. When the NATTC was constructed in 1996, a boardwalk and gazebo were built on the north side of the wetland for use by NATTC students. Trespasser scenarios are therefore valid for this wetland.

10.22.5.3 Fish Tissue COPCs

No fish tissue data were available for this wetland, and this exposure pathway would likely be incomplete; therefore, no COPCs were identified.

10.22.5.4 Sediment COPCs

As shown in Table 10-22-6, no sediment COPCs were identified.

10.22.5.5 Surface Water COPCs

As shown in Table 10-22-7, no surface water COPCs were identified.

TABLE 10-22-6 OCCURRENCE, DISTRIBUTION, AND SELECTION OF CHEMICALS OF POTENTIAL CONCERN NAS PENSACOLA SITE 41

Scenario Timeframe: Current and Future Medium: Sediment Exposure Medium: Sediment Exposure Point: Wetland 63b Sediment

	1	(1)	r	(1)							(2)	(3)	(4)		(5)			(8)
CAS Number	Chemical	Minimum Consentration	Minimum Qualifier	Maximum Concentration	Maximum Qualifier	Units	Location of Maximum Concentration	Detection Frequency	Range of Detection Limits	MEAN	Concentration Used for Screening	Background Value	Adolescent Ske Trespasser PRG	Residential Soil RBC		Potential ARAR/TBC Source	COPC Flag	Rationale for Contaminant Delection or Selection
	2-Methylnaphthalene	24.0000	7	24.0000	J	UG/KG	041M63B401	1 / 4	42.00 - 71.00	24.00	24.00	N/A	6300000	310000	N	N/A	NO	BSL
72548	4,4'-DDD	0.2300	J	0.3400	J	UG/KG	041M63B101	2 / 4	0,21 ~ 0.36	0.29	0.34	N/A	92000	2700	С	N/A	NO	BSL
72559	4,4'-DDE	0.2700	j	0.3700	J	UG/KG	041M63B101	3 / 4	0.21 - 0.21	0.33	0.37	N/A	65000	1900	c	N/A	NO	BSL
83329	Acenaphthene	39.0000		39.0000		ug/kg	041M63B401	1 / 4	21.00 - 34.00	39.00	39.00	N/A	19000000	470000	N	N/A	NO	BSL
7429805	Aluminum (Al)	101,0000	J	1960,00	J	MG/KG	041M63B101	4 / 4	NAV	650.00	1960.00	N/A	320000	7800	N	N/A	NO	BSL
120127	Anthracene	44.0000		44.0000	1	UG/KG	041M63B401	1 / 4	42.00 - 71.00	44.00	44.00	N/A	95000000	2300000	N	N/A	NO	BSL
7440360	Antimony (Sb)	0.2500	J	0.2500	J	MG/KG	041M63B201	1 / 4	0.13 - 0.77	0.25	0.25	N/A	130	3.1	N	N/A	NO.	BSL
11096825	Aroclor-1260	1.2000	J	6.30	J	UG/KG	041M63B401	4 / 4	NAV	3.00	6.30	N/A	11000	320	С	N/A	NO	BSL
7440382	Arsenic (As)	0.2400	J	0.4300	J	MG/KG	041M63B101	2 / 4	0.13 - 0.13	0.34	0.43	N/A	15	0,43	c	N/A	NO	BSL
7440393	Barium (Ba)	0.7100	J	4.00	J	MG/KG	041M63B101	4 / 4	NAV	1.70	4.00	N/A	22000	550	N	N/A	NO.	BSL
50328	Benzo(a)pyrene	38.0000	J	39.0000	J	UG/KG	041M63B101	1 / 4	42.00 • 46.00	39.00	39.00	N/A	3000	88	c	N/A	NO	BSL
205992	Benzo(b)fluoranthene	56.0000	J	56,0000	J	UG/KG	041M63B101	1 / 4	42.00 - 46.00	56.00	56.00	N/A	30000	880	c	N/A I	NO.	BŞL
7440417	Beryllium (Be)	0.1000	J	0.1000	J	MG/KG	041M63B101	1 / 4	0.0B - 0.08	0.10	0.10	N/A	630	16	N	N/A	NO	BSL
117817	bis(2-Ethylhexyl)phthalate (BEHP)	33.0000	J	97.0000	J	UG/KG	041M63B401	3 / 4	420.00 - 420.00	57.33	97.00	N/A	1600000	45000	сl	N/A	NO	BSL
85687	Butylbenzylphthalate	29.0000	J	29.0000	1	UG/KG	041M63B401	1 / 4	420.00 - 710.00	29.00	29.00	N/A	53000000	1600000	N	N/A	NO	BSL
7440702	Calcium (Ca)	191.0000	J	3230.00	J	MG/KG	041M63B301	4 / 4	NAV	1315.50	3230.00	N/A	N/A	N/A	- 1	N/A	NO	EN
7440473	Chromium (Cr)	0.3400	J	5.20		MG/KG	041M63B101	4 / 4	NAV	1.94	5.20	N/A	1500	23	N	N/A	NO	BSL
7440484	Cobait (Co)	0.2000	ا د ا	0.4200	J	MG/KG	041M63B201	2 / 4	0.13 ~ 0.13	0.31	0.42	N/A	19000	470	N	N/A	NO	BSL
7440508	Copper (Cu)	0.3500	J	4.40		MG/KG	041M63B101	4 / 4	NAV	1.69	4.40	N/A	13000	310	N	N/A	NO	BSL
132649	Dibenzofuran	34.0000	J	34.0000	J	UG/KG	041M63B401	1 / 4	420.00 - 710.00	34.00	34.00	N/A	1300000	31000	N	N/A	NO	BSL
84742	Di-n-butylphthelate	27.0000	J	27.0000	J	UG/KG	041M53B401	1 / 4	420.00 - 710.00	27.00	27.00	N/A	32000000	780000	N	N/A	NO	BSL
1031078	Endosulfan sulfigte	0.9800	J	0.9800	J	ug/kg	041M63B201	1 / 4	0.21 - 0.36	0.98	0.98	N/A	1900000	47000	N	N/A	NO	BSL
206440	Fluoranthene	41.0000	J	86.0000		UG/KG	041M63B201	3 / 4	42.00 - 42.00	62.00	86.00	N/A	13000000	310000	N	N/A	NO	BSL
86737	Fluorene	47.0000		47.0000		UG/KG	041M63B401	1 / 4	21.00 - 34.00	47.00	47.00	N/A	13000000	310000	N	N/A	NO	BSL
7439896	Iron (Fe)	112.0000		1290.00		MG/KG	041M63B301	4 / 4	NAV	564.75	1290,00	N/A	N/A	N/A		N/A	NO	EN
7439921	Lead (Pb)	0.9500		13.00		MG/KG	041M63B401	4 / 4	NAV	4.41	13.00	N/A	400	400	- 1 -	OSWER	NO	BSL
7439954	Magnesium (Mg)	33.6000	J	410.00		MG/KG	041M63B401	4 / 4	NAV	151,48	410.00	N/A	N/A	N/A	- 1	N/A	NO	EN
7439965	Manganese (Mn)	0.8800	J	7.10		MG/KG	041M63B401	4 / 4	NAV	3.25	7.10	N/A	15000	1100	N	N/A	NO	BSL
91203	Naphthalene	23.0000	J	23.0000	j	UG/KG	041M63B401	1 / 4	42.00 - 71.00	23.00	23.00	N/A	13000000	310000	N	N/A	NO	BSL
7440020	Nickel (Ni)	0.8800	انا	0.8800	J	MG/KG	041M63B101	1 / 4	0.57 - 0.68	0.88	0.88	N/A	6300	160	N	N/A	NO	BSL
85018	Phenanthrene	120.0000		120.0000		UG/KG	041M63B401	1 / 4	42.00 - 71.00	120.00	120,00	N/A	9500000	230000	N	N/A	NO	BSL
7440097	Potassium (K)	10.3000	J	121.00	J	MG/KG	041M63B401	4 / 4	NAV	47.40	121.00	NA	N/A	N/A	.	N/A	NO	EN
129000	Pyrene	41.0000	J	55.0000		UG/KG	041M63B101	3 / 4	42.00 - 42.00	49.00	65.00	N/A	9500000	230000	N	N/A	NO	BSL
7782492	Selenium (Se)	0.4000		0.4000		MG/KG	041M63B401	1 / 4	0.25	0.40	0.40	N/A	1600	39	N	N/A	NO	BSL
7440235	Sodium (Na)	28.4000	J	129.00	j i	MG/KG	041M63B101	4 / 4	NAV	70.05	129,00	N/A	N/A	N/A		N/A	NO	EN EN
7440622	Vanadium (V)	0.3500	J	3.90		MG/KG	041M63B101	4 / 4	NAV	1.50	3.90	N/A	2200	55	N	N/A	NO	BSL
7440665	Zinc (Zn)	0.7900	J	13.00		MG/KG	041M63B101	4 / 4	NAV	4.50	13.00	N/A	95000	2300	N	N/A	NO	BSL

- (1) Minimum/maximum detected concentration
- (2) Maximum concentration used as screening value.
- (3) Background values were not developed for this media.
- (4) PRGs for site trespessor accessing calculated based on equations and parameters presented in Section 8 of this report.
- (5) Residential soil RBCs presented in Region III Risk-Based Consentration Tables, (USEPA, 1998).
- (6) Retionale Codes Selection Reason;

Above Screening Levels (ASL) Deletion Reason: Below Screening Levels (BSL) Background Levels (BKG)

No Toxicity Information (NTX) Essential Nutrient (EN)

Definitions:

N/A = Not Applicable

NAV = Not Available

COPC = Chemical of Potential Concern

ARAR/TBC = Applicable or Relevant and Appropriate Requirement/ To Be Considered

OSWER = Office of Solid Waste and Emergency Response

J = Extimated Value

C = Cercinogenic

N Noncarcinogenic

TABLE 10-22-7 OCCURRENCE, DISTRIBUTION, AND SELECTION OF CHEMICALS OF POTENTIAL CONCERN NAS PENSACOLA SITE 41

Scenario Timeframe: Current and Future Medium: Surface Water Exposure Medium: Surface Water Exposure Point: Wetland 83B Surface Water

		(1)		(1)							(2)		(3)	(4			(5)
CAS Number	Chemical	Minimum Concentration	Minimum Qualifier	Maximum Concentration	Maximum Qualifier	Units	Location of Maximum Concentration	Detection Frequency	Range of Detection Limits	Mean	Concentration Used for Screening		Adolescent Site Trespasser PRG	Tap Water RBC	Potential ARAR/TBC Source	COPC Flag	Rationale for Contaminant Delection or Selection
7429905	Aluminum (Al)	157	J	1300		UG/L	041W63B201	2 / 2	NAV	729	1300	N/A	120000	3700 N	N/A	NO	BSL
7440382	Arsenic (As)	3.1	j	3,1	J	UG/L	041W63B201	1 / 2	NAV	3,1	3,1	N/A	5.6	0.045 C	N/A	NO	BSL
7440393	Barium (Ba)	44.7	J	53.0	J	UG/L	041W63B201	2 / 2	NAV	48.9	53.0	N/A	8300	260 N	N/A	NO	BSL
7440702	Calcium (Ca)	37800		39000		UG/L	041W63B201	2 / 2	NAV	38400	39000	N/A	N/A	N/A	N/A	NO	EN
84742	Di-n-butylphthalate	22		22		UG/L	041W63B201	1 / 2	NAV	22	22	N/A	480	370 N	N/A	NO	BSL
7439896	Iron (Fe)	206		1560		UG/L	041W638201	2 / 2	NAV	883	1560	N/A	N/A	N/A	N/A	NO	EN
7439921	Lead (Pb)	5.3		5.3		UG/L	Q41W63B201	1 / 2	NAV	5.3	5.3 ·	N/A	15	15	TTAL	ОИ	BSL #
7439954	Magnesium (Mg)	10100		10500		UG/L	041W63B201	2 / 2	NAV	10350	10600	N/A	N/A	N/A	N/A	NO	EN
7439965	Manganese (Mn)	21.4		40.1		UG/L	041W63B201	2 / 2	NAV	30.8	40.1	N/A	2400	73 N	N/A	NO	BSL
7440097	Potassium (K)	7720		7900		UG/L	041W63B401	2 / 2	NAV	7810	7900	N/A	N/A	N/A	N/A	NO	EN
7440235	Sodium (Na)	64400		71700		UG/L	041W63B201	2 / 2	NAV	68050	71700	N/A	N/A	N/A	N/A	NO	EN
7440622	Vanadium (V)	3.5		3.5		UG/L	041W63B201	1 / 2	NAV	3.5	3.5	N/A	830	26 N	N/A	NO	BSL
7440666	Zinc (Zn)	4.8	J	13.7	J	UG/L	041W63B201	2 / 2	NAV	9,3	13,7	N/A	36000	1100 N	N/A	NO	BSL

(1) Minimum/maximum detected concentration

(2) Maximum concentration used as screening value.

(3) PRGs for adolescent site trespasser scenario calculated using equations and parameters presented in Section 8 of this report.

(4) Tap water RBCs presented in Region III Risk-Based Concentration Tables, (USEPA, 1998).

(5) Rationale Codes Selection Reason: Above Screening Levels (ASL)

Deletion Reason: Below Screening Levels (BSL)

Background Levels (BKG) Essential Nutrient (EN)

Definitions: N/A = Not Applicable

NAV = Not Available COPC = Chemical of Potential Concern

ARAR/TBC = Applicable or Releveant and Appropriate Requirement/ To Be Considered

TTAL = Treatment technique action level

J = Estimated Value

C = Carcinogenic N = Noncarcinogenic August 31, 2000

10.22.5.6 Risk Summary

No COPCs were identified following the screening comparisons described in Section 8. As a result, no formal human health risk assessment was conducted for Wetland 63B.

10.22.6 Conclusions and Recommendations

Wetland 63B is classified as a blue-coded wetland, where contaminants were mostly isolated, generally below benchmark or reference values, and did not appear to be related to IR sites. The blue-coded wetlands were not studied further in Phase IIB/III. Since no COPCs were identified for Wetland 63B, no formal HHRA was conducted. Because no ecological or human health risks are present at Wetland 63B, no further action is recommended for this wetland.

10.23 WETLAND 72

10.23.1 Site Description

Wetland 72 is a drainage pathway that drains storm and surface water from the northwest side of Forrest Sherman Field and from the northern end of Wetland W-1 via a storm sewer that connects to Wetland 72 from the south. Surface water passing through Wetland 72 eventually drains into Bayou Grande via Wetland 39. Parsons and Pruitt described this area as a palustrine forested system surrounded by pines, oaks, and black titi (*Cliftonia monophylla*) (USEPA, 1991). Wetland 72 is roughly 3.2 acres in size. Some maintenance occurs at this location, as beaver dams constructed in the wetland are removed upon discovery to keep this drainage pathway open.

The IR site potentially affecting Wetland 72 is UST 18 (Crash Crew Training Area) via drainage from Wetland W1.

10.23.2 Nature and Extent

The methods for evaluating nature and extent are presented in Section 6. Figure 10-23-1 denotes the Phase IIA Wetland 72 sampling locations.

Sediment

Seventeen metals were detected in Wetland 72 sediment samples. Copper at location 7201 (38.9 ppm) exceeded the sediment benchmark level (18.7 ppm) at Wetland 72. Three pesticides were detected in Wetland 72 sediment samples, including 4,4'-DDT and its metabolites, at concentrations below basewide levels described in Section 6. No PCBs were detected in Wetland 72 sediment samples. Twelve SVOCs, mostly high and low molecular weight PAHs, were detected in Wetland 72 sediment samples. Fluoranthene at location 7201 (120 ppb) exceeded the sediment screening criteria (113 ppb). The VOCs acetone and methylene chloride were detected in Wetland 72 sediment samples. Acetone and methylene chloride are common laboratory contaminants.

Table 10-23-1 shows the Wetland 72 Phase IIA sediment sample results (frequency of detection,

range of detected concentrations, and average detected concentration). Table 10-23-2 compares

detected concentrations at each sample location to sediment benchmark levels, and lists calculated

HQs for each parameter. Only the detected parameters with benchmark levels are presented in

Table 10-23-2. The HQs will be further discussed in the ecological risk section (Section 10.23.4).

Surface Water

Thirteen metals were detected in the Wetland 72 surface water samples. Aluminum (895 ppb),

silver (4.4 ppb) and thallium (5.3 ppb) exceeded the respective surface water quality criteria of

87 ppb, 0.07 ppb, and 4 ppb at Wetland 72. No organics were detected in Wetland 72

surface water sample.

Table 10-23-3 shows the Wetland 72 Phase IIA surface water sample results (frequency of

detection, range of detected concentrations, and average detected concentration). Table 10-23-4

compares detected concentrations at each sample location to surface water quality criteria and lists

calculated HQs for each parameter. Only the detected parameters with water quality criteria are

presented in Table 10-23-4. The HQs will be further discussed ecological risk section

(Section 10.23.4).

10.23.3 Fate and Transport

The pathways evaluated for the wetland specific fate and transport correlate to those identified in

the conceptual model presented in Section 9. These pathways include: surface water/sediment

transport into the wetland; groundwater discharge into the wetland; sediment/surface water

transport within the wetland; sediment leaching to surface water within the wetland; and

surface water/sediment transport from the wetland. Sediment transport and storm water runoff

data are lacking; thus many evaluations are qualitative in nature. The method of evaluation of the

leaching from sediment to surface water was presented in Section 9. Table 10-23-5 presents those

contaminants present in sediment above benchmark levels and their calculated SSLs.

Contaminants present in surface water above water quality criteria were presented on

Table 10-23-4.

10-23-2

- Sediment Sample Location

Scale in Feet
0 75 150 300 450 600

NAS Pensacola Site 41 - NAS Pensacola Wetlands Remedial Investigation

FIGURE 10-23-1 PHASE IIA WETLAND 72 SAMPLING LOCATIONS

Plot Date: April 22, 1993 AML: /home4/penssoole-dir/mapping-dir/maps40-41/wetl-hi.ami

Table 10-23-1
Phase IIA Detected Concentrations in Wetland 72 Sediments

Parameter	Frequenc Detection		
Inorganics (mg/kg)			
Aluminum (Al)	2/2	736-2450	1593
Arsenic (As)	2/2	0.28-0.86	0.57
Barium (Ba)	2/2	1,3-2.3	1.8
Cadmium (Cd)	1/2	0.27	0.27
Calcium (Ca)	2/2	23,2-43.1	33.15
Chromium (Cr)	2/2	0.85-3.2	2.025
Copper (Cu)	2/2	1.2-38.9	20.05
Iron (Fe)	2/2	397-1510	953.5
Lead (Pb)	2/2	1.8-17.5	9.65
Magnesium (Mg)	2/2	20.3-50	35.15
Manganese (Mn)	2/2	1.3-10.7	6. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
Nickel (Ni)	1/2	1.4	1.4
Potassium (K)	2/2	8.4-29.7	19.05
Selenium (Se)	1/2	0.26	0.26
Sodium (Na)	2/2	3-8.7	5.85
Vanadium (V)	2/2	1.2-3.8	2.5
Zinc (Zn)	2/2	3.3-10.7	7
Pesticides and PCBs (μg/kg)			
4,4'-DDD	1/2	0.2	0.2
4,4'-DDE	1/2	0.24	0.24
4,4'-DDT	1/2	0.26	0.26
SVOCs (µg/kg)			
Anthracene	1/2	41	41
Вепzo(a)anthracene	1/2	47	47
Benzo(a)pyrene	·	43	43
Benzo(b)fluoranthene	1/2	90	90
Benzo(g,h,i)perylene	1/2	58	58

Table 10-23-1
Phase IIA Detected Concentrations in Wetland 72 Sediments

Parameter	Frequency of Detection	Range of Detected Concentrations	Average Detected Concentration
SVOCs (µg/kg) (Continued)			
Benzo(k)fluoranthene	1/2	27	27
Chrysene	1/2	47	47
Di-n-butylphthalate	1/2	43	43
Fluoranthene	2/2	30-120	75
Indeno(1,2,3-cd)pyrene	1/2	47	47
Phenanthrene	1/2	49	49
Pyrene	2/2	38-98	68
VOCs (μg/kg)			
Acetone	1/2	32	32
Methylene chloride	1/2	740	740

Note:

All results are in micrograms per kilogram (μ g/kg) or parts per billion (ppb) except for metals which are in milligrams per kilogram (mg/kg) or parts per million (ppm).

Transport into the Wetland

Surface Water/Sediment Pathway

Based on landform and watershed analysis, the following sources can contribute contamination to Wetland 72 through this pathway:

 Potential storm water runoff and sediment entrainment from the northwest side of Forrest Sherman airfield complex. During high tides and storm surges, surface water from Bayou Grande may enter the wetland.

The presence of a single sediment contaminant above benchmark level (see Table 10-23-5) validates the sediment transport pathway (albeit not greatly significant) and by inference the surface water pathway. Additionally, silver and thallium were present in surface water above standards, further validating the pathway.

Table 10-23-2 Wetland 72 Phase IIA Sediment Concentrations Compared to Benchmark Levels

Sample Location	Parameter	Delected Concentration	Sediment Benchmark Value (SBV)	но	SBV Relevence
WWW.	- B- 111	T-TIL-FILE	Parking 9	No.	Real Property
DESCRIPTION OF		2.17 (4.38)	120000	100	and the same
District	e man	100,000	100	100	min san
THE REAL PROPERTY.	-		200	- 10	100.00
7407.763		2.190	LCR.	ELECT	100
1100000	PM LADRES		III./2008	10	
Million He	(MONEY)		WELL	TOM:	-
1.GSS-MA	000000000000000000000000000000000000000	MPG	146	AM	100,000
1 September 1986	~ 110.	- SA -	MA	ALC: U	THE REAL PROPERTY.
Children Add			W. Tall	300	
2400	Year and	- 51	47	100	146
The second of	640 TEL	NE A. II		1800	
140,000		10.16.0		DOM:	1000
AND HOSE	_	10.10		975	ETTO CORPO
S. Property lies	940		10000	0.00	100.0
Committee of the				DIA.	1000
-		200	1 (25-12)	200	1.00
041M720201					
4,4'-DDD (UG	AKG)	0.2 1	1.22	0.16	ь
Arsenic (MG/	(G)	0.28 J	7.24	0.04	a.b
Chromium IM	G/KG)	0.85 1	52,3	0.02	ab
Copper (MG/K	(G)	1,2 0	18.7	0.05	ab
Fluoranthene		30 J	113	0.27	6
Load (MG/KG)	7.8	30,2	0.05	ар
Pyrene (UG/K	G)	38 J	153	0.25	b
Zinc (MG/KG)		1.3	124	£0.0	a b

Basewice level for 4,4'-DDE is 40 ppb. Basewice level for 4,4'-DDD is 50 ppb.

Basewide level for 4 4"-DDT is 20 ppb

⁽a) USEPA Screening Concentration for Sediment - EPA SSVs

⁽b) FDEP Sediment Quality Assessment Guidelines - FDEP SQAGs Some of the numbers in the table may vary because of rounding. Basewine levels (detailed in Section 6) for DDT and its metabolites

Table 10-23-3
Phase IIA Detected Concentrations in Wetland 72 Surface Water

Parameter	Frequency of Detection	Range of Detected Concentrations	Average Detected Concentration
Inorganics (μg/L)			
Aluminum (Al)	1/1	895	89 5
Barium (Ba)	1/1	8.8	8.8
Calcium (Ca)	1/1	11000	11000
Copper (Cu)	1/1	5.2	5.2
Iron (Fe)	1/1	559	559
Magnesium (Mg)	1/1	1140	1140
Manganese (Mn)	1/1	6.1	6.16
Potassium (K)	1/1	597	597
Silver (Ag)	1/1	4.4	4.4
Sodium (Na)	1/1	3870	3870
Thallium (TI)	17/1	5.3	5.3
Vanadium (V)	1/1	3	3
Zinc (Zn)	1/1	9	9:10

Note:

All results are in micrograms per liter $(\mu g/L)$ or parts per billion (ppb).

Groundwater Discharge Pathway

Based on potentiometric analysis, there are no known sources that would contribute contamination to Wetland 72 through this pathway. Therefore, the pathway is considered invalid.

Transport within the Wetland

Surface Water/Sediment Migration Pathway

The configuration of the wetland, along with landlord analysis, indicates that surface water and sediment movement is towards Wetland 39, and from there to Bayou Grande. Therefore, both sediment and surface water contamination can be expected to remain mobile.

Table 10-23-4 (1) Wetland 72 Phase IIA Surface Water Concentrations Compared to Water Quality Criteria

Sample Location	Parameter	UOM	Detected Concentration	Water Quality Criteria	HQ	Criteria Reference
041W720101	Freshwater					
Aluminum		UG/L	895.0	87.0	10.28736	а
Copper		UG/L	5.2	7.8	0.66667	аb
Iron		UG/L	559.0	1,000.0	0.559	аb
Silver		UG/L	4.4	0.07	62.85714	ь
Thallium		UG/L	5.3	4.0	1.325	а
Zinç		UG/L	9.0	70.2	0.12821	аb

Notes:

(b) FDEP Class III Water Quality Criteria (1996) Some of the numbers in the table may vary because of rounding.

⁽a) USEPA Water Quality Criteria (1995)

Table 10-23-5
Calculated Sediment Screening Values for Wetland 72

Parameter	USEPA or FDEP Surface Water Standard	Kd	SSL DF = 100	Maximum Concentration Detected	Leaching Potential DF = 100
Inorganics	(ppb)		(ррт)	(ppm)	
Copper	7.8 ^b	4.3E+02	336	38.9	NO
Organics	(ppb)		(ppb)	(ppb)	
Fluoranthene	39.8"	2.45E+02	9.01E+03	120	NO

Notes:

Kds are from: USEPA, 1996b (first preference); Superfund Chemical Data Matrix (USEPA, 1996c) (second preference); Texas Risk Reduction Program Concept Document 2, Volume 1, Appendix VII, 1996 (third preference); TERRA Model, Oak Ridge National Laboratory, 1984 (fourth preference — primary reference for inorganics).

Kd = normalized partitioning coefficient.

SSL = sediment screening level.

DF = dilution factor.

a = USEPA Freshwater Surface Water Chronic Screening Value (1995a).

b = FDEP Class III Water Quality Criteria (1996).

Sediment Leaching to Surface Water Pathway

One inorganic and one organic exceeded their respective sediment benchmark levels, but did not exceed their SSLs. Additionally, those parameters above standards in surface water were not above benchmark levels (which are lower values than SSLs) in sediment, suggesting the source for these contaminants is related to the surface water pathway. The sediment leaching pathway is considered invalid for this wetland, and sediment contamination is not expected to partition to surface water.

Transport from Wetland

Surface water and sediment movement can be expected to occur from the wetland into Wetland 39 and Bayou Grande systems, with some backlashing of surface water into the wetland to be expected during high tides.

10.23.4 Ecological Risk Assessment

HQs for Wetland 72 sediment samples are presented in Table 10-23-2. Phase IIA sediment sample results compared to the appropriate sediment benchmark levels revealed HQs above 1 for copper (2.08) and fluoranthene (1.06) at sample location 7201. Phase IIA surface water results revealed HQs greater than 1 for aluminum (10.29), silver (62.86), and thallium (1.33), also at sample location 7201. HQs greater than 1 indicate the potential for excess risk.

Wetland 72 is a blue-coded wetland (E/A&H, 1995a). Contaminants detected in the blue-coded wetlands were isolated and were generally below screening or reference values. In addition, contaminant exceedances did not appear to be related to IR sites. Therefore, the blue-coded wetlands were not studied further in Phase IIB/III. Color-codes, groupings and rationale for classification are described in Section 7.

10.23.5 Human Health Risk Assessment

10.23.5.1 Samples Included

Sediment

041M720101, 041M720201

Surface Water

041W720101

10.23.5.2 Current and Future Land Use

Wetland 72 is a drainage ditch on the north side of Forrest Sherman Field. Though the perimeter road around the airfield crosses Wetland 72, access to this road is restricted, and it is patrolled by base police. The new control tower for the airfield is to the southwest of the wetland, but access to this area is restricted to airfield employees and military personnel.

August 31, 2000

10.23.5.3 Fish Tissue COPCs

No fish tissue data were available for this wetland, and this exposure pathway would likely be incomplete; therefore, no COPCs were identified.

10.23.5.4 Sediment COPCs

As shown in Table 10-23-6, no sediment COPCs were identified.

10.23.5.5 Surface Water COPCs

As shown in Table 10-23-7, no surface water COPCs were identified.

10.23.5.6 Risk Summary

No COPCs were identified following the screening comparisons described in Section 8 and presented above. As a result, no formal human health risk assessment was conducted for Wetland 72.

10.23.6 Conclusions and Recommendations

Wetland 72 is classified as a blue-coded wetland, where contaminants were mostly isolated, generally below benchmark or reference values, and did not appear to be related to IR sites. The blue-coded wetlands were not studied further in Phase IIB/III. Since no COPCs were identified for Wetland 72, no formal HHRA was conducted. Because no ecological or human health risks are present at Wetland 72, no further action is recommended for this wetland.

TABLE 10-23-6 OCCURRENCE, DISTRIBUTION, AND SELECTION OF CHEMICALS OF POTENTIAL CONCERN NAS PENSACOLA SITE 41

Scenario Timeframe: Current and Future Medium: Sediment Exposure Medium: Sediment Exposure Point: Wetland 72 Sediment

Comment of the Commen																	7
		(1)		(1)							(2)	(3)	(4)	(5)	1	(6)
CAS Number	Chemical	Minimum Concentration	Minimum Qualifier	Maximum Concentration	Maximum Qualifier	Units	Location of Maximum Concentration	Detection Frequency	Range of Detection Limits	Mean	Concentration Used for Screening	Background Value	Adolescent Site Trespasser PRG	Commercial Maintenance Worker PRG	Potential ARAR/TBC Source	COPC Flag	Rationale for Contaminant Delection or Selection
72548	4,4'-DDD	0.2000	J	0.2000	J	UG/KG	041M720201	1 / 2	0.23 - 0.23	0.20	0.20	N/A	92000	57000 C	N/A	NO	BSL
72559	4,4'-DDE	0.2400		0.2400		UG/KG	041M720101	1 / 2	0.21 - 0.21	0.24	0.24	N/A	65000	41000 C	N/A	NO	BSL
50293	4,4'-DDT	0.2500	J	0.2600	t	UG/KG	041M720101	1 / 2	0.21 - 0.21	0.25	0.26	N/A	65000	41000 C	N/A	NO	BSL
67641	Acetone	32,0000		32.0000		UG/KG	041M720201	1 / 2	1600.00 - 1500.00	32.00	32.00	N/A	32000000	49000000 N	N/A	NO	BSL
7429905	Aluminum (Al)	736.0000		2450.0000		MG/KG	D41M720101	2 / 2	NAV	1593.00	2450.00	N/A	320000	490000 N	I N/A	NO	BSL
120127	Anthracene	41.0000	J	41,0000	J	UG/KG	041M720101	1 / 2	41.00 ~ 41.00	41.00	41.00	N/A	95000000	1500000000 እ	N/A	NO	BSL
7440382	Arsenic (As)	0.2800	J	0.8600		MG/KG	041M720101	2 / 2	NAV	0.57	0.86	N/A	15	9.2 0	N/A	NO	BSL
7440393	Barium (Ba)	1,3000	J	2.3000	J	MG/KG	041M720101	2 / 2	NAV	1.80	2.30	N/A	22000	34000 N	N/A	NO	BSL
56553	Benzo(a)anthracene	47.0000		47.0000		UG/KG	041M720101	1 / 2	41.00 ~ 41.00	47.00	47.00	N/A	30000	19000 C	N/A	NO	BSL
50328	Benzo(a)pyrene	43.0000	J	43.0000	J	UG/KG	041M720101	1 / 2	41.00 - 41,00	43.00	43.00	N/A	3000	1900 C	N/A	NO	BSL
205992	Benzo(b)fluoranthene	90.0000		90,0000		UG/KG	041M720101	1 / 2	41.00 - 41.00	90,00	90.00	N/A	30000	19000 C	N/A	NO	BSL
191242	Benzo(g,h,i)perylene	58.0000		58.0000		UG/KG	041M720101	1 / 2	41,00 - 41,00	58.00	58.00	N/A	9500000	15000000 N	N/A	NO	BSL
207089	Benzo(k)fluoranthene	27.0000	J	27.0000	J	UG/KG	041M720101	1 / 2	41.00 - 41.00	27.00	27.00	N/A	300000	190000 C	N/A	NO	BSL
7440439	Cadmium (Cd)	0.2700	J	0.2700	t	MG/KG	041M720101	1 / 2	0.19 - 0.19	0.27	0.27	N/A	320	490 N	I N/A	NO	BSL
7440702	Calcium (Ca)	23,2000	J	43.1000	J	MG/KG	041M720201	2 / 2	NAV	33,15	43.10	N/A	N/A	2500	N/A	NO	EN
7440473	Chromium (Cr)	0.8500	J	3.2000	J	MG/KG	041M720201	2 / 2	NAV	2.03	3.20	N/A	1600	2500 N	I NVA	NQ:	BSL
218019	Chrysene	47.0000		47.0000	'	UG/KG	041M720101	1 / 2	41.00 - 41.00	47.00	47,00	N/A	3000000	1900000 0	N/A	NO	BSL
7440508	Copper (Cu)	1.2000	J	38.9000		MG/KG	041M720201	2 / 2	NAV	20,05	38.90	N/A	13000	20000 N	I N/A	NO	BSL
84742	Di-n-butylphthalate	43.0000	J	43.0000	J	UG/KG	041M720101	1 / 2	410,00 - 410,00	43.00	43,00	N/A	32000000	49000000 N	I N/A	NO	BSL
206440	Fluoranthene	30.0000	J	120.0000	1	UG/KG	041M720101	2 / 2	NAV	75.00	120.00	N/A	13000000	20000000 N	I N/A	NO	BSL
193395	indeno(1,2,3-cd)pyrene	47.0000		47.0000		UG/KG	D41M720101	1 / 2	41.00 - 41.00	47.00	47.00	N/A	30000	19000 0	N/A	NO	BSL
7439896	Iron (Fe)	397.0000		1510.0000		MG/KG	041M720201	2 / 2	NAV	953.50	1510.00	N/A	N/A	N/A	N/A	NO	EN
7439921	Lead (Pb)	1,8000		17.5000		MG/KG	041M720201	2 / 2	NAV	9.65	17.50	N/A	400	400	OSWER	NO	BSL
7439954	Magnesium (Mg)	20,3000	J	50.0000	J	MG/KG	041M720101	2 / 2	NAV	35.15	50.00	N/A	N/A	N/A	N/A	NO	EN
7439965	Manganese (Mn)	1.3000		10.7000		MG/KG	041M720201	2 / 2	NAV	6.00	10.70	N/A	15000	23000 N	N/A	NO	BSL
75092	Methylene chloride	740.0000	J	740.0000	J	UG/KG	041M720101	1 / 2	12.00 - 12.00	740.00	740.00	N/A	2900000	1800000 0	N/A	NO	BSL
7440020	Nickel (NI)	1.4000	J	1.4000	J	MG/KG	041M720101	1 / 2	0.76 - 0.76	1,40	1,40	N/A	6300	9827 N	I N/A	NO	BSL
85018	Phenantivene	49,0000		49.0000		UG/KG	041M720101	1 / 2	41.00 - 41.00	49.00	49.00	N/A	9500000	15000000 N	I N/A	NO	BSL
7440097	Potassium (K)	8.4000	J	29.7000	J	MG/KG	041M720201	2 / 2	NAV	19.05	29.70	N/A	N/A	N/A	N/A	NO	EN
129000	Pyrene	38.0000	J	98,0000		UG/KG	041M720201	2 / 2	NAV	68.00	98.00	N/A	9500000	15000000 N	I N/A	NO	BSL
7782492	Selenium (Se)	0.2600	J	0.2600	J	MG/KG	041M720101	1 / 2	0.19 ~ 0.19	0.26	0.26	N/A	1600	2500 N	I N/A	NO	EN
7440235	Sodium (Na)	3.0000	J	8.7000	J	MG/KG	041M720101	2 / 2	NAV	5.85	8.70	N/A	N/A	N/A	N/A	NO	EN
7440622	Vanadium (V)	1.2000	J	3.8000		MG/KG	041M720201	2 / 2	NAV	2.50	3.80	N/A	2200	3400 N	I N/A	NO	BSL
7440666	Zinc (Zn)	3.3000		10,7000		MG/KG	041M720101	2 / 2	NAV	7.00	10.70	N/A	95000	150000 h	N/A	NO	EN

(1) Minimum/maximum detected concentration

(2) Maximum concentration used as screening value.

(3) No background values were developed for this media.

(4) PRGs for site trespasser scenario calculated based on equations and parameters presented in Section 8 of this report.

(5) PRGs for commercial maintenance worker scenario calculated based on equations and parameters presented in Section θ of this report.

(6) Rationale Codes Selection Reason: Above Screening Levels (ASL)

Deletion Reason: Below Screening Levels (BSL)

Background Levels (BKG)
No Toxicity Information (NTX)
Essential Nutrient (EN)

Definitions:

N/A = Not Applicable

NAV = Not Available

COPC = Chemical of Potential Concern

ARAR/TBC = Applicable or Releveant and Appropriate Requirement/ To Be Considered

OSWER = Office of Solid Waste and Emergency Response

J = Estimated Value

C = Carcinogenic

N Noncarcinogenic

TABLE 10-23-7 OCCURRENCE, DISTRIBUTION, AND SELECTION OF CHEMICALS OF POTENTIAL CONCERN NAS PENSACOLA SITE 41

Scenario Timeframe: Current and Future

Medium: Surface Water Exposure Medium: Surface Water Exposure Point: Welland 72 Surface Water

		(1)		(1)							(2)		(3)		4)		(5)
CAS Number	Chemical	Minimum Concentration	Minimum Qualifier	Maximum Concentration	Maximum Qualifier	Units	Location of Maximum Concentration	Detection Frequency	Range of Detection Limits	Mean	Concentration Used for Screening	Background Value	Adolescent Site Trespasser PRG	Commercial Maintenance Worker PRG	Potential ARAR/TBC Source	COPC Flag	Rationale for Contaminant Delection or Selection
7429905	Aluminum (Al)	895		895		UG/L	041W720101	1 / 1	NAV	895	895	N/A	120000	250000	N/A	NO	BSL
7440393	Barium (Ba)	8.8	J	8.8	l l	UG/L	041W720101	1 / 1	NAV	8.8	8.8	N/A	8300	18000 1	N/A	NO	BSL
7440702	Calcium (Ca)	11000		11000		UG/L	041W720101	1 / 1.	NAV	11000	11000	N/A	N/A	N/A	N/A	NO	EN :
7440508	Copper (Cu)	5.2	J	5.2	J	UG/L	041W720101	1 / 1	NAV	5.2	5.2	N/A	4800	10000 I	I N/A	NO	BSL
7439896	Iron (Fe)	559		559		UG/L	041W720101	1 / 1	NAV	559	559	N/A	N/A	N/A	N/A	NO	EN
7439954	Magnesium (Mg)	1140	J	1140	J	UG/L	041W720101	1 / 1	NAV	1140	1140	N/A	N/A	N/A	N/A	NO	EN
7439965	Manganese (Mn)	5.1	J	5.1	J	UG/L	041W720101	1 / 1	NAV	6.1	6.1	N/A	2400	5000 1	N/A	NO	BSL
7440097	Potassium (K)	597	J	597	J	UG/L	041W720101	1 / 1	NAV	597	597	N/A	N/A	N/A	N/A	NO	EN
7440224	Silver (Ag)	4.4	J	4.4	J	UG/L	041W720101	1 / 1	NAV	4.4	4.4	N/A	50 0	1300 1	N/A	NO	BSL
7440235	Sodium (Na)	3870	J	3870	J	UG/L	041W720101	1 / 1	NAV	3870	3870	N/A	N/A	N/A	N/A	NO	EN
7440280	The Burn (TI)	5.3	J	5.3	J	UG/L	041W720101	1 / 1	NAV	5,3	5.3	N/A	8.3	18	I N/A	МО	BSL
7440522	Vanadium (V)	3	J	3	J	UG/L	041W720101	1 / 1	NAV	3	3	N/A	N/A	N/A I	I N/A	NO	BSL
7440666	Zinc (Zn)	9	J	9	J	UG/L	041W720101	1 / 1	NAV	9	9	N/A	36000	76000	I N/A	NO	BSL

(1) Minimum/maximum detected concentration

(2) Maximum concentration used as screening value.

(4) PRGs for site trespasser scenario calculated based on equations and parameters presented in Section 8 of this report.

(5) PRGs for commercial maintenance worker scenario calculated based on equations and parameters presented in Section 8 of this report.

(8) Rationale Codes

Selection Reason: Above Screening Levels (ASL)

Deletion Reason: Below Screening Levels (BSL)

Background Levels (BKG)

No Toxicity Information (NTX)

Definitions: N/A = Not Applicable

NAV = Not Available

COPC - Chemical of Potential Concern

ARAR/TBC = Applicable or Releveant and Appropriate Requirement/ To Be Considered

J = Estimated Value

C = Carcinogenic

N = Noncarcinogenic

10.24 WETLAND 79

10.24.1 Site Description

Parsons and Pruitt described Wetland 79 as a palustrine emergent wetland (USEPA, 1991). Wetland 79 is south of Tow Way Road, and east of Forrest Sherman Field, at the south end of IR Site 6 (Fort Redoubt Rubble Disposal Area). Site 6 is a former borrow pit used as a construction demolition landfill from 1973 to 1982 at NAS Pensacola. Wetland 79 sat in a wet depression at the southern end of this former borrow pit. Site 6 was reactivated during the BRAC construction which occurred in 1995, and was used to dispose of demolition materials from Chevalier Field. Because of the amount of rubble requiring disposal, the Navy requested a permit to fill Wetland 79 from the Corps of Engineers. Because Wetland 79 was an isolated, man-induced wetland, the Corps issued the permit. The wetland was subsequently filled, and no longer exists. Wetland 79 data are presented in this RI report for completeness.

10.24.2 Nature and Extent

The methods for evaluating nature and extent are presented in Section 6. Figure 10-24-1 denotes the Phase IIA Wetland 79 sampling locations.

Sediment

Nineteen metals were detected in Wetland 79 sediment samples. Lead at location 7201 (42.7 ppm) exceeded the sediment benchmark level (30.2 ppm) at Wetland 79. Eleven pesticides were detected in Wetland 79 sediment samples, including 4,4'-DDT and its metabolites, dieldrin, endrin, endrin aldehyde, heptachlor, heptachlor epoxide, delta-BHC, and alpha/gamma-chlordane. 4,4'-DDT and its metabolites were detected below basewide levels. Four pesticides exceeded sediment benchmark levels at location 7901. Dieldrin (3.5 ppb), endrin (6.2 ppb), alpha-chlordane (38 ppb), and gamma-chlordane (45 ppb) each exceeded its respective sediment benchmark level at this location. No PCBs were detected in Wetland 72 sediment samples. Twelve SVOCs, mostly high- and low-molecular weight PAHs, were detected in Wetland 79 sediment samples.

Fluoranthene at location 7901 (130 ppb) exceeded its sediment benchmark level (113 ppb).

Toluene was the only VOC detected in Wetland 79 sediment samples.

Table 10-24-1 shows the Wetland 79 Phase IIA sediment sample results (frequency of detection,

range of detected concentrations, and average detected concentration). Table 10-24-2 compares

detected concentrations at each location to sediment benchmark levels, and lists calculated HQs

for each parameter. Only the detected parameters with benchmark levels are provided in

Table 10-24-2. The HQs will be further discussed in the ecological risk section (Section 10.24.4).

Surface Water

No surface water samples were collected at Wetland 79.

10.24.3 Fate and Transport

The pathways evaluated for the wetland specific fate and transport correlate to those identified in

the conceptual model presented in Section 9. These pathways include: surface water/sediment

transport into the wetland; groundwater discharge into the wetland; sediment/surface water

transport within the wetland; sediment leaching to surface water within the wetland; and

surface water/sediment transport from the wetland. Surface water, sediment transport and

storm water runoff data are lacking; thus the evaluation is qualitative in nature. The method of

evaluation of the leaching from sediment to surface water was presented in Section 9.

Table 10-24-3 presents those contaminants present in sediment above benchmark levels and their

calculated SSLs.

Transport into the Wetland

Surface Water/Sediment Pathway

Based on landform and watershed analysis, the following sources could have contributed

contamination to Wetland 79 through this pathway:

10-24-2

Table 10-24-1
Phase IIA Detected Concentrations in Wetland 79 Sediments

Parameter	Frequency of Detection	Range of Detected Concentrations	Average Detected Concentration
Inorganics (mg/kg)			
Aluminum (Al)	2/2	723 - 13600	7161.5
Arsenic (As)	1/2	1.9	1.9
Barium (Ba)	2/2	2.9 - 30.6	16.75
Beryllium (Be)	1/2	0.17	0.17
Calcium (Ca)	1/2	2140	2140
Chromium (Cr)	2/2	0.87 - 15	7.935
Cobalt (Co)	1/2	1	. 1
Copper (Cu)	2/2	0.64 ~ 6	3.32
Iron (Fe)	2/2	756 - 9520	5138
Lead (Pb)	2/2	2 - 42.7	22.35
Magnesium (Mg)	2/2	40 - 561	300.5
Manganese (Mn)	2/2	5.7 - 95.4	50.55
Nickel (Ni)	1/2	4.4	4.4
Potassium (K)	2/2	32.6 - 374	203.3
Selenium (Se)	1/2	0.78	0.78
Sodium (Na)	1/2	217	217
Thallium (Tl)	1/2	1.3	1.3
Vanadium (V)	2/2	1.5 - 20.5	11
Zinc (Zn)	1/2	44.7	44.7
Pesticides and PCBs (μg/kg)			
4,4'-DDD	1/2	14	14
4,4'-DDE	1/2	1.3	1.3
4,4'-DDT	1/2	3.5	3,5
Dieldrin	1/2	3.5	3.5
Endrin	1/2	6.2	6.2
Endrin aldehyde	1/2	0.74	0.74
Heptachlor	1/2	. 3	.3
Heptachlor epoxide	1/2	1.3	1.3
alpha-Chlordane	1/2	38	38
delta-BHC	1/2	0.29	0.29
gamma-Chlordane	1/2	45	45
Semivolatiles (μg/kg)			
4-Methylphenol (p-Cresol)	1/2	170	170
Benzo(a)anthracene	1/2	53	53
Benzo(a)pyrene	1/2	73	73
Benzo(b)fluoranthene	1/2	100	100
Benzo(g,h,i)perylene	1/2	83	. 83
Benzo(k)fluoranthene	1/2	50	50
Butylbenzylphthalate	2/2	22 - 57	÷ 39. 5
Chrysene	1/2	67	67
Di-n-butylphthalate	1/2	22	22
Fluoranthene	1/2	130	130

Table 10-24-1
Phase IIA Detected Concentrations in Wetland 79 Sediments

Parameter	Frequency of Detection	Range of Detected Concentrations	Average Detected Concentration		
Semivolatiles (µg/kg)					
Indeno(1,2,3-cd)pyrene	1/2	56	.56		
Pyrene	1/2	100	100		
Volatiles (μg/kg)					
Toluene	1/2	7	7		

Note:

All results are in micrograms per kilogram ($\mu g/kg$) or parts per billion (ppb), except for metals which are in milligrams per kilogram (mg/kg) or parts per million (ppm).

Potential storm water runoff and sediment entrainment from Sites 6, 7, and 5, and the paved areas near the eastern end of the E-W runway for Forrest Sherman Field complex.

The presence of sediment contaminants above SSVs (see Table 10-24-2) validates the sediment transport pathway, and by inference the surface water pathway. Seven organics — six pesticides and one semivolatile — and one inorganic — were detected above their benchmark levels. The nature of the contaminants suggest that the source to the wetland is from local and pesticide application, and runoff associated with the fuels from the airfield.

Groundwater Discharge Pathway

Based on potentiometric analysis, the following sources can contribute contamination to Wetland 79 through this pathway:

• Discharge from Sites 6, 7, 5 and 17. Groundwater from these sites have not been found to be contaminated, thus the pathway is considered invalid.

Table 10-24-2 Wetland 79 Phase IIA Sediment Concentrations Compared to Benchmark Levels

Sample Location	Parameter	Detected Concentration	Sediment Benchmark Value (SBV)	но	SBV Reference
MINE PROPERTY.	180	- 45 M		1830	THE REAL PROPERTY.
A September	s man	III DAKE	1000	- COD-	100
A FEET LOAD	economic and the second	100		1800	7400
STREET, STATE	-	170		100	100
-	-	D+40	100	THOUSAN	
1	COT THE	10 mm	118	10.	_
Common or other designation of the last of	ALC: NO	TOTAL CO.	100	· ·	
Security and	MPNI	millione and	190	-344	
- marine Com	mar.		100 C	AAn	SAA.
- C	CONTRACT OF		200	AM	100.00
300 MIS			A5	146	746
Desc 1993	Ye.		- 14		III 1.00 I
(Dec. 100)					B 200
CONTRACTOR .	o~ 1.811			No.	
Pleasure 1	-			0.00	
- property	of Charles I.	20.00		1000	-
Del grann		CONT.	- w	30~	- 00
AND REAL		100	-110	100 C	1000
COMPANIES AND REAL PROPERTY.		run ar su	- 10	200	-
240			-	F 20	Die.
041M790301					
Chromium (M	G/KG)	0.87	52.3	0.02	a b
Copper (MG/F		0.64 1	187	0.03	d.e
Lead (MG/KG		(2)	30.2	0.07	a ti

Basewide levels (detailed in Section 5) for DDT and its metabolites

Basewide level for 4.4'-DDE is 40 ppb. Basewide level for 4.4'-DDD is 50 ppb.

Basewide level for 4,4'-BDT is 20 ppb.

⁽a) USEPA Screening Concentration for Sediment - EPA SSVs
(b) FDEP Sediment Quality Assessment Guidelines - FDEP SQAGs
Some of the numbers in the table may very because of rounding.

Table 10-24-3
Calculated Sediment Screening Values for Wetland 79
NAS Pensacola Site 41

Parameter	USEPA or FDEP Surface Water Standard	Kd	SSL DF = 100	Maximum Concentration Detected	Leaching Potential DF = 100
Inorganics	(ррт)		(ppm)	(ррт)	
Lead	1.17 ^b	9E+02	154	42.7	NO
Organics	(ppb)		(ppb)	(ppb)	
4,4'- DDD	0.0064 *	3.56E+04	2.28E+04	14	NO
4,4'- DDT	0.001 a, b	9.35E+04	9.35E+03	3.5	NO
Chlordane (alpha and gamma)	0.0043**	4.27E+03	1.71E+03	45	NO
Dieldrin	0.0019 a, b	7.62E+02	1.45E+02	3.5	NO
Endrin	0.0023 a, b	4.37E+02	1E+02	6.2	NO
Fluoranthene	39.8*	3.81E+03	1. 52E+ 07	130	NO

Notes:

Kd for organics calculated using foc of 0.0356 (numerical average of all sediment samples).

Kds are from: USEPA, 1996b (first preference); Superfund Chemical Data Matrix (USEPA, 1996c) (second preference); Texas Risk Reduction Program Concept Document 2, Volume 1, Appendix VII, 1996 (third preference); TERRA Model, Oak Ridge National Laboratory, 1984 (fourth preference — primary reference for inorganics).

Kd = normalized partitioning coefficient.

SSL = sediment screening level.

DF = dilution factor.

a = USEPA Freshwater Surface Water Chronic Screening Value (1995a).

b = FDEP Class III Water Quality Criteria (1996).

Transport within the Wetland

Surface Water/Sediment Migration Pathway

The configuration of wetland, along with landform analysis, indicates that the wetland is self-enclosed, and does not feed another drainage pathway. Therefore, sediment contamination can be expected to remain within the wetland, and impetus for movement within the wetland influenced only by the direction(s) of storm water influx.

Sediment Leaching to Surface Water Pathway

Seven organics and one inorganic exceeded their respective benchmark levels. None exceeded their calculated SSL. Therefore, this pathway is considered invalid.

Transport from the Wetland

Physiographic analysis suggests that the wetland is self-enclosed, and is not directly connected to another feature via direct surface water drainage. Therefore this pathway is considered invalid, and sediment contamination remain within the wetland.

10.24.4 Ecological Risk Assessment

HQs for Wetland 79 sediment samples are presented in Table 10-24-2. Phase IIA sediment sample results compared to the appropriate sediment benchmark level revealed HQs above 1 for lead (1.41), fluoranthene (1.15), and the pesticides 4,4'-DDD (11.48), 4,4'-DDT (2.94), dieldrin (4.90), endrin (1.88), alpha-chlordane (22.35), and gamma-chlordane (26.47). As noted in the nature and extent section, the concentrations of 4,4'-DDD and 4,4'-DDT were below basewide levels. All HQs greater than 1 in Wetland 79 sediment samples occurred at sample location 7901. HQs greater than 1 indicate the potential for excess risk.

Wetland 79 is a blue-coded wetland (E/A&H, 1995a). Contaminants detected in the blue-coded wetlands were isolated and were generally below screening or reference values. In addition, contaminant exceedances did not appear to be related to IR sites. Therefore, the blue-coded wetlands were not studied further in Phase IIB/III. Color-codes, groupings and rationale for classification are described in Section 7.

10.24.5 Human Health Risk Assessment

10.24.5.1 Samples Included

Sediment

041M790101, 041M790301

August 31, 2000

10.24.5.2 Current and Future Land Use

Wetland 79 was at the south end of IR Site 6, the base construction debris landfill. During the

construction of the NATTC in 1996, this landfill was expanded using debris from the demolition

of the former NADEP facilities at Chevalier Field. After receiving a permit from the

Corps of Engineers, the expansion of the landfill encompassed Wetland 79, which was buried with

concrete debris. The area can be expected to continue to be used for this purpose in the future.

10.24.5.3 Fish Tissue COPCs

No fish tissue data were available for this wetland, and this exposure pathway would likely be

incomplete; therefore, no COPCs were identified.

10.24.5.4 Sediment COPCs

As shown in Table 10-24-4, no sediment COPCs were identified.

10.24.5.5 Risk Summary

No COPCs were identified following the screening comparisons described in Section 8 and

presented above. As a result, no formal human health risk assessment was conducted for

Wetland 79.

10.24.6 Conclusions and Recommendations

Because of the reactivation of the Site 6 construction and demolition landfill at NAS Pensacola,

Wetland 79 was filled under a Corps of Engineers permit and no longer exists. Therefore, no

further action is recommended for Wetland 79.

10-24-10

TABLE 10-24-4 OCCURRENCE, DISTRIBUTION, AND SELECTION OF CHEMICALS OF POTENTIAL CONCERN NAS PENSACOLA SITE 41

Scenario Timeframe: Current and Future Medium: Sediment Exposure Medium: Sediment Exposure Point: Welland 79 Sediment

(1) Adolescent Site Commercial Rationale for Location of Potential Minimum Maximum Minimum Maximum CORC Concentration Lised Background Trespasser Maintenance Cord a minant CAS Numbe Chemical Units Range of Detection Limits MEAN Maximum ARAR/TBC Concentration Qualifier Frequency Concentration Qualifier for Screening Value Screening Toxicity Worker Screening Flag Delection or Concentration Source Value Toxicity Value Selection 4.4'-DDD 72548 14.0000 J 14.0000 UG/KG 041M790101 0.22 14.00 14.00 N/A 92000 57000 N/A NO BSL 72559 4.4'-DDE 1.3000 1 3000 UG/KG 041M790101 1 / 0.22 J 0.22 1.3 1.3 N/A 65000 41000 С N/A NO BSL 50293 4,4'-ODT 3.5000 J 3 5000 UG/KG 041M790101 0.22 65000 0.22 3.5 3.5 N/A 41000 C N/A NΩ BSL 106445 4-Methylphenol (p-Cresol) 170 0000 170.0000 UG/KG 041M790101 420.00 420.00 170 170 N/A Ν 1600000 2500000 N/A NO BSL 7440382 Arsenic (As) 1.9000 J 1.9000 MG/KG 041M790301 0.14 0.14 1.9 19 N/A 15 9 С N/A NO BSL 56553 Benzo(a)anthracene 53.0000 J 53.0000 041M790101 UG/KG 42.00 42.00 53 53 N/A 30000 19000 С NO BSL N/A 50328 Benzo(a)ovrene 73 0000 73.0000 UG/KG 041M790101 42.00 73 73 С 42.00 N/A 3000 1900 N/A NO BSL 205992 Benzo(b)fluoranthene 100,0000 100 0000 UG/KG 041M790101 42.00 42.00 100 100 N/A 30000 19000 С N/A NO BSL 191242 Benzo(g,h,i)perylene 83,0000 83.0000 UG/KG 041M790101 42.00 42.00 9500000 15000000 83 83 N/A Ν N/A NO BSL 207089 50 0000 Benzo(k)fluoranthene J 50.0000 UG/KG 041M790101 J 42.00 42 00 50 50 N/A 300000 190000 С M/A NΩ BSL 7440417 Beryllium (Be) 0.1700 J 0 1700 MG/KG 041M790101 1 / .1 0.07 0.07 0.17 0.17 N/A 630 980 Ν N/A NO BSL 7440702 Calcium (Ca) 2140.0000 J 2140.0000 .1 MG/KG 041M790101 66.40 66 An 2140 2140 N/A N/A N/A N/A NO EΝ 218019 Chrysene 67.0000 J 67.0000 041M790101 UG/KG 420.00 420.00 67 67 N/A 3000000 1900000 С N/A NO BSL 7440484 Cobalt (Co) 1 0000 DJ 1.0000 OJ MG/KG 041M790101 0.14 0.14 1 N/A 19000 29000 Ν N/A NO BSL 84742 Di-n-butylphthalate 22.0000 22.0000 UG/KG 041M790301 880.00 880.00 22 22 N/A 32000000 49000000 Ν N/A NΩ BSL 60571 Dieldrin 3,5000 J 3.5000 UG/KG 041M790101 1 / 0.22 0.22 3.5 3.5 N/A 1400 860 С N/A NO BSL 7220B Endrin J 6 2000n 6.2000 UG/KG 041M790101 1 / 0.22 6.2 6.2 N/A 95000 150000 N/A NO N BSL 7421934 Endrin aldehyde 0.7400 J 0.7400 UG/KG D41M790101 1 / .1 0.22 0.22 0.74 0,74 N/A 95000 150000 Ν N/A NO BSL 206440 Fluoranthene 130,0000 DJ 130,0000 DJ ug/kg 041M790101 1 / 42.00 42 00 130 130 N/A 13000000 20000000 Ν N/A NO BSL Heptachior 76448 3.0000 J 3.0000 J UG/KG 041M790101 0.11 0.11 3 3 N/A 4900 3000 C N/A NO BSI 1024573 Heptachlor epoxide 1.3000 041M790101 J 1.3000 J UG/KG 1 / 0.11 0.11 1,3 1.3 N/A 2400 1500 С N/A NO BSL 193395 Indeno(1,2,3-cd)pyrene 56.0000 56.0000 UG/KG 041M790101 1 / J 42.00 42.00 56 56 N/A 30000 19000 С N/A NO BSL 7440020 Nickel (Ni) 4.4000 J 4.4000 MG/KG 041M790101 1 / 0.61 0.61 4.4 4.4 N/A 6300 Ν 9800 N/A NO BSL 129000 Pyrene 100.0000 1 100.0000 J UG/KG 041M790101 1 / 42.00 42.00 100 100 N/A 9500000 15000000 Ν N/A NO BSL Selenium (Se) 7782492 0.7800 J 0.7800 MG/KG 041M790101 1 / J 0.27 0.27 0.78 0.78 N/A 1600 2500 Ν N/A NO ĒΝ 7440235 Sodium (Na) 217.0000 J 217.0000 MG/KG 041M790101 8.50 8.50 217 217 N/A N/A N/A N/A NO FΝ 7440280 Thallium (TI) 1 3000 1.3000 .I MG/KG 041M790101 1 / 0.27 . 0.27 1.3 1.3 N/A 22 34 N/A NO BSL Ν 108883 Toluene 7 0000 7 0000 UG/KG 041M790101 1 / 1200 12.00 7 7 N/A 63000000 98000000 N N/A NO B\$L 7440666 Zinc (Zn) 44 7000 44.7000 MG/KG 041M790101 1 / 3.20 3.20 44.7 44.7 N/A 95000 150000 N/A NO EΝ 5103719 alpha-Chlordane 38.0000 J UG/KG 041M790101 1 / 38,0000 0.11 0.11 38 38 N/A 63000 39000 С N/A NO BSL 319868 delta-BHC 0.2900 0.2900 UG/KG 041M790101 1 / 0.11 -0.11 0.29 0.29 N/A 12000 7600 С N/A NO BSL 5103742 gamma-Chlordane 45.0000 J 45.0000 UG/KG 041M790101 1 / 0.11 0.11 45 45 N/A 63000 39000 С N/A NO BSL 7429905 Aluminum (Al) 723 0000 13500.0000 041M790301 MG/KG 2 / 7162 13600 N/A 320000 490000 Ν N/A NO ASL 7440393 Banum (Ba) 041M790301 2 / 2.9000 J 30,6000 MG/KG NAV 16.8 30.6 N/A 22000 34000 Ν N/A NO BSL 85687 Butylbenzylphthalate 22 0000 J 57,0000 UG/KG 041M790101 2 / NAV 39.5 57 N/A 63000000 98000000 Ν N/A NO BSL 7440473 Chromium (Cr) 0.8700 041M790101 2 / 15 0000 MG/KG NAV 7.94 15 N/A 1600 2500 NO N/A BSL Ν 7440508 Copper (Cu) 0.6400 6.0000 MG/KG 041M790101 2 / 2 NAV 3.32 N/A 13000 20000 N/A NO BSL 7439896 Iron (Fe) 756,0000 9520,0000 MG/KG 041M790101 2 / 2 NAV 5138 9520 N/A N/A N/A N/A NO ΕN 7439921 Lead (Pb) 2.0000 42.7000 MG/KG D41M790301 2 / NAV 22.4 42.7 N/A 400 400 N/A NO BS1 7439954 Magnesium (Mg) 40.0000 J 561.0000 MG/KG 041M790101 2 / NAV 301 561 N/A N/A N/A N/A NO EΝ 7439965 Manganese (Mn) 5,7000 95,4000 MG/KG 041M790101 2 / 2 NAV 50 B 95.4 15000 N/A 23000 Ν N/A NO BŞL

NAV

NAV

041M790301 2 /

041M790101 2 / 2

MG/KG

MG/KG

(1) Minimum/maximum detected concentration

7440097 | Potassium (K)

7440622 Vanadium (V)

(2) Maximum concentration used as screening value

(3) This chemical was not detected at background sampling locations.

(4) RBCs for site trespasser scenario. Calculated based on toxcicity values presented in USEPA Region III Risk-Based Concentration Tables, 1998

J.

374.0000

20.5000

(5) RBCs for residential scenario as presented in USEPA Region III Risk-Based Concentration Tables, 1998.

32 6000

1.5000

(6) Rationale Codes

Deletion Reason:

Selection Reas Above Screening Levels (ASL) Below Screening Levels (BSL)

Background Levels (BKG) No Toxicity Information (NTX) Essential Nutrient (EN)

Definitions

203

11

374

20.5

NAV = Not Available

N/A

N/A

N/A = Not Applicable

COPC = Chemical of Potential Concern

N/A

2200

ARAR/TBC = Applicable or Releveant and Appropriate Requirement/ To Be Considered

N/A

3400

N/A

N/A

NO

NO

ΕN

BSL

J = Estimated Value

C = Carcinogenic

N = Noncarcinogenic

Final Remedial Investigation Report NAS Pensacola Site 41 Section 10: Site-Specific Evaluations August 31, 2000

This page intentionally left blank.

10.25 Wetland W2

10.25.1 Site Description

Wetland W2, also known as the Southeast Drainage Ditch, drains surface and storm water from the northeastern end of Forrest Sherman Field and the Barrancas Cemetery area into the southern portion of Redoubt Bayou. This site was not classified or described by Parsons and Pruitt (USEPA, 1991), but was later added to the list by E&E, Inc. The Wetland W2 drainage system receives surface water from the cemetery area via buried twin-8 foot diameter culverts, which pass to under Taylor Road, emerging on the northwest side of Site 1 adjacent to Wetland 1. This feature continues to the southwest as an open drainage ditch for approximately 1,000 feet until it intersects Wetland W-2 about 900 feet upstream from Redoubt Bayou. Wetland W2 is tidally influenced from Redoubt Bayou to this intersection. An active NPDES permit location exists where the two ditches intersect. Wetland W2 and the intersecting ditch contain emergent vegetation such as cattails (Typha latifolia) and duck potato (Sagittaria sp). Vegetation is periodically cleared from this system to facilitate the free flow of water.

The IR site potentially affecting Wetland W2 is Site 16 (Brush Disposal Site), the disposal site for tree pruning and trimming from the late 1960s.

10.25.2 Nature and Extent

The methods for evaluating nature and extent are presented in Section 6. Figure 10-25-1 denotes the Phase IIA Wetland W2 sampling locations.

Sediment

Nineteen metals were detected in Wetland W2 sediment samples. Arsenic at location W203 (14.1 ppm) exceeded the sediment benchmark level (7.24 ppm) at Wetland W2. Eight pesticides were detected in Wetland W2 sediment samples, including 4,4'-DDT and its metabolites, aldrin, dieldrin endrin, alpha-chlordane, and delta-BHC. The PCB Aroclor-1260 was also detected in

August 31, 2000

every sample. 4,4'-DDT and its metabolites were below basewide levels. Basewide levels are

described in Section 6. No other pesticides or PCBs exceeded benchmark levels at Wetland W2.

Nine SVOCs, including high- and low-molecular weight PAHs and phthalate esters, were detected

in Wetland W2 sediment samples. Bis(2-ethylhexyl)phthalate exceeded its sediment benchmark

level (182 ppb) at location W201 (460 ppb). The VOC acetone, a common laboratory

contaminant, was detected in one Wetland W2 sediment samples.

Table 10-25-1 shows the Wetland W2 Phase IIA sediment sample results (frequency of detection,

range of detected concentrations, and average detected concentration). Table 10-25-2 compares

detected concentrations at each sample location to sediment benchmark levels, and lists calculated

HQs for each parameter. Only parameters with benchmark levels are listed in Table 10-25-2. The

HQs will be further discussed in the ecological risk section (Section 10.25.4).

Surface Water

Ten metals were detected in the single Wetland W2 surface water sample. Iron (309 ppb) and

copper (6.8 ppb) exceeded their surface water quality criteria (300 ppb and 2.9 ppb) at

Wetland W2. The SVOC 2-methylnapthalene was detected in Wetland W2 surface water sample.

Table 10-25-3 shows the Wetland W2 Phase IIA surface water sample results (frequency of

detection, range of detected concentrations, and average detected concentration). Table 10-25-4

compares detected concentrations at each sample location to surface water quality criteria and lists

calculated HQs for each parameter. Only parameters with water quality criteria are presented in

Table 10-25-4. The HOs will be further discussed in the ecological risk section (Section 10.25.4).

10-25-2

Table 10-25-1
Phase IIA Detected Concentrations in Wetland W2 Sediments

Parameter	Frequency of Detection	Range of Detected Concentrations	Average Detected Concentration
Inorganics (mg/kg)			
Aluminum (Al)	3/3	607-6700	3615.67
Arsenic (As)	2/3	0.5-14.1	7.3
Barium (Ba)	3/3	1-11.5	6.27
Beryllium (Be)	2/3	0.08-0.35	0.22
Cadmium (Cd)	1/3	0.18	0.18
Calcium (Ca)	3/3	285-1250	623
Chromium (Cr)	3/3	0.76-10.2	5.45
Cobalt (Co)	2/3	0.24-3.3	1.77
Copper (Cu)	3/3	1.3-4.7	3.07
Iron (Fe)	3/3	209-5130	2049
Lead (Pb)	3/3	2.3-17.1	9.5
Magnesium (Mg)	3/3	93.5-1660	636.17
Manganese (Mn)	3/3	1.2-6	3.4
Nickel (Ni)	3/3	0.8-9.2	3.77
Potassium (K)	3/3	32-503	207.67
Selenium (Se)	3/3	0.46-1.6	1.12
Sodium (Na)	2/3	254-2430	1342
Vanadium (V)	3/3	1,2-27	11.33
Zinc (Zn)	3/3	4.9-10.4	7.67
Pesticides and PCBs (µg/kg)			
4,4'-DDD	2/3	0.8-5.8	3.33
4,4'-DDE	2/3	0.38-2.4	1.39
4,4'-DDT	2/3	0.28-3.5	1.89
Aldrin	1/3	0.23	0.23
Aroclor-1260	3/3	1.7-5.6	3.7
Dieldrin	1/3	0.34	0.34
Endrin	2/3	0.77-2.5	1.64
alpha-Chlordane	2/3	0.14-0.22	0.18
delta-BHC	1/3	0.63	0.63
Semivolatiles (µg/kg)			
Benzo(b)fluoranthene	1/3	28	28
Butylbenzylphthalate	2/3	21-32	26.5
Chrysene	1/3	40	40
Di-n-butylphthalate	2/3	33-39	36
Diethylphthalate	1/3	220	220
Fluoranthene	1/3	47	47
Indeno(1,2,3-cd)pyrene	1/3	26	26
Pyrene	1/3	82	82
bis(2-Ethylhexyl)phthalate (BEHP)	2/3	55-460	257.5 ₈
Volatiles (µg/kg)			

Note:

All results are in micrograms per kilogram ($\mu g/kg$) or parts per billion (ppb), except for metals which are in milligrams per kilogram (mg/kg) or parts per million (ppm).

Table 10-25-2 Wetland W2 Phase IIA Sediment Concentrations Compared to Benchmark Levels

KG)) la(e (BEHP) (UG/KG)	5.8 D 2.4 J 3.5 J 0.14 J 0.5 J 460 0.14 J 5.4 40 J 8.34 J 0.34 J 0.34 J 0.37 J	1, 22 2,07 1,19 1,7 21,6 7,24 182 0,68 52,3 1,08 18,7 0,72 3,3	4:75 1:18 2:94 0:08 0:08 0:07 2:53 0:26 0:10 0:37 0:17 0:47	b b b b b ab b
) la(e (BEHP) (UG/KG)	2,4 J 3,5 J 0,14 J 0,5 J 1,60 0,18 J 5,4 40 J 3,2 0,34 J 0,77 J 47	2.07 1.19 1.7 21.6 7.24 182 0.68 52.3 108 18.7 0.75 3.3	1 18 2 94 0 08 0 08 0 07 2 53 0 26 0 10 0 37 0 17	b ab b ab b
) la(e (BEHP) (UG/KG)	2,4 J 3,5 J 0,14 J 0,5 J 1,60 0,18 J 5,4 40 J 3,2 0,34 J 0,77 J 47	2.07 1.19 1.7 21.6 7.24 182 0.68 52.3 108 18.7 0.75 3.3	1 18 2 94 0 08 0 08 0 07 2 53 0 26 0 10 0 37 0 17	b ab b ab b
) la(e (BEHP) (UG/KG)	35 J 014 J 17 J 05 J 460 018 J 54 40 J 32 034 J 077 J	1 19 1 7 21 6 7 24 182 0.68 52 3 188 187 0.75	2 94 0 08 0 08 0 07 2 53 0,26 0.10 0,37 0.17 0.47	b ab b ab b ab
) la(e (BEHP) (UG/KG)	0 14 J 1 7 J 0 5 J 460 0 18 J 5 4 40 J 3 2 0 34 J 6/77 J	17 21.6 7.24 182 0.68 52.3 188 18.7 0.72	0.08 0.08 0.07 2.53 0.26 0.10 0.3/ 0.17	ab b t ab b
) la(e (BEHP) (UG/KG)	1 / // 0 5 J -460 2 1 A J 5 A 40 J 3 Z 0 3 A J 0 7 7 J 47	21.6 7.24 182 0.68 52.3 109 18.7 0.72	0.08 9.07 2.53 0.26 0.10 0.3/ 0.17	b ab b ab b
late (BEHP) (UG/KG)	0 5 J -160 -2 18 J -5 A - A0 J -3 Z - 0 3 A J - D 7 7 J - 4 7	7.24 182 0.68 52.3 109 18.7 0.75 3.3	9.07 2.53 0,26 0.10 0.37 0.17 0.47	ab t ab b ab
	160 018 J 54 40 J 32 034 J 077 J	182 0.68 52.3 108 18.7 0.75 3.3	2 53 0,26 0.10 0.3/ 0.17 0.47	b ab b ab
	014 J 54 40 J 32 034 J 077 J	0.68 52.3 108 18.7 0.75 3.3	0,26 0.10 0,3/ 0.17 0.47	а в в в в
3	5,4 40 J 82 634 J 677 J 47	52.3 189 187 0.75 3.3	0.16 0.37 0.17 0.47	ab b ab 6
3	AG J 8.34 J 8.77 J 47	18.7 0.72 3.3	0.37 0.17 0.47	ь а в а
,	8.2 11.34 J 11.77 J 47	18.7 0.72 3.3	0.17	a b
,	0.34 J 0.77 J 47	0.75 3.3	0.47	û
3	10/77 J 47	1.3		
3	47		0.23	
)		147		er.
	17.1	113	0.42	ti .
		30,2	0.57	3 0
	137	15.9	0.08	аЬ
	82	193	6 54	b
	1.7	124	0,06	9-0
	100			
	1 18 1		244	100
	149 1		(Lia)	1000
	100	19.	446	- 1
	14.10	1946	8.14	1100
The same	7.7	200	TAME .	- P
	GOL	100	244	144
	100	940		100
	.3310	246	100	
	44.1	740	346	100
	149	100	100	1.00
	100		96.10	10.00
S.	5.6 1	21.6	0.26	h
				a la
				ab
		14 44 5		a ti
				a.u
		14.7 10.2 4.7 .1	14.1 7.24 16.2 52.3	14.1 7.24 1.95 16.2 52.3 0,20 4.7 J 16.7 0.25

Notes.

Basewide levels (detailed in Section 6) for DDT and its metabolites Basewide level for 4.4'-DDE is 40 ppb, Basewide level for 4.4'-DDD is 50 apb.

Basewide level for 4.4' DDT is 20 ppb.

⁽a) USEPA Screening Concentration for Sediment - EPA SSVs
(b) FDEP Sediment Quality Assessment Guidelines - FDEP SOAGs
Some of the numbers in the table may vary because of rounding.

Table 10-25-2 Wetland W2 Phase IIA Sediment Concentrations Compared to Benchmark Levels

Sample Location	Parameter	Detected Concentration	Sediment Benchmark Value (SBV)	ρн	SBV Reference
Lead (MG/KG		9.1	30.2	0.30	аb
Nickel (MG/K0	3)	9.2 J	15.9	0.58	аb
Zinc (MG/KG)		10.4	124	0.08	аb

Notes:

(a) USEPA Screening Concentration for Sediment - EPA SSVs

(b) FDEP Sediment Quality Assessment Guidelines - FDEP SQAGs

Some of the numbers in the table may vary because of rounding. Basewide levels (detailed in Section 6) for DDT and its metabolites

Basewide level for 4,4'-DDE is 40 ppb.

Basewide level for 4,4'-DDD is 50 ppb.

Basewide level for 4,4'-DDT is 20 ppb.

Table 10-25-3
Phase IIA Detected Concentrations in Wetland W2 Surface Water

Parameter	Frequency of Detection	Range of Detected Concentrations	Average Detected Concentrations
Inorganics (µg/L)			
Aluminum (Al)	1/1	213.00	213.00
Barium (Ba)	1/1	8.20	8.20
Calcium (Ca)	1/1	15000.00	15000.00
Copper (Cu)	1/1	6.80	6.80
Iron (Fe)	1/1	309.00	309.00
Magnesium (Mg)	1/1	1450.00	1450.00
Manganese (Mn)	1/1	17.20	17.20
Potassium (K)	1/1	1870.00	1870.00
Sodium (Na)	1/1	5260.00	5260.00
Zinc (Zn)	1/1	8.80	8.80
Semivolatiles (µg/L)			
2-Methylnaphthalene	1/1	1,00	1.00

Note:

All results are in micrograms per liter ($\mu g/L$) or parts per billion (ppb).

10.25.3 Fate and Transport

The pathways evaluated for the wetland specific fate and transport correlate to those identified in the conceptual model presented in Section 9. These pathways include: surface water/sediment transport into the wetland; groundwater discharge into the wetland; sediment/surface water transport within the wetland; sediment leaching to surface water within the wetland; and surface water/sediment transport from the wetland. Sediment transport and storm water runoff data are lacking: thus many evaluations are qualitative in nature. The method of evaluation of the leaching from sediment to surface water was presented in Section 9. Table 10-25-5 presents those contaminants present in sediment above benchmark levels and their calculated SSLs. Contaminants present in surface water above water quality criteria were presented in Table 10-25-4.

Table 10-25-4 (1) Wetland W2 Phase IIA Surface Water Concentrations Compared to Water Quality Criteria

Sample Location	Parameter	UOM	Detected Concentration	Water Quality Criteria	на	Criteria Reference
041WW20201	Saltwater					
Aluminum		UG/L	213.0	1,500.0	0.142	b
Copper		UG/L	6.8	2.9	2.34483	аb
Iron		UG/L	309.0	300.0	1.03	b
Zinc		UG/L	8.8	86.0	0.10233	a b

Notes:

(a) USEPA Water Quality Criteria (1995)
(b) FDEP Class III Water Quality Criteria (1996)
Some of the numbers in the table may vary because of rounding.

Section 10: Site-Specific Evaluations

August 31, 2000

Table 10-25-5
Calculated Sediment Screening Values for Wetland W2

Parameter	USEPA or FDEP Surface Water Standard	Kd	SSL DF = 100	Maximum Concentration Detected	Leaching Potential DF = 100
Inorganics	(ррт)		(ррт)	(ррт)	
Arsenic	36.*	2.9E+01	146	14.1	NO
Organics	(ppb)		(ppb)	(ppb)	
4,4 DDE	0.14	2.77E+05	2.9E+08	2.4	NO.
4,4 DDD	0.025 ª	6.2E+04	3.97E+04	5.8	NO
4,4 DDT	0.001 a.b	1.63E+05	1,63E+04	3.5	NO
Bis(2-ethylhexyl)phthalate	3 b	9.37E+05	2.81E+07	460	NO

Notes:

Kd for organics calculated using foc of .062 (numerical average of all sediment samples).

Kds are from: USEPA, 1996b (first preference); Superfund Chemical Data Matrix (USEPA, 1996c) (second preference); Texas Risk Reduction Program Concept Document 2, Volume 1, Appendix VII, 1996 (third preference); TERRA Model, Oak Ridge National Laboratory, 1984 (fourth preference — primary reference for inorganics).

Kd = normalized partitioning coefficient.

SSL = sediment screening level.

DF = dilution factor.

USEPA Saltwater Surface Water Chronic Screening Value (1995a).

b = FDEP Class I Water Quality Criteria (1996).

Transport into the Wetland

Surface Water/Sediment Pathway

Based on landform and watershed analysis, the following sources can contribute contamination to Wetland W2 through this pathway:

• Potential storm water runoff and sediment entrainment from Sites 16, 5, 6, and the east end of the E-W runway for Forrest Sherman Field. There is direct surface water drainage from Wetland 1 (which receives runoff from Sites 1 and 16), and a direct surface water connection to Bayou Redoubt. Back flushing of surface water in a landward direction during high tides and storm events can be expected.

The presence of sediment contaminants above benchmark levels (see Table 10-25-5) validates the sediment transport pathway, and by inference the surface water pathway. No surface water contaminants were detected.

Groundwater Discharge Pathway

Based on potentiometric analysis, the following sources can contribute contamination to Wetland W2 through this pathway:

• Discharge from Sites 16, 5, and 6. Groundwater at these sites has not been shown to be contaminated, thus the pathway is considered invalid.

Transport within the Wetland

Surface Water/Sediment Migration Pathway

The configuration of the wetland, along with landform analysis, indicates that surface water and sediment movement is towards Wetland 1 and Bayou Redoubt. However, tidal fluctuations can create a temporary landward movement. Therefore, both sediment and surface water contaminants can be expected remain mobile.

Sediment Leaching to Surface Water Pathway

One metal, one SVOC, and three pesticides exceeded their sediment benchmark levels (see Table 10-25-5). None of the parameters exceeded their calculated SSL and corresponding detections of arsenic, SVOCs or pesticides were not noted in the surface water sample. Given the lack of parameters above SSLs, this pathway is considered invalid.

Transport from the Wetland

Surface water and sediment movement can be expected to occur from the wetland into Wetland 1 and Bayou Redoubt, and sediment contamination will remain mobile.

August 31, 2000

10.25.4 Ecological Risk Assessment

HQs for Wetland W2 sediment samples are presented in Table 10-25-2.

Phase IIA sediment sample results compared to the appropriate sediment benchmark levels

revealed HQs above 1 for arsenic (1.95) at sample location W203 and bis(2-ethylhexyl)phthalate

(2.52) at sample location W201. The sample results also revealed HQs above 1 for 4,4'-DDD

(4.75), 4,4'-DDE (1.16), and 4,4'-DDT (2.94), at sample location W201, respectively. However,

as noted in the nature and extent discussion, these concentrations of 4,4'-DDT and its metabolites

were below basewide levels. Phase IIA surface water results revealed HQs greater than 1 for

copper (2.34), and iron (1.03) at sample location W202. HQs greater than 1 indicate the potential

for excess risk.

Wetland W2 is a blue-coded wetland (E/A&H, 1995a). Contaminants detected in the blue-coded

wetlands were isolated and were generally below benchmark or reference values. In addition,

contaminant exceedances did not appear to be related to IR sites. Therefore, the blue-coded

wetlands were not studied further in Phase IIB/III. Color-codes, groupings and rationale for

classification are described in Section 7.

10.25.5 Human Health Risk Assessment

10.25.5.1 Samples Included

Sediment

041MW20101, 041MW20201, 041MW20301

Surface Water

041WW20201

10-25-12

10.25.5.2 Current and Future Land Use

Wetland W2 is west of IR site 16, and east of the perimeter road that circumvents Forrest Sherman Field. The area is a part of the over-run for Runway 07/25, the main runway used at the airfield, and has restricted access. Wetland W-2 is used solely as a drainage ditch, so it has no recreational swimming or fishing use. Maintenance workers might occasionally trespass in the area surrounding this wetland. However, airfield security personnel and base police patrol this area to keep the general public away.

10.25.5.3 Fish Tissue COPCs

No fish tissue data were available for this wetland, and this exposure pathway would likely be incomplete; therefore, no COPCs were identified.

10.25.5.4 Sediment COPCs

As shown in Table 10-25-6, no sediment COPCs were identified.

10.25.5.5 Surface Water COPCs

As shown in Table 10-25-7, no surface water COPCs were identified.

10.25.5.6 Risk Summary

No COPCs were identified following the screening comparisons described in Section 8 and presented above. As a result, no formal human health risk assessment was conducted for Wetland W2.

10.25.6 Conclusions and Recommendations

Wetland W2 is classified as a blue-coded wetland, where contaminants were mostly isolated, generally below benchmark or reference values, and did not appear to be related to IR sites. The blue-coded wetlands were not studied further in Phase IIB/III. Since no COPCs were identified for Wetland W2, no formal HHRA was conducted. Because no ecological or human health risks are present at Wetland W2, no further action is recommended for this wetland.

TABLE 10-25-6 OCCURRENCE, DISTRIBUTION, AND SELECTION OF CHEMICALS OF POTENTIAL CONCERN NAS PENSACOLA SITE 41

Scenario Timetrame. Current and Future Medium: Sediment Exposure Medium: Sediment Exposure Point: Wetland W2 Sediment

		(1)		(1)							(2)	(3)	(4)		(5)			(6)
CAS Number	Chemical	Minimum Concentration	Minimum Qualifier	Maximum Concentration	Maximum Qualifier	Undis	Location of Maximum Concentration	Detection Frequency	Range of Detection Limits	Меал	Concentration Used for Screening	Sackground Value	Adolescent Site Trespasser PRG	Commercial Maintenance Worker Screening Toxicity Value		Potential ARAR/TEC Source	COPC Flag	Rationale for Contaminant Delection or Selection
	4,4'-DDD	0.86		5.80	D	UG/KG	041MW20201	2 / 3	0.91 - 0,91	2.00	5.80	N/A	92000	57000	С	N/A	NO	BSL
	4,4'-DDE	0.38	J	2,40	J	UG/KG	041MW20101	2 / 3	0.91 - 0.91	2.00	2.40	N/A	65000	41000	C	N/A	NO	BSL
	4,4'-DDT	0.28	J	3.50	J	UG/KG	041MW20201	2 / 3	0.91 - 0.91	2.00	3.50	N/A	65000	41000	C	N/A	NO	BSL
	Acetone	210.00		210.00		UG/KG	041MW20301	1 / 3	28.00 - 54.00	1.00	210.00	N/A	32000000	49000000	N	N/A	NO	BSL
309002	Aldrin	0.23	J	0.23	J	UG/KG	041MW20101	1 / 3	0.10 - 0.46	1.00	0.23	N/A	1300	810	C	N/A	NO	BSL
	alpha-Chlordane	0.14	J	0.22		UG/KG	041MW20101	2 / 3	0,46 - 0,46	2.00	0.22	N/A	63000	39000	C	N/A	NO	BSL
	Aluminum (Al)	607.00	1 1	6700.00		MG/KG	041MW20101	3 / 3	NAV	3615.67	6700.00	N/A	32000	490000	N	N/A	NO	BSL
	Aroclor-1260	1.70	J	5,60	J	UG/KG	041MW20101	3 / 3	NAV	3.70	5.60	N/A	11000	6900	c	N/A	NO	BSL
R (Arsenic (As)	0.50	J	14.10		MG/KG	041MW20101	2 / 3	0.14 - 0.14	2.00	14.10	N/A	15	9.2	C	N/A	NO	BSL
	Barium (Ba)	1.00	J	11.50	J	MG/KG	041MW20101	3 / 3	NAV	6.27	11.50	N/A	22000	34000	N	N/A .	NO	BSL
	Benzo(b)fluoranthene	28.00	J	28.00	J	UG/KG	041MVV20101	1 / 3	41,00 - 370,00	1,00	28.00	N/A	30000	19000	c	N/A	NO	BSL
N 3	Beryllium (Be)	0.08	J	0.35	J	MG/KG	041MW20301	2 / 3	0.07 - 0.07	2.00	0.35	N/A	630	980	N	N/A	NO]	BSL
	bis(2-Ethylhexyl)phthalate (BEHP)	55.00	J	460,00		UG/KG	041MW20201	2 / 3	3700.00 - 3700.00	2.00	460.00	N/A	1600000	980000	C	N/A	NO	BSL
11 1	Butylbenzylphthalate	21.00	J	32.00	J	UG/KG	041MW20201	2 / 3	3700,00 - 3700,00	2.00	32.00	N/A	63000000	98000000	N	N/A	МО	BSL
	Cadmium (Cd)	0.18	J	0.18	J	MG/KG	041MW20301	1 / 3	0.14 - 0.62	1.00	0.18	N/A	320	490	N	N/A	NO	BSL
7440702	Calcium (Ca)	285.00	J	1250,00	J	MG/KG	041MW20201	3 / 3	NAV	623.00	1250,00	N/A	N/A	N/A	- 1	N/A	NO	EN
7440473	Chromium (Cr)	0.76		10.20]		041MW20101	3 / 3	NAV	5.45	10.20	N/A	1600	2500	N	N/A	NO	BSL
218019	Chrysene	40.00	J	40.00	J	UG/KG	041MW20101	1 / 3	41.00 - 370.00	1.00	40.00	N/A	3000000	1900000	C	N/A	NO	BSL
7440484	Cobalt (Co)	0.24	J	3.30	J	MG/KG	041MW20301	2 / 3	0.14 - 0.14	2.00	3.30	N/A	19000	29000	N	N/A	NO	BSL
	Copper (Cu)	1.30	J	4.70	J		041MW20301	3 / 3	NAV	3,07	4.70	N/A	13000	20000	N	N/A	NO	BŞL
319868	delta-BHC	0.63		0.63		UG/KG	041MW20101	1 / 3	0.10 - 0.46	1.00	0.63	N/A	12000	7600	C	N/A	NO	BSL
	Dieldrin	0.34	J	0.34	J	UG/KG	041MW20101	1 / 3	0.21 - 0.91	1.00	0.34	N/A	1400	860	C	N/A	NO	BSL
84662	Diethylphthalate	220.00	J	220.00	J	UG/KG	041MW20301	1 / 3	410.00 - 430.00	1.00	220.00	N/A	250000000	390000000	N	N/A	NO	BSL
	Di-n-butylphthalate	33.00	J	39.00	J	UG/KG	041MW20101	2 / 3	3700.00 - 3700.00	2.00	39.00	N/A	32000000	49000000	N	N/A	NO	BSL
72208	Endrin	0.77	J	2.50	J		041MW20101	2 / 3	0.21 - 0.21	2,00	2.50	N/A	95000	150000	N	N/A	NO	BSL
206440	Fluoranthene	47.00		47.00			041MW20101	1 / 3	41.00 - 370.00	1.00	47.00	N/A	13000000	20000000	N	N/A	NO	BSL
193395	Indeno(1,2,3-cd)pyrene	26.00	J	26.00	J	UG/KG	041MW20101	1 / 3	41.00 - 370.00	1.00	26.00	N/A	30000	19000	C	N/A	NO	BISL
7439896	Iron (Fe)	209.00		5130.00		MG/KG	041MW20301	3 / 3	NAV	2049.00	5130,00	N/A	N/A	N/A	- 1	N/A	NO	EN
7439921	Lead (Pb)	2.30		17.10		MG/KG	041MW20101	3 / 3	NAV	9.50	17.10	N/A	400	400	- 1	N/A	NO	BASL
	Magnesium (Mg)	93.50	J	1660.00		MG/KG	041MW20201	3 / 3	NAV	636.17	1660.00	N/A	N/A	N/A	- 1	N/A	NO	EN
	Manganese (Mn)	1.20		6.00		MG/KG	041MW20101	3 / 3	NAV	3.40	6.00	N/A	15000	23000	N	N/A	NO	BSL
D 1	Nickel (Ni)	0.80	1	9.20	J	MG/KG	041MVV20101	3 / 3	NAV	3,77	9,20	N/A	6300	9800	N	N/A	NO	BSL
	Potassium (K)	32.00	J	503,00	J	MG/KG	041MVV20101	3 / 3	NAV	207.67	503.00	N/A	N/A	N/A	1	N/A	NO	EN
129000	Pyrene	82 00		82.00		UG/KG	041MVV20101	1 / 3	41.00 - 370.00	1.00	82.00	N/A	9500000	15000000	N	N/A	NO	BSL
	Selenium (Se)	0.46	J	1.60	J	MG/KG	041MW20101	3 / 3	NAV	1.12	1,60	N/A	1600	2500	N	N/A	NO	BSL
e 1	Sodium (Na)	254.00	1 1	2430.00			041MW20301	2 / 3	6.30 - 6.30	2.00	2430.00	N/A	N/A	N/A		N/A	NO	EN
	Vanadium (V)	1.20	J	27.00		MG/KG	041MW20101	3 / 3	NAV	11.33	27.00	N/A	2200	3400	N	N/A	NO	BSL
7440666	Zinc (Zn)	4.90		10.40		MG/KG	041MW20101	3 / 3	NAV	7.67	10.40	N/A	95000	150000	N	N/A	NO	BSL.

- (1) Minimum/maximum detected concentration
- (2) Maximum concentration used as screening value.
- (3) No background values were developed for this media.
- (4) PRGs for site trespasser scenario calculated based on equations and parameters presented in Section 8 of this report.
- (5) PRGs for commercial maintenance worker scenario calculated based on equations and parameters presented in Section 8 of this report.
- (6) Rationale Codes Selection Reason:

Above Screening Levels (ASL) Deletion Reason: Below Screening Levels (BSL)

Background Levels (BKG) No Toxicity Information (NTX) Essential Nutrient (EN)

Definitions:

N/A = Not Applicable

NAV = Not Available

COPC - Chemical of Potential Concern

ARAR/TBC = Applicable or Releveant and Appropriate Requirement/ To Be Considered

OSWER = Office of Solid Waste and Emergency Response

J = Estimated Value

C = Carcinogenic

N Noncarcinogenic

TABLE 10-25-7 OCCURRENCE, DISTRIBUTION, AND SELECTION OF CHEMICALS OF POTENTIAL CONCERN NAS PENSACOLA SITE 41

Scenario Timeframe: Current and Future Medium: Surface Water

Exposure Medium: Surface Water Exposure Point: Wetland W2 Surface Water

CAS Number	Chemical	(1) Minimum Concentration	Minimum Qualifier	(1) Maximum Concentration	Maximum Qualifier	Units	Location of Maximum Concentration	Detection Frequency	Range of Detection Limits	Mean	(2) Concentration Used for Screening	Background Value	(3) Adolescent Site Trespasser PRG	Commercial Maintenance Worker PRG	Potent ARAR/I Scure	COPC Flag	(5) Rationale for Contaminant Delection or Selection
91576	2-Methylnaphthalene	1		1		UG/L	041WW20201	1 / 1	NAV	1	1	N/A	330	1000	N N/A	NO	BSL
7429905	Aluminum (Al)	213		213		UG/L	041WW20201	1 / 1	NAV	213	213	N/A	120000	250000	N N/A	NO	BSL
7440393	Barium (Ba)	8.2	J	8.2	l 1	UG/L	041WW20201	1 / 1	NAV	8.2	B.2	N/A	8300	18000	N N/A	NO	BSL
7440702	Calcium (Ca)	15000		15000	[UG/L	041WW20201	1 / 1	NAV	15000	15000	N/A	N/A	N/A	N/A	NO	EN
7440508	Copper (Cu)	6.8	J	6,8	J	UG/L	041WW20201	1 / 1	NAV	6.8	6.8	N/A	4800	10000	N N/A	NO	BSL
7439896	Iron (Fe)	309		309		UG/L	041WW20201	1 / 1	NAV	309	309	N/A	N/A	N/A	N/A	NO	EN
7439954	Magnesium (Mg)	1450	J	1450	J	UG/L	041WW20201	1 / 1	NAV	1450	1450	N/A	N/A	N/A	N/A	NO	EN
7439965	Manganese (Mn)	17.2		17.2		UG/L	041WW20201	1 / 1	NAV	17.2	17.2	N/A	2400	5000	N N/A	NO	BSL
7440097	Potassium (K)	1870	J	1870	J	UG/L	041WW20201	1 / 1	NAV	1870	1870	N/A	N/A	N/A	N/A	NO	EN
7440235	Sodium (Na)	5260		5260		UG/L	041WW20201	1 / 1	NAV	5260	5260	N/A	N/A	N/A	N/A	NO	EN
7440666	Zinc (Zn)	8.8	J	8.8	J	UG/L	041WW20201	1 / 1	NAV	8.8	8.8	N/A	36000	76000	N N/A	NO	BSL

(1) Minimum/maximum detected concentration

(2) Maximum concentration used as screening value.

(4) PRGs for site trespasser scenario calculated based on equations and parameters presented in Section 8 of this report,

(5) PRGs for commercial maintenance worker scenario calculated based on equations and parameters presented in Section 8 of this report.

(6) Rationale Codes

Selection Reason: Above Screening Levels (ASL) Deletion Reason: Below Screening Levels (BSL)

Background Levels (BKG)

No Toxicity Information (NTX)

Definitions: N/A = Not Applicable

NAV = Not Available

COPC = Chemical of Potential Concern

ARAR/TBC = Applicable or Releveant and Appropriate Requirement/ To Be Considered

J = Estimated Value C = Carcinogenic N = Noncarchogenic Final Remedial Investigation Report NAS Pensacola Site 41 Section 10: Site-Specific Evaluations August 31, 2000

This page intentionally left blank.

10.26 WETLAND 25

10.26.1 Site Description

Wetland 25 is off Bayou Grande to the west of Redoubt Bayou. Parsons and Pruitt (USEPA, 1991) divided this area into two distinctive sites, Wetlands 25A and 25B. Wetland 25A is small inland palustrine wetland, whereas Wetland 25B is an estuarine wetland lying seaward of Wetland 25A. Wetland 25B is tidally influenced from Bayou Grande. A minor natural surface water drainage pathway runs through Wetland 25A, discharging to the open water part of Wetland 25B. Wetland 25B supports a large stand of black needlerush (Juncus roemerianus). No IR sites exist in the vicinity of Wetland 25.

10.26.2 Nature and Extent

The methods for evaluating nature and extent are presented in Section 6. Figure 10-26-1 denotes the Phase IIA Wetland 25 sampling locations.

Sediment

Nineteen metals were detected in Wetland 25 sediment samples. Five metals exceeded sediment benchmark levels at Wetland 25. At sample location 2502, arsenic (8.0 ppm) and lead (32.1 ppm) exceeded benchmark levels. At sample location 2503, arsenic (8.8 ppm), cadmium (1.3 ppm), chromium (59.1 ppm), copper (19.6 ppm), and lead (58.7 ppm) exceeded benchmark levels. Seven pesticides were detected at Wetland 25, including 4,4-DDE, 4,4'-DDT, aldrin, alpha/gamma-BHC, endrin, and alpha-chlordane. 4,4'-DDT at sample location 2501 (1.8ppb) exceeded its benchmark level of 1.19 ppb. However, 4,4'-DDD and 4,4'-DDT detections were below basewide levels (see Section 6). Gamma-BHC at sample location 2503 (1.3 ppb) exceeded its sediment benchmark level (0.32 ppb).

Aroclor-1254 was detected below its sediment benchmark level in all samples. The SVOC benzo(b)fluoranthene was detected at location 2503 below its sediment benchmark criteria.

Final Remedial Investigation Report

NAS Pensacola Site 41

Section 10: Site-Specific Evaluations

August 31, 2000

Two VOCs were detected, acetone at 2503 and tetrachloroethene at 2501. Acetone is a common

laboratory contaminant.

Table 10-26-1 shows the Wetland 25 Phase IIA sediment sample results (frequency of detection,

range of detected concentrations, and average detected concentration). Table 10-26-2 compares

detected concentrations at each sample location to sediment benchmark levels, and lists calculated

HQs for each parameter. Only the detected parameters with benchmark levels are presented in

Table 10-26-2. The HQs will be further discussed in the ecological risk section.

Surface Water

Eleven metals were detected in Wetland 25 surface water samples. Aluminum (1,820 ppb),

iron (4,030 ppb), and lead (4.9 ppb) exceeded surface water quality criteria (87 ppb, 1,000 ppb,

and 1.71 ppb, respectively) at location 2501. Aluminum also exceeded criteria at

location 2503 (221 ppb). One VOC, methylene chloride, a common laboratory contaminant, was

detected at sample location 2503 (1,700 ppb) above its surface water quality criteria (1,580 ppm).

Note that the SVOC results for 2501 were rejected. No SVOCs or pesticides were detected in

surface water.

Table 10-26-3 shows the Wetland 25 Phase IIA surface water sample results

(frequency of detection, range of detected concentrations, and average detected concentration).

Table 10-26-4 compares detected concentrations at each sample location to surface water quality

criteria and lists calculated HQs for each parameter. The HQs will be further discussed in the

ecological risk section. Constituents detected that do not have water quality criteria were not

included in Table 10-26-4.

10-26-2

Table 10-26-1
Phase IIA Detected Concentrations in Wetland 25 Sediments

Parameter	Frequency of Detection	Range of Detected Concentrations	Average Detected Concentration
Inorganics (mg/kg)			
Aluminum (Al)	3/3	4180 - 12500	8486.67
Arsenic (As)	3/3	1.1 - 8.8	5.97
Barium (Ba)	3/3	2.3 - 8.6	5.5
Beryllium (Be)	2/3	0.47 - 0.59	0.53
Cadmium (Cd)	1/3	1.3	1.3
Calcium (Ca)	3/3	1770 - 17900	7790
Chromium (Cr)	3/3	7.1 - 59.1	33.07
Cobalt (Co)	3/3	1.6 - 2	1.83
Copper (Cu)	3/3	6.1 - 19.6	12.63
Iron (Fe)	3/3	1780 - 1 8500	11260
Lead (Pb)	3/3	21.4 - 58.7	37.4
Magnesium (Mg)	3/3	1420 - 6660	4523.33
Manganese (Mn)	3/3	2.6 - 66	33.1
Nickel (Ni)	2/3	6.5 - 6.9	6.7
Potassium (K)	3/3	172 - 2060	1220.67
Selenium (Se)	1/3	1.9	1.9
Sodium (Na)	3/3	640 - 24700	15913.33
Vanadium (V)	3/3	10.1 - 33.7	22.2
Zinc (Zn)	3/3	7.3 - 57.1	28.7
Pesticides and PCBs (µg/kg)			
4,4'-DDE	2/3	1.3 - 2	1.65
4,4'-DDT	1/3	1.8	1.8
Aldrin	2/3	0.28 - 1.4	0.84
Aroclor-1254	3/3	4.3 - 17	10.77
Endrin	2/3	0.84 - 1.9	1.37
alpha-BHC	1/3	0.67	0.67
alpha-Chlordane	2/3	0.56 - 0.88	0.72
gamma-BHC (Lindane)	1/3	1.3	1.3
SVOCs (μg/kg)			
Benzo(b)fluoranthene	1/2	59	59
VOCs (μg/kg)			
Acetone	1/3	940	940
Tetrachloroethene	1/3	23	23

Note:

All results are in micrograms per kilogram ($\mu g/kg$) or parts per billion (ppb), except for metals which are in milligrams per kilogram (mg/kg) or parts per million (ppm).

Table 10-26-2 (1) Wetland 25 Phase IIA Sediment Concentrations Compared to Benchmark Levels

Sample Location	Parameter	Detected Concentration	Šedimeni Benchmark Value (SBV)	на	SBV - HC Reference
041M25010	•				
4,4'-DDT (I	(G/kG)	4:8	1.19	1.51	В
Arndor-125	4 (UG/KG)	37	21.6	0.79	5
Arsenia (M	G/KG)	1.1	7.24	0.15	a 0
Chromium	(MG/KG)	7.7	52.3	0.14	ab
Copper (Mi	G/KG)	61	18,7	0.53	ah
Lead (MG/I		21.4	30,2	0.71	ab
Zinc (MG/K		73	(24)	0,06	a b
OR FREDWICK	ALICO COMP				
Abres 10	W -		199.10	JAMES	100
-0.0	WW 0446		1000	14600	
-	Takes Co.			1400	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
120mm / 6	×01.		40.00	1490	100
March 1	anni I		-100		- 10
0.000	es il li	The state of the s	1000		1000
	2019		100	214	-
THE RES		1000	200	100	110
-		-01	10.00		100
1,000		100	- 10		48
041M25030					
4,4'-DDE (L		13	2,07	0.63	В
	dané (UG/KCI)	0.56	1.7	0.38	a
Aroclar 125		43	216	0,20	b
Arsenia (M)		4 6	7,24	1.22	n b
Cadmium (7.00	1.3	0,68	1.91	b
Chromium	The state of the s	59,1	52,3	1.13	ab
Copper (Mi	A. C. Carlotte and C. C. Carlotte and C. C. Carlotte and C. Ca	19.6	18.7	1.05	an
Endrin (UG		0.84	33	0.25	a
	C (Lindanė) (UG/NG)	13	0.32	4.06	h
Lead (MG/	The state of the s	98.7	30,2	1,94	ab
Nickel (MG		6.5	15.9	0.41	ab
Zine (MG/K		\$7 (124	0.46	ab

Hotes:

 ⁽a) USEPA Screening Concentration for Sediment - EPA SSVs
 (b) FDEP Sediment Quality Assessment Guidalines - FDEP SQAGs
 Some of the numbers in the table may vary because of rounding.

Table 10-26-3
Phase IIA Detected Concentrations in Wetland 25 Surface Water

Parameter	Frequency of Detection	Range of Detected Concentrations	Average Detected Concentration
Inorganics (μg/L)			
Aluminum (Al)	2/2	221 - 1820	1020.5
Arsenic (As)	1/2	2.4	2.4
Calcium (Ca)	2/2	4620 - 6720	5670
Iron (Fe)	2/2	317 - 4 0 30	2173.5
Lead (Pb)	1/2	4.9	4.9
Magnesium (Mg)	2/2	12500 - 20400	16450
Manganese (Mn)	2/2	2.9 - 4.2	3.55
Potassium (K)	2/2	3980 - 7060	5520
Sodium (Na)	2/2	105000 - 185000	145000
Thallium (Tl)	1/2	3.9	3.9
Vanadium (V)	1/2	6.4	6.4
VOCs (μg/L)			
Methylene chloride	1/2	1700	1700

Note:

All results are in micrograms per liter (μ g/L) or parts per billion (ppb).

10.26.3 Fate and Transport

No pathways were evaluated for the wetland specific fate and transport for reference Wetland 25.

10.26.4 Ecological Risk Assessment

HQs for Wetland 25 sediment samples are presented in Table 10-26-2. Phase IIA sediment sample results compared to sediment benchmark levels revealed HQs above 1 for the pesticide 4,4'-DDT at sample location 2501 (1.51). However, as noted in the nature and extent discussion, this 4,4'-DDT concentration was below basewide levels. HQs were also greater than 1 for the metals arsenic (1.10), and lead (1.06) at sample location 2502. At sample location 2503, HQs were above 1 for the metals arsenic (1.22), cadmium (1.91), chromium (1.13), copper (1.05), and lead (1.94), as well as the pesticide gamma-BHC (4.06). Phase IIA surface water results revealed HQs above 1 for aluminum (20.92), iron (4.03), and lead (2.87) at sample location 2501. HQs were also above 1 for aluminum (2.54) and the VOC methylene chloride (1.08) at sample location 2503 (methylene chloride is a common laboratory contaminant). HQs greater than one indicate the potential for excess risk.

Table 10-26-4 (1) Wetland 25 Phase IIA Surface Water Concentrations Compared to Water Quality Criteria

Sample Location	Parameter	UÓM	Detected Concentration	Water Quality Criteria	на	Criteria Reference
OCHUMNICAL	The Control of the		TURNE		116	1
The same of		Sec.	Street Street	444	DEPTH.	-
100		-	100	100	Distance of	- 1
THE RES		-	3941	1001	1000	16
ME .		-	100	101	LI MIN	100
100		30		191	1.75	2.3
041W250301	Freshwater					
Aluminum		UGIL	221.ft	B7.0	2.54023	.21
from		UG/L	317.0	0.000.0	D.347	ab

Notes.

 ⁽a) USEPA Water Quality Criteria (1995)
 (b) FOEP Class III Water Quality Criteria (1996)
 Some of the numbers in the table may vary because of rounding.

Wetland 25 is identified as a reference wetland (E/A&H, 1995a). Contaminants detected in reference wetlands were isolated and were generally below screening or reference values. In addition, contaminant exceedances did not appear to be related to IR sites. Therefore, Wetland 25

was considered to be a suitable reference wetland.

10.26.5 Wetland 25 Human Health Risk Assessment

10.26.5.1 Samples Included

Sediment

041M250101, 041M250201, 041M250301

Surface Water

041W250101, 041W250301

10.26.5.2 Current and Future Land Use

Wetland 25 is located on the shore of Bayou Grande, north of Forrest Sherman Field. This area serves as part of an undeveloped buffer around the airfield. The wetland lies in an undeveloped portion of the base, accessible by dirt roads. However, access to these roads is restricted to the general public. Due to the lack of nearby infrastructure, it is unlikely that buildings or other development will be established in the near future. Access to the shoreline near the wetland could

be made by boat.

10.26.5.3 Fish Tissue COPCs Identified

No fish tissue data were available for this wetland, and this exposure pathway would likely be incomplete; therefore, no COPCs were identified.

10.26.5.4 Sediment COPCs Identified

As shown in Table 10-26-5, no COPCs were identified.

10-26-9

TABLE 10-26-5 OCCURRENCE, DISTRIBUTION, AND SELECTION OF CHEMICALS OF POTENTIAL CONCERN NAS PENSACOLA SITE 41

Scenario Timetrame Current and Future Medium Sedmant Exposure Medium Sediment Exposure Ford: Welland 25 Sediment

		(1)	7	(4)	T	7-				Ÿ***********		r****	(0)	(2)	(1)		and a			(0)
CAS Number	Chemical	Minimum Concentration	Minimum Qualifier	(1) Maximum Concentration	Maximum Qualifler	Units	Location of Maximum Concentration	Dete Frequ		Rangé of Detecti	ion Limits	MEAN	(2) Concentration Used for Screening	(3) Background Value	(4) Adolescent Site Trespasser prg	Commercial Maintenance Worker Screening Toxicity Value	(5)	Potential ARAR/TBC Source	COPC Flag	(6) Rationale for Contaminant Delection or Selection
	4,4'-DDE	1.3000	J	2.0000	J	UG/KG	041M250201	2 /	3	1.70 -	1.70	1.65	2.00	N/A	65000	1900	С	N/A	NO	BSL
	4,4'-DDT	1.8000	J	1.8000	J	UG/KG	041M250101	1 /	3	0.53 -	1.20	1.80	1.80	N/A	65000	1900	c	N/A	NO	BSL
309002	Aldrin	0.2800	J	1.4000	J	UG/KG	041M250201	2 /	3	0.82 -	0.82	0.84	1.40	N/A	1300	38	c	N/A	NO	BSL
11097691	Aroclor-1254	4.3000	J	17.0000	J	UG/KG	041M250101	3 /	3	NAV		10.77	17.00	N/A	6300	160	N	N/A	NO	BSL
72208	Endrin	0.8400	J	1.9000	J	UG/KG	041M250201	2 /	3	1.70 -	1.70	1.37	1.90	N/A	95000	2300	N	N/A	NO	BSL
	alpha-BHC	0.6700	J	0.6700	J	UG/KG	041M250301	1 /	3	0.59 -	0.82	0.67	0.67	N/A	3500	100	c	N/A	NO	BSL
	alpha-Chlordane	0.5600	J	0.88.0	J	UG/KG	041M250201	2 /	3	0.82 -	0.82	0.72	0.88	N/A	63000	1800	cl	N/A	NO	BSL
	gamma-BHC	1.3000	J	1.3000	J	UG/KG	041M250301	1 /	3	059 -	0.82	1.30	1.30	N/A	17000	490	c l	N/A	NO	BSL
1 :	Benzo(b)fluoranthene	59.0000	J	59.0000	J	UG/KG	041M250301	1 /	2	230.00 - 2	230.00	59.00	59.00	N/A	30000	880	c l	N/A	NO	BSL
127184	Tetrachiorcethene	23.0000	J	23.0000	J	Ų G ∕KG	041M250101	1 /	3	59.00 -	77.00	23.00	23.00	N/A	430000	12000	cl	N/A	NO	BSL
67641	Acetone	940.0000	J	940.0000	J	UG/KG	041M250301	1 /	2	77.00	110.00	940.00	940.00	N/A	32000000	780000	N	N/A	NO	BSL
7440382	Arsenic (As)	1.1000		8.8000		MG/KG	041M250301	3 /	3	NAV		5.97	8.80	N/A	15	0.43	c l	N/A	NO	BSL
7440439	Cadmium (Cd)	1.3000		1.3000		MG/KG	041M250301	1 /	3	1.00 ~	1.40	1.30	1.30	N/A	320	7.8	Ν	N/A	NO	BSL
7440484	Cobalt	1.6000		2.0000		MG/KG	041M250301	3 /	3	NAV	- 1	1.83	2.00	N/A	19000	470	иl	N/A	NO	BSL
7440508	Copper (Cu)	6.1000		19.6000		MG/KG	041M250301	3 /	3	NAV		12.63	19,60	N/A	13000	310	N	N/A	NO	BSL
7440020	Nickel (Ni)	6.5000		6,9000		MG/KG	041M250201	2 /	3	5.50 -	5.50	6.70	6,90	N/A	6300	160	N	N/A	NO	BSL
7440097	Potassium (K)	172.0000		2060.0000		MG/KG	041M250301	3 /	3	NAV		1220.67	2060.00	N/A	N/A	N/A		N/A	NO	NTX
7782492	Selenium (Se)	1,9000		1.9000		MG/KG	041M250201	1 /	3	1.20 -	1.40	1.90	1.90	N/A	1600	39	иl	N/A	NO	BSL
7429905	Aluminum (Al)	4180.0000		12500.0000		MG/KG	041M250301	3 /	3	NAV		8486.67	12500.00	N/A	320000	7800	Νl	N/A	NO	BSL
7440393	Barium (Ba)	2,3000		8.6000		MG/KG	041M250301	3 /	3	NAV		5.50	8.60	N/A	22000	550	иl	N/A	NO	BSL
7440417	Beryllium	0.4700		0.5900		MG/KG	041M250301	2 /	3	NAV		0.53	0.59	N/A	630	16	мl	N/A	NO	BSL
7440702	Calcium (Ca)	1770.0000		17900.0000		MG/KG	041M250301	3 /	3	NAV		7790.00	17900.00	N/A	N/A	N/A	- 1	N/A	NO	NTX
7440473	Chromium (Cr)	7.1000		59.1000	1	MG/KG	041M250301	3	3	NAV		33.07	59.10	N/A	1600	23	иl	N/A	NO	BSL
7439896	Iron (Fe)	1780.0000		18500.0000		MG/KG	041M250301	3 ,	3	NAV		11206.00	18500.00	N/A	N/A	N/A		N/A	NO	NTX
7439921	Lead (Pb)	21.4000		58.7000		MG/KG	041M250301	3 7	3	NAV		37.40	58.70	N/A	400	400		OSWER	NO	BSL
7439954	Magnesium (Mg)	1420.0000		6660.0000		MG/KG	041M250301	3	3	NAV		4523.33	6 660.00	N/A	N/A	N/A	- 1	N/A	NO	NTX
7439965	Manganese (Mn)	2.6000		66.0000		MG/KG	041M250301	3 /	' з	NAV		33.10	66.00	N/A	15000	l	N	N/A	NO	BSL
7440235	Sodium (Na)	640.0000		24700.0000		MG/KG	041M250301	3 /	3	NAV		15913,33	24700.00	N/A	N/A	N/A		N/A	NO	NTX
7440622	Vanadium (V)	10.1000		33.7000		MG/KG	041M250301	3 /	3	NAV		22.20	33.70	N/A	2200		ΝΙ	N/A	NO	BSL
7440666	Zinc (Zn)	7.3000		57.1000		MG/KG	041M250301	3 /	3	NAV		28.70	57.10	N/A	95000	•	ΝI	N/A	NO	BSL

(1) Minimum/maximum detected concentration

(2) Maximum concentration used as screening value.

(3) No background values were developed for this media.

(4) PRGss for trespasser scenario calculated using equations and parameters presented in Section 8 of this report.

(5) Residential soil RBC as presented in USEPA Region III RBC Tables, 1998.

(6) Rationale Codes Selection Reason: Above Screening Levels (ASL)

Deletion Reason: Below Screening Levels (BSL)

Background Levels (BKG)

No Toxicity Information (NTX)

Definitions:

NAV = Not Available

N/A = Not Applicable

COPC = Chemical of Potential Concern

ARAR/TBC = Applicable or Releveant and Appropriate Requirement/ To Be Considered

OSWER = Office of Solid Waste and Emergency Response

J = Estimated Value

C = Carcinogenic

N Noncarcinogenic

10.26.5.5 Surface Water COPCs Identified

As shown in Table 10-26-6, the following COPCs were identified:

Methylene chloride

10.26.5.6 Risk Characterization

Tables 10-26-7 and 10-26-8 summarizes cancer risk estimates for the surface water pathways. Methylene chloride was the only contributor to risk estimates for the surface water pathways. The cumulative risk estimated for this wetland is 1.6E-6. The HI shown in Table 10-26-8 was estimated to be 0.02. Methylene chloride was identified as a COC in surface water based on its contribution to cumulative risk estimates for this wetland.

10.26.5.7 Remedial Goal Options

RGOs were developed in accordance with USEPA Region IV Supplemental Guidance to RAGS Bulletin 5, Remedial Options (USEPA, 1996a). Methylene chloride was the only COC identified at this wetland and was identified as a COC for surface water only. Because methylene chloride was identified as a COC for surface water based only on cancer risk estimates and not based on hazard index estimates, only risk based RGOs were developed. The maximum methylene concentration of 1.7 mg/L in surface water resulted in a risk estimate of 1.6E-6, as shown in Table 10-26-8. Using a linear ratio, 1.0 mg/L would correspond with a target risk of 1E-6. Therefore, 10 mg/L and 100 mg/L represent target risks of 1E-5 and 1E-4, respectively.

10.26.6 Conclusions and Recommendations

Wetland 25 is identified as a reference wetland (E/A&H, 1995a), where contaminants were mostly isolated, generally below benchmark or reference values, and did not appear to be related to IR sites. Therefore, Wetland 25 was not studied further in Phase IIB/III.

The HHRA identified no sediment or fish tissue COPCs. Methylene chloride was identified as a COC in surface water based on its contribution to cumulative risk estimates for this wetland.

TABLE 10-26-6 OCCURRENCE, DISTRIBUTION, AND SELECTION OF CHEMICALS OF POTENTIAL CONCERN NAS PENSACOLA SITE 41

Scenario Timeframe: Current and Future

Medium: Surface Water

Exposure Medium: Surface Water Exposure Point: Wetland 25 Surface Water

		(1)		(1)					(2)		(3)		(4)		l I	(5)
CAS Number	Chemical	Minimum Concentration	Minimum Qualifier	Maximum Concentration	Maximum Qualifier	Units	Detection Frequency	Mean	Concentration Used for Screening	Background Value	Adolescent Site Trespasser PRG	Tap Water RB0	3	Potential ARAR/TBC Source	COPC Flag	Rationale for Contaminant Delection or Selection
7429905	Aluminum (Al)	221		1820		UG/L	2 / 2	1020.5	1820	N/A	120000	3700	N	N/A	NO	BSL
7440382	Arsenic	2.4		2.4		UG/L	1 / 2	2.4	2.4	N/A	5.6	0.045	С	N/A	NO	BSL
7440702	Calcium (Ca)	4620		6720		UG/L	2 / 2	5670	6720	N/A	N/A	N/A		N/A	NO	EN
7439896	Iron (Fe)	317		4030		UG/L	2 / 2	2173.5	4030	N/A	N/A	N/A		N/A	NO	EN
7439921	Lead (Pb)	4.9		4.9		UG/L	1 / 2	4.9	4.9	N/A	15	15		TTAL	NO	BSL
7439954	Magnesium (Mg)	12500		20400		UG/L	2 / 2	16450	20400	N/A	N/A	N/A		N/A	NO	EN
7439965	Manganese (Mn)	2.9		4,2		UG/L	2 / 2	3.55	4.2	N/A	2400	73	N	N/A	NO	BSL
7440097	Polassium (K)	3980		7060		UG/L	2 / 2	5520	7060	N/A	N/A	N/A		N/A	NO	EN
7440235	Sodium	105000		185000		UG/L	2 / 2	145000	185000	N/A	N/A	N/A		N/A	NO	EN
7440280	Thallium	3.9		3.9		UG/L	1 / 2	3.9	3.9	N/A	8.3	0.26	N	N/A	NO	BSL
7440622	Vanadium (V)	6.4		6.4		UG/L	1 / 2	6.4	6.4	N/A	830	1800	N	N/A	NO	BSL
75092	Methylene chloride	1700		1700	'	UG/L	1 2	1700	1700	N/A	1000	4.1	С	N/A	YES	ASL

(1) Minimum/maximum detected concentration

(2) Maximum concentration used as screening value.

(4) PRGs for site trespasser scenario calculated based on equations and parameters presented in Section 8 of this report.

(5) PRGs for commercial maintenance worker scenario calculated based on equations and parameters presented in Section 8 of this report.

(8) Rationale Codes

Selection Reason: Above Screening Levels (ASL)

Deletion Reason:

Below Screening Levels (BSL)

Background Levels (BKG) Essential Nutrient (EN)

No Toxicity Information (NTX)

Definitions: N/A = Not Applicable NAV = Not Available

COPC = Chemical of Potential Concern

ARAR/TBC = Applicable or Releveant and Appropriate Requirement/ To Be Considered

TTAL = Treatment Technique Action Level

J = Estimated Value

C = Carcinogenic

N = Noncarcinogenic

TABLE 10-26-7 CALCULATION OF CANCER RISKS REASONABLE MAXIMUM EXPOSURE NAS PENSACOLA SITE 41

Scenario: Timeframe: Current and Future

Medium: Surface water

Exposure Medium: Surface water Exposure Point: Wetland 25 Receptor Population: Trespasser Receptor Age: Adolescent

Exposure Route	Chemical of Potential Concern	Medium EPC Value		Route EPC Value	EPC Selected for Hazard Calculation	Intake (Cancer)	Intake (Cancer) Units	Cancer Slope Factor	Slope Factor Units	Cancer Risk
Ingestion	Methylene chloride	1.7	MG/L	N/A	М	1.00E-04	mg/kg-day	0.0075	(mg/kg-day) ⁻¹	7.50E-07
Dermal	Methylene chloride	1.7	MG/L	N/A	М	9.35E-05	mg/kg-day	0.009375	(mg/kg-day) ⁻¹	8.77E-07
<u> </u>									Total Risk	1.63E-06

EPC = Exposure Point Concentration

MG/L = Milligram per Liter

M = Medium-specific EPC selected for risk calculation.

TABLE 10-26-8 RME CALCULATION OF NON-CANCER HAZARDS REASONABLE MAXIMUM EXPOSURE NAS PENSACOLA SITE 41

Scenario: Timeframe: Current and Future

Medium: Surface Water

Exposure Medium: Surface Water Exposure Point: Wetland 25 Receptor Population: Trespasser Receptor Age: Adolescent

					EPC Selected for					
Exposure	Chemical of Potential	Medium	Medium	Route EPC	Hazard	Intake	Intake	Reference	Reference	Hazard
Route	Concern	EPC Value	EPC Units	Value	Calculation	(Non-Cancer)	(Non-Cancer) Units	Dose	Dose Units	Quotient
Ingestion	Methylene chloride	1.7	MG/L	N/A	М	7.00E-04	mg/kg-day	6.00E-02	mg/kg-day	0.0117
Dermal	Methylene chloride	1.7	MG/L		М	6.04E-04	mg/kg-day	4.80E-02	mg/kg-day	0.0126
		<u></u>		<u></u>	'		<u> </u>	Tot	al Hazard Index	0.02

EPC = Exposure Point Concentration

MG/L = Milligram per Liter

M = Medium-specific EPC selected for risk calculation.

Under a cumulative risk scenario for methylene chloride in surface water, an EPC of 1.7 mg/L resulted in a risk estimate of 1.6E-6. Linear ratio analyses reveal that a target risk of 1E-6 results from an EPC of 1.0 mg/L, with EPCs of 10 mg/L and 100 mg/L representing target risks of 1E-5 and 1E-4, respectively.

Methylene chloride is a common laboratory contaminant. Also, Wetland 25 is located in a remote portion of the base that has restricted access, and the wetland has no value for recreational fishing or swimming. These factors, combined with the limited ecological risk at Wetland 25 support the use of Wetland 25 as a reference wetland.

Final Remedial Investigation Report NAS Pensacola Site 41 Section 10: Site-Specific Evaluations August 31, 2000

This page intentionally left blank.

10.27 WETLAND 27

10.27.1 Site Description

Wetland 27 is along NAS Pensacola shoreline of Bayou Grande, east of Wetlands 25, 66, and 67. Parsons and Pruitt (USEPA, 1991) divided this site into two distinctive parts, Wetlands 27A and 27B. Wetland 27A is described as an inland palustrine system, whereas Wetland 27B is an estuarine emergent wetland, seaward of Wetland 27A. Wetland 27A contains sweetbay magnolia (Magnolia virginiana) and black titi (Cliftonia monophylla). There is no prominent surface water drainage into this area. Wetland 27B is tidally influenced from Bayou Grande and maintains a thick growth of black needlerush (Juncus roemerianus). No IR sites exist in the vicinity of Wetland 27.

10.27.2 Nature and Extent

The methods for evaluating nature and extent are presented in Section 6. Figure 10-27-1 denotes the Phase IIA Wetland 27 sampling locations.

Sediment

Seventeen metals were detected in Wetland 27 sediment samples. No metals exceeded sediment benchmark levels at Wetland 27. Four pesticides were detected at Wetland 27, including 4,4-DDE, 4,4'-DDT, alpha-BHC, and alpha-chlordane. Although 4,4'-DDE (2.7 ppb; sample 2701) and 4,4'-DDT (1.9 ppb; sample 2702) concentrations exceeded benchmark levels, they were below basewide levels. Basewide levels are described in Section 6. The other pesticides were below benchmark levels. No PCBs were detected in Wetland 27 sediment samples. The SVOC diethylphthalate was detected below sediment criteria. No VOCs were detected in Wetland 27 sediment samples. Table 10-27-1 shows the Wetland 27 Phase IIA sediment sample results (frequency of detection, range of detected concentrations, and average detected concentration).

Table 10-27-1
Phase IIA Detected Concentrations in Wetland 27 Sediments

Parameter	Frequency of Detection	Range of Detected Concentrations	Average Detected Concentration
Inorganics (mg/kg)			
Aluminum	12 N 1 14 120 12 12 14 14	2900 - 3670	3285
Arsenic	2/2	0.98 - 1.1	1.04
Barium Dy Arthur David Char	** : : 20: :::	23°311°	
Calcium	2/2	941 - 1260	1100.5
Chromium - Saute 12-16 (1887) - Saute	1 22 = :=	## // 1P1-02.4	Car a see Incor in proje
Cobalt	2/2	0.46 - 0.51	0.485
Goppo	22	34.42	78 10 77
Iron	2/2	1380 - 1440	1410
(Lead Market Control of the Control	22	13/2-13/5	1035
Magnesium	2/2	1200 - 2070	1635
Manganese Turker	22	5 Programme	NACHO BUSINESSE
Nickel	2/2	2-3	2.5
Pojassium :	227	406-6894	5475F L FF
Selenium	1/2	0.39	0.39
Sodium	· · · · · · · · · · · · · · · · · · ·	3170,-8610	58 905 37.17
Vanadium	2/2	5.2 - 6.9	6.05
Zudania de la compansión de la compansió	T 202	4.75-18/28%	**************************************
Pesticides and PCBs (µg/kg)			
4.4.DDE	2/2	1.8-2.7	2.25
4,4'-DDT	1/2	1.9	1.9
alpha-BHC 1	223	-0.49 - 1.5	0,895 <u>;</u> *****
alpha-Chlordane	1/2	0.49	0.49
SVOCs (μg/kg)			
Diethylphthalate	1/2	390	390

Note:

All results for inorganics are given in milligrams per kilogram (mg/kg), pesticides, PCBs, and SVOCs are given in micrograms per kilograms (μ g/kg)

Table 10-27-2 compares detected concentrations at each sample location to sediment benchmark levels, and lists calculated HQs for each parameter. Only the detected parameters with benchmark levels are presented on Table 10-27-2. The HQs will be further discussed in the ecological risk section.

Table 10-27-2 Wetland 27 Phase IIA Sediment Concentrations Compared to Benchmark Levels

Sample Location	Parameter	Detected Concentration	Sediment Benchmark Value (SBV)	HQ	SBV Reference
ACRES 1888	MILITA PRO	10015-0-5	THE R. LEWIS CO., LANSING, MICH.	7917	4.7
A County Street	2013	DESCRIPTION OF THE PARTY NAMED IN		1120	A 100
100		200	120	100	
-		200		100	200
200		10.46	200	100	use.
-	-	10.00	C. 4000	-	200
THE PERSON		Contract Con	10000	-	75.00
MIN SEND		100	THE RESERVE	0.600	1.00
00,000		0.1	ALC: NO.	195	146
041M270201		-			
4,4400E (UG	(KG)	# W W	2.07	0.67	ti
4,4'-DDT (UG		17.4 3	1.19	1.60	ь
Arsenic (MG/	a	0.98 J	7.24	0,14	a b
Chromium (M		12.4	52.2	0.24	ab
Copper (MG/K		3.4 J	18.7	0.18	ab
Lead (MG/KG		13.2 J	30,2	D. Ad.	R.b
Nickel (MG/KC		1 E	15.9	0.19	a b
Zinc (MG/KG)		4.7 4	124	0.04	9.0

Notes:

⁽a) USEPA Screening Concentration for Sediment - EPA SSVs
(b) FDEP Sediment Quality Assessment Guidelines - FDEP SQAGs Some of the numbers in the table may vary because of rounding. Basewide levels (detailed in Section 6) for DDT and its metabolites Basewide level for 4,4'-DDE is 40 ppb. Basewide level for 4,4'-DDD is 50 ppb.

Basewide level for 4,4'-DDT is 20 ppb.

Surface Water

Thirteen metals were detected in the single Wetland 27 surface water sample. Aluminum (5,500 ppb), copper (9.2 ppb), iron (2,230 ppb), lead (25.9 ppb), and mercury (0.17 ppb) exceeded surface water quality criteria at Wetland 27. This sample was highly turbid because the surface water was only 3 inches deep. No organics were detected in Wetland 27 surface water.

Table 10-27-3 shows the Wetland 27 Phase IIA surface water sample results (frequency of detection, range of detected concentrations, and average detected concentration). Table 10-27-4 compares detected concentrations at each sample location to surface water quality criteria and lists calculated HQs for each parameter. Only the detected parameters with water quality criteria are presented in Table 10-27-4. The HQs will be further discussed in the ecological risk section.

Table 10-27-3
Phase IIA Detected Concentrations in Wetland 27 Surface Water

Parameter	Frequency of Detection	Range of Detected Concentrations	Average Detected Concentration
Inorganics (µg/L)			
Aluminum	TIE.	5550	5550
Arsenic Calcium 4.x	1/1	4.1 99000	4.1 99000
Chromium Copper	1/1	13.3	13.3
	1 /10	9.2	9.7
Iron	1/1	2230	2230
League	1/11	25.9	2 5 192
Magnesium	1/1	327000	327000
Mercury	1/1	0.17	±0:17± + +++
Potassium	1/1	106000	106000
Sodium	1 /1	2580000	2580000
Vanadium	1/1	11	11
Zince	\$ \$ 128 1/17	19.6	- 19:6. \$

Note:

All results are given in micrograms per liter ($\mu g/L$) or parts per billion (ppb).

Table 10-27-4 (1) Wetland 27 Phase IIA Surface Water Concentrations Compared to Water Quality Criteria

Sample Location	Parameter	UOM	Detected Concentration	Water Quality Criteria	HQ	Criteria Reference
041W270201	Saltwater					<u> </u>
Aluminum		UG/L	5,550.0	1,500.0	3.7	b
Arsenic		UG/L	4.1	36.0	0.11389	а
Chromium		UG/L	13.3	50.0	0.266	аb
Copper		UG/L	9.2	2.9	3,17241	аb
Iron		UG/L	2,230.0	300.0	7.43333	b
Lead		UG/L	25.9	5.6	4.625	b
Mercury		UG/L	0.17	0.025	6.8	аb
Zinc		UG/L	19.6	86.0	0.22791	аb

Notes:

(a) USEPA Water Quality Criteria (1995)
(b) FDEP Class III Water Quality Criteria (1996)
Some of the numbers in the table may vary because of rounding.

10.27.3 Fate and Transport

No pathways were evaluated for the wetland specific fate and transport for reference Wetland 27.

10.27.4 Ecological Risk Assessment

HQs for Wetland 27 sediment samples are presented in Table 10-27-2. Phase IIA sediment sample

results compared to the appropriate sediment benchmark levels revealed HQs above 1 for

4,4'-DDE (1.30) at sample location 2701 and 4,4'-DDT at sample location 2702 (1.60).

However, as noted in the nature and extent discussion, these 4,4'-DDE and 4,4'-DDT

concentrations were below basewide levels. Phase IIA results of the single Wetland 27

surface water sample revealed HQs above 1 for aluminum (3.70), copper (3.17), iron (7.43),

lead (4.63), and mercury (6.80). HQs greater than one indicate the potential for excess risk.

Wetland 27 is identified as a reference wetland (E/A&H. 1995a). Contaminants detected in

reference wetlands were isolated and were generally below benchmark or reference values. In

addition, contaminant exceedances did not appear to be related to IR sites. The concentrations

detected inorganic are compared to detected concentrations in other wetlands to assess whether the

concentrations are naturally-occurring or man-induced. Reference concentrations are described in

Section 6.

10.27.5 Wetland 27 Human Health Risk Assessment

10.27.5.1 Samples Included

Sediment

041M270101, 041M270201

Surface Water

041W270201

10-27-8

10.27.5.2 Current and Future Land Use

Wetland 27 is on the shore of Bayou Grande, north of Forrest Sherman Field. This area serves

as part of an undeveloped buffer around the airfield. The wetland lies in an undeveloped portion

of the base, accessible by dirt roads. However, access to these roads is restricted to the general

public. Due to the lack of nearby infrastructure, it is unlikely that buildings or other development

will be established in the near future. Access to the shoreline near the wetland could be made by

boat.

10.27.5.3 Fish Tissue COPCs Identified

No fish tissue data were available for this wetland, and this exposure pathway would likely be

incomplete; therefore, no COPCs were identified.

10.27.5.4 Sediment COPCs Identified

As shown in Table 10-27-5, no COPCs were identified.

10.27.5.5 Surface Water COPCs Identified

As shown in Table 10-27-6, the following COPCs were identified:

Lead

10.27.5.6 Risk Characterization

Lead Risk Characterization

A conservative exposure scenario was developed to assess the significance of the surface water

concentration of lead at Wetland 27. This scenario involves a child (age 6 to 7) who accompanies

an older sibling to the wetland one day a week for a year. Exposure to Wetland 27 surface water

was addressed as an additional exposure relative to typical exposures encountered at the child's

home. This additional exposure was presented as an "alternate" source within the constructs of

10-27-9

TABLE 10-27-5 OCCURRENCE, DISTRIBUTION, AND SELECTION OF CHEMICALS OF POTENTIAL CONCERN NAS PENSACOLA SITE 41

Scenario Timetranie: Current and Future

Medium, Sediment
Exposure Medium Sediment
Exposure Point: Watand 27 Sediment

		(1)		(1)							(2)	(3)	(4)		5)	T	(6)
CAS Number	Chemical	Minimum Concentration	Minimum Qualifier	Maximum Concentration	Maximum Qualifier	Units	Location of Maximum Concernization	Detection Frequency	Range of Detection Limits	MEAN	Concentration Used for Screening	Background Value	Adolescent Site Trespasser PRG		Potential ARAR/TBC Source	COPC Flag	Rationale for Contaminant Delection or Selection
72559	4,4'-DDE	1.8000		2.7000		UG/KG		2 / 2	NAV	2.25	2.70	N/A	65000	1900	C N/A	NO	BSL
50293	4,4'-DDT	1.9000		1.9000		UG/KG		1 / 2		1.90	1.90	N/A	65000	1900	N/A	NO	BSL
319846	alpha-BHC	0.4900		1.3000		UG/KG		2 / 2	NAV	0.90	1.30	N/A	3500	100	N/A	NO	BSL
5103719	alpha-Chlordane	0.4900		0.4900		UG/KG		1 / 2	-	0.49	0,49	N/A	63000	1800	D N/A	NO	BSL
84662	Diethylphthalate	390.0000		390.0000		UG/KG		1 / 2	-	390.00	390.00	N/A	250000000	6300000	N/A	NO	BSL
7429905	Aluminum (Al)	2900.0000		3670.0000		MG/KG		2 / 2	NAV	3285.00	3670.00	N/A	320000	7800	N/A	NO	BSL
7440382	Arsenic (As)	0.9800		1.1000		MG/KG		2 / 2	NAV	1.04	1.10	N/A	15	0.43	N/A	NO	BSL
7440393	Barium (Ba)	2.3000		3.1000		MG/KG		2 / 2	NAV	2.70	3.10	N/A	22000	550	N/A	NO	BSL
7440702	Calcium (Ca)	941,0000		1250.0000		MG/KG		2 / 2	NAV	1100.50	1260.D0	N/A	N/A	N/A	N/A	NO	NTX
7440473	Chromium (Cr)	11.1000		12.4000		MG/KG		2 / 2	NAV	11.75	12.40	N/A	1600	23	N/A	NO	BSL
7440484	Cobalt	0.4600		0.5100		MG/KG		2 / 2	NAV	0.49	0.51	N/A	19000	470	N/A	NO	BSL
7440508	Copper (Cu)	3.4000		4.2000		MG/KG		2 / 2	NAV	3.80	4.20	N/A	13000	310	N/A	NO	BSL
7439896	iron (Fe)	1380.0000		1440.0000		MG/KG		2 / 2	NAV	1410.00	1440.00	N/A	N/A	N/A	N/A	NO	NTX
7439921	Lead (Pb)	13.2000		13,5000		MG/KG		2 / 2	NAV	13.35	13.50	N/A	400	400	OSWER	NO	BSL
7439954	Magnesium (Mg)	1200.0000		2070,0000		MG/KG		2 / 2	NAV	1635.00	2070.00	N/A	N/A	N/A	N/A	NO	NTX
7439965	Manganese (Mn)	5.1000		5.1000		MG/KG		2 / 2	NAV	5.10	5.10	N/A	15000	1100	N N/A	NO	BSL
7440020	Nickel (Ni)	2.0000		3.0000		MG/KG		2 / 2	NAV	2.50	3.00	N/A	6300	160	N N/A	NO	BSL
7440097	Potassium (K)	406.0000		689.0000		MG/KG		2 / 2	NAV	547.50	689.00	N/A	N/A	N/A	N/A	NO	NTX
7782492	Selenium (Se)	0.3900		0.3900	(MG/KG		1 / 2		0,39	0.39	N/A	1600	39	N N/A	NO	BSL
7440235	Sodium (Na)	3170.0000		8610.0000		MG/KG		2 / 2	NAV	5890.00	8610.00	N/A	N/A	N/A	N/A	NO	NTX
7440622	Vanadium (V)	5,2000		6.9000		MG/KG		2 / 2	NAV	6.05	6.90	N/A	2200	1	N N/A	NO	BSL
7440666	Zinc (Zn)	4.7000		8.2000		MG/KG		2 / 2	NAV	6.45	8.20	N/A	95000	1	N N/A	NO	BSL

- (1) Minimum/maximum detected concentration
- (2) Maximum concentration used as screening value.
- (3) No background values were developed for this media.
- (4) PRGss for trespasser scenario calculated using equations and parameters presented in Section 8 of this report.
- (5) Residential soil RBC as presented in USEPA Region III RBC Tables, 1998.
- (6) Rationale Codes

Selection Reason: Above Screening Levels (ASL)

Deletion Reason: Below Screening Levels (BSL) Background Levels (BKG)

No Toxicity Information (NTX)

Definitions:

NAV = Not Available

N/A = Not Applicable

COPC = Chemical of Potential Concern

ARAR/TBC = Applicable or Releveant and Appropriate Requirement/ To Be Considered

OSWER = Office of Solid Waste and Emergency Response

J = Estimated Value

C = Carcinogenic

N Noncarcinogenic

TABLE 10-27-6 OCCURRENCE, DISTRIBUTION, AND SELECTION OF CHEMICALS OF POTENTIAL CONCERN NAS PENSACOLA SITE 41

Scenario Timeframe: Current and Future

Medium: Surface Water

Exposure Medium: Surface Water

Exposure Point: Wetland 27 Surface Water

		(1)		(1)					(2)		(3)		(4)			(5)
CAS Number	Chemical	Minimum Concentration	Minimum Qualifier	Maximum Concentration	Maximum Qualifler	Units	Detection Frequency	Mean	Concentration Used for Screening	Background Value	Adolescent Site Trespasser PRG	Tap Water RB0	2	Potential ARAR/TBC Source	COPC Flag	Rationale for Contaminant Delection or Selection
7429905	Aluminum (Al)	5550		5550		UG/L	1 / 1	5550	5550	N/A	120000	3700	N	N/A	NO	BSL
7440382	Arsenic	4.1		4.1		UG/L	1 / 1	4.1	4.1	N/A	5.6	0.045	С	N/A	NO	BSL
7440702	Calcium (Ca)	99000		99000		UG/L	1 / 1	99000	99000	N/A	N/A	N/A		N/A	NO	EN
7440473	Chromium (Cr)	13.3		13.3		UG/L	1 / 1	13.3	13.3	N/A	360	11	N	N/A	NO	BSL
7440508	Copper (Cu)	9.2		9.2		UG/L	1 / 1	9.2	9.2	N/A	4800	150	N	N/A	NO	BSL
7439896	Iron (Fe)	2230		2230		UG/L	1 / 1	2230	2230	N/A	N/A	N/A		N/A	NO	EN
7439921	Lead (Pb)	25.9		25.9		UG/L	1 / 1	25.9	25.9	N/A	15	15		TTAL	YES	ASL
7439954	Magnesium (Mg)	327000		327000		UG/L	1 / 1	327000	327000	N/A	N/A	N/A		N/A	NO	EN
7439976	Mercury (Hg)	0.17		0.17		UG/L	1 / 1	0,17	0.17	N/A	36	1.1	N	N/A	NO	BSL
7440097	Potassium (K)	106000		106000		UG/L	1 / 1	106000	106000	N/A	N/A	N/A		N/A	NO	EN
7440235	Sodium	2580000		2580000		UG/L	1 / 1	2580000	2580000	N/A	N/A	N/A		N/A	NO	EN
7440622	Vanadium (V)	11		11		UG/L	1 / 1	11	11	N/A	830	1800	N	N/A	NO	BSL
7440666	Zinc (Zn)	19.6		19.6	•	UG/L	1 / 1	19.6	19.6	N/A	36000	1100	N	N/A	NO	BSL

(1) Minimum/maximum detected concentration

(2) Maximum concentration used as screening value.

(4) PRGs for site trespasser scenario calculated based on equations and parameters presented in Section 8 of this report.

(5) Tap water RBCs as presented in USEPA Region III RBC Tables (1998).

(6) Rationale Codes

Selection Reason: Above Screening Levels (ASL)

Deletion Reason:

Below Screening Levels (BSL) Background Levels (BKG) Essential Nutrient (EN) No Toxicity Information (NTX)

Definitions: N/A = Not Applicable

NAV = Not Available

COPC = Chemical of Potential Concern

ARAR/TBC = Applicable or Releveant and Appropriate Requirement/ To Be Considered

TTAL = Treatment Technique Action Level

J = Estimated Value C = Carcinogenic N = Noncarcinogenic August 31, 2000

the Lead Model. The standard default assumptions in the Lead Model were kept to simulate

background lead exposures. This was done to provide a conservative estimate of daily intake from

sources unrelated to Wetland 27.

The assumption was made that this child would incidentally ingest 0.05 liters of surface water

during each visit. Within the Lead Model, an alternate source was entered to account for this

exposure as previously discussed. The bioavailability of lead ingested from the alternate source

(Wetland 27 surface water) was equal to that of drinking water lead ingested from the standard

residential default source. Assuming incidental ingestion of 0.05 liters of surface water once per

week with a lead concentration of 25.9 μ g/L, the annual alternate source exposure was estimated

to be 0.18 μ g lead/day. Table 10-27-7 presents the Lead Model output for a child 6 to 7 years old

under these exposure conditions.

Figure 10-27-2 shows the probability percentage of blood lead levels for the hypothetical child

receptor. Based on this model output, the geometric mean blood level is estimated to be

2.7 μ g/dL, and the probability of blood lead levels in excess of 10 μ g/dL is 0.26%. USEPA

generally considers media concentrations that result in probability percentage estimates of 5% or

less sufficiently protective of potential child receptors. As a result, the surface water lead

concentration at Wetland 27 would not require specific action under the hypothetical exposure

scenario.

10.27.5.7 Remedial Goal Options

No COCs were identified for Wetland 27, and as a result, no RGOs were calculated.

10-27-12

Figure 10-27-2 Probability Plots for Blood Lead Levels Wetland 27

Final Remedial Investigation Report NAS Pensacola Site 41 Section 10: Site-Specific Evaluations August 31, 2000

This page intentionally left blank.

Table 10-27-7 Lead Model (Version 0.99d) Inputs and Results NAS Pensacola, Wetland 27 Pensacola, Florida

LEAD MODEL Version 0.99d

AIR CONCENTRATION: 0.100 μg Pb/m3 DEFAULT

Indoor AIR Pb Conc: 30.0 percent of outdoor.

Other AIR Parameters:

Age	Time Outdoors (hr)	Vent. Rate (m3/day)	Lung Abs. (%)
0-1	1.0	2.0	32.0
1-2	2.0	3.0	32.0
2-3	3.0	5.0	32.0
3-4	4.0	5.0	32.0
4-5	4.0	5.0	32.0
5-6	4.0	7.0	32.0
6-7	4.0	7.0	32.0

DIET: DEFAULT

DRINKING WATER Cone: $4.00~\mu g$ Pb/L DEFAULT

WATER Consumption: DEFAULT

SOIL & DUST: Soil: constant conc. Dust: constant conc.

Age	Soil (µg Pb/g)	House Dust (µg Pb/g)
0-1	200.0	200.0
1-2	200.0	200.0
2-3	200.0	200.0
3-4	200.0	200.0
4-5	200.0	200.0
5-6	200,0	200.0
6-7	200.0	200.0

Additional Dust Sources: None DEFAULT

Alternative Source Intake: Wetland 27 surface water

6-7: 0.18 μ g Pb/day

MATERNAL CONTRIBUTION: Infant Model Maternal Blood Conc: 2.50 μg Pb/dL

CALCULATED BLOOD Pb and Pb UPTAKES:

	Blood Level	Total Uptake	Soil+Dust Uptake	Diet Uptake	Water Uptake	Alt. Source Uptake	Air Uptake
YEAR	$(\mu g/dL)$	(µg/day)	(μg/day)	(µg/day)	(µg/day)	(µg/day)	(µg/day)
0.5-1:	4.1	7.60	4.68	2.54	0.37	0.00	0.02
1-2:	4.5	10.93	7.36	2.63	0.91	0.00	0.03
2-3:	4.2	11.44	7.44	2.98	0.96	0.00	0.06
3-4:	4.0	11.48	7.53	2.90	0.99	0.00	0.07
4-5:	3.4	9.65	5.69	2.85	1.04	0.00	0.07
5-6:	3.0	9.39	5.16	3.03	1.11	0.00	0.09
6-7:	2.7	9.56	4.89	3.36	1.13	0.09	0.09

August 31, 2000

10.27.6 Conclusions and Recommendations

Wetland 27 is identified as a reference wetland (E/A&H, 1995a), where contaminants were mostly

isolated, generally below benchmark or reference values, and did not appear to be related to IR

sites. Therefore, Wetland 27 was not studied further in Phase IIB/III.

The HHRA identified no sediment or fish tissue COPCs. Lead was identified as a surface water

COPC. Under USEPA guidelines, surface water lead concentrations at Wetland 27 would not

require specific action under the hypothetical exposure scenario. Since no COCs were identified,

no RGOs were calculated for Wetland 27.

Because no ecological or human health risks are present at Wetland 27, this wetland is acceptable

as a reference wetland.

10-27-16

10.28 WETLAND 32

10.28.1 Site Description

Wetland 32 is upstream from Wetland 33 on Navy property adjacent to NAS Pensacola to the southwest. The area is also known as Trout Point. Parsons and Pruitt described this system as a palustrine emergent wetland (USEPA, 1991). A freshwater stream runs through Wetland 32, eventually draining into Wetland 33, which discharges to Big Lagoon. The stream originates to the northeast of Trout Point, near Wetland 53. Saw grass (*Cladium jamaicense*) is the predominant

vegetation in Wetland 32.

In 1996, the Navy took steps to preserve the Trout Point area, which has been subject to minimal impact from surrounding development. The area around Wetland 32 was developed into a low impact recreational area, with a board walk and nature trail. No IR sites exist in the

immediate vicinity of Wetland 32.

10.29.2 Nature and Extent

The methods for evaluating nature and extent are presented in Section 6. Figure 10-28-1 denotes

the Phase IIA Wetland 32 sampling locations.

Sediment

Sixteen metals were detected in Wetland 32 sediment samples. Lead, ranging from 41.3 mg/kg to 52.3 mg/kg, exceeded the sediment benchmark level (30.2 mg/kg) in all three Wetland 32 sediment samples. Mercury (0.51 mg/kg) also exceeded the benchmark level (0.13 mg/kg) at sample location 3203. Ten pesticides were detected in Wetland 32 sediment samples, including 4,4'-DDT and its metabolites, dieldrin, endrin, endrin aldehyde, alpha/gamma-BHC, and alpha/gamma-chlordane. All detected concentrations of 4,4'-DDT and its metabolites were below basewide levels. Alpha-chlordane (12 ppb), gamma-chlordane (5.9 ppb), dieldrin (13 ppb), and

endrin (15 ppb), and were detected above sediment benchmark levels (1.7 ppb for alpha and

10-28-1

Final Remedial Investigation Report NAS Pensacola Site 4I

Section 10: Site-Specific Evaluations

August 31, 2000

gamma chlordane; 0.72 ppb and 3.3ppb for dieldrin and endrin, respectively) at

sample location 3201. Endrin aldehyde (4.2 ppb), was detected above its sediment benchmark

level (3.3 ppb) at sample location 3202. The PCB Aroclor-1254 (210 ppb) was detected above

its sediment criteria (21.6 ppb) at sample location 3201. The SVOC, pyrene (170 ppb), was

detected above its sediment criteria (153 ppb) at sample location 3203. Three VOCs, 2-butanone.

acetone, and chlorobenzene were detected at Wetland 32. Acetone is a common laboratory

contaminant.

Table 10-28-1 shows the Wetland 32 Phase IIA sediment sample results (frequency of detection.

range of detected concentrations, and average detected concentration). Table 10-28-2 lists only

the detected parameters with benchmark levels, compares detected concentrations at each

sample location to sediment benchmark levels, and lists calculated HQs for each parameter. The

HQs will be further discussed in the ecological risk section.

Surface Water

Six metals were detected in Wetland 32 surface water samples. No metals detections exceeded

surface water quality criteria. The only organic detected in Wetland 32 surface water was the

VOC methylene chloride, at a concentration below its criteria. Methylene chloride is also a

common laboratory contaminant.

Table 10-28-3 shows the Wetland 32 Phase IIA surface water sample results (frequency of

detection, range of detected concentrations, and average detected concentration). Table 10-28-4

lists only the detected parameters with water quality criteria, compares detected concentrations at

each sample location to surface water quality criteria, and lists calculated HQs for each parameter.

The HQs will be further discussed in the ecological risk section.

10-28-2

Table 10-28-1
Phase IIA Detected Concentrations in Wetland 32 Sediments

Parameter	Frequency of Detection	Range of Detected Concentrations	Average Detected Concentration
Inorganics (mg/kg)			
Aluminum (Al)	3/3	3670 - 7780	5123.33
Barium (Ba)	3/3	6.7 - 9.7	8.50
Beryllium (Be)	1/3	0.51 - 0.51	0.51 _%
Calcium (Ca)	3/3	2150 - 4320	2966.67
Chromium (Cr)	3/3	5.7 - 7.2	6.30
Copper (Cu)	3/3	5.7 - 9.2	6.87
Iron (Fe)	3/3	471 - 832	651.67
Lead (Pb)	3/3	41.3 - 52.3	45.07
Magnesium (Mg)	3/3	2230 - 4280	2990.00
Manganese (Mn)	3/3	3.5 - 5.6	4.87
Mercury (Hg)	1/3	0.51	0.51
Potassium (K)	3/3	306 - 485	408.00
Selenium (Se)	2/3	2.4 - 3.6	3.00
Sodium (Na)	3/3	2580 - 3680	3080.00
Vanadium (V)	3/3	5.2 - 7.6	6.47
Zinc (Zn)	3/3	6.8 - 9.4	8.03
Pesticides/PCBs (μg/kg)			
4,4'-DDD	2/3	3.3 - 24	13.65
4,4'-DDE	2/3	2.2 - 37	19.60
4,4'-DDT	1/3	13	13.00
Aroclor-1254	1/3	210	210.00
Dieldrin	1/3	13	13.00
Endrin	1/3	15	15.00
Endrin aldehyde	1/3	4.2	4.20
alpha-BHC	2/3	1.4 - 5.2	3.30
alpha-Chlordane	1/3	12	12.00
gamma-BHC (Lindane)	1/3	1.4	1.40
gamma-Chlordane	1/3	5.9	5,90
Semivolatiles (μg/kg)			
Pyrene	1/3	170	170.00
Volatiles (μg/kg)			
2-Butanone (MEK)	1/3	70	70.00
Acetone	2/3	930 -1900	1415.00
Chlorobenzene	1/3	14	14.00

Note:

All results are in micrograms per kilogram ($\mu g/kg$) or parts per billion (ppb), except for metals which are in milligrams per kilogram (mg/kg) or parts per million (ppm).

Table 10-28-2 (1) Wetland 32 Phase IIA Sediment Concentrations Compared to Benchmark Levels

Sample Location Parameter		Detected Concentration	Sediment Benchmark Value (SBV)	но	SBV - HQ Reference
041M32010	U+ -				
4,4'-DDD (I	(G/KG)	24	122	19.67	6
4,4 DDE (L	IG/KG)	37	2.07	17 87	b
A.F-DOT (IG/KG)	18	(19	10.92	Ħ
alpha-Chlon	dans (UG/KG)	12	17	7.08	a
Aroclar-125	4 (UG/KG)	210	21.6	9.72	ь
Chromium	(MG/KG)	7.2	52.3	d ta	6.0
Copper (Mo	g/KGY	5.7	187	0.30	a b
Dieldrin (U	G/KG)	11/8	0.72	18.05	ь
Endrin (UG	(KG)	1å	8.3	4.55	a
gamma-Ghl	ordane (UGING)	5,9	17	3,47	2
Lead (MG/	(G)	-81.6	30.2	1.37	ab
Zinc (MG/K	G)	6.8	124	0,05	8 b
HISTORY	126019				
All Printers of	-00/11/2	1000	N 100	DOM:	140
Charles Mr.		2000		100	160
(Street Sec.)	District House, Spinster,		100	10400	140
Zmt/(N)%		311	W-0	100	- 000
25/900	SATE OF	1.00		100	m,
041M32030	6				
4.4"-000 (4	ig/kg)	8.6	122	2.70	10
A.4-DDE (L		2.3	2.07	1.06	b
Chromium		/€	52 3	0.11	ab
Copper (Mr	P 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	92	187	0.49	au
10.00	lyde (LIG/KG)	4.2	3.3	1.27	a
Lead (MG/)		52.3	30.2	3.73	ab
Mercury (M		0.51	0.14	3.92	alı
Pyrene (UG/KG)		170	153	1.11	15
Zine (MG/K		9.6	124	BO.0	ah

Notes:
(a) USEPA Screening Concentration for Sediment - EPA SSVs
(b) FDEP Sediment Quality Assessment Guidelines - FDEP SQAGs
Some of the numbers in the table may vary because of rounding

Table 10-28-3
Phase IIA Detected Concentrations in Wetland 32 Surface Water

Parameter	Frequency of Detection	Range of Detected Concentrations	Average Detected Concentration
Inorganics (μg/L)			
Calcium (Ca)	2/2	1750 - 2260	2005.00
Iron (Fe)	2/2	182 - 191	186.50
Magnesium (Mg)	2/2	3050 - 4570	3810.00
Manganese (Mn)	2/2	9.3 - 10	9.65
Potassium (K)	2/2	1170 - 1780	1475.00
Sodium (Na)	2/2	30000 - 44400	37200.00
Volatiles (μg/L)			
Methylene chloride	1/2	14	14.00

Note:

All results are in micrograms per liter $(\mu g/L)$ or parts per billion (ppb).

10.28.3 Fate and Transport

No pathways were evaluated for the wetland specific fate and transport for reference Wetland 32.

10.28.4 Ecological Risk Assessment

HQs for Wetland 32 sediment samples are presented in Table 10-28-2. Phase IIA sediment sample results compared to the appropriate sediment benchmark levels revealed HQs above 1 for lead in all three Wetland 32 sediment samples (3201, 1.37; 3202, 1.38; and 3203, 1.73), and also mercury (3.92) at sample location 3203. HQs were above 1 for 4,4'-DDD and 4,4'-DDE at sample locations 3201 (19.67 and 17.87), and 3203 (2.70 and 1.06), as well as for 4,4'-DDT (10.92) at sample location 3201. However, as noted in the nature and extent discussion, the concentrations of 4,4'-DDT and its metabolites were below basewide levels. HQs were also greater than 1 for the pesticides alpha-chlordane (7.06), gamma-chlordane (3.47), dieldrin (18.06), and endrin (4.55) at sample location 3201, as well as endrin aldehyde (1.27) at sample location 3202. HQs were also above 1 for the PCB Aroclor-1254 (9.72) at sample location 3201, and the SVOC pyrene (1.11) at sample location 3203. There were no surface water exceedances at Wetland 32.

Table 10-28-4 (1) Wetland 32 Phase IIA Surface Water Concentrations Compared to Water Quality Criteria

Sample Location	Partimeter	UOM	Detected Concentration	Water Quality Criteria	НО	Criteria Reference	
NW.	(Control	1980	\$ 40 U.S.		- 10		
8310		31	1 60		120	190	
041W320301	Freshwater						
Iton		UGIL	19/16	1,000.0	0.191	2.6	
Methylene chlor	ide	UGIL	1AD	1,500.0	0.00886	6	

August 31, 2000

Wetland 32 is identified as a reference wetland (E/A&H, 1995a). Contaminants detected in reference wetlands were isolated and were generally below benchmark or reference values. In addition, contaminant exceedances did not appear to be related to IR sites. Therefore, except for Wetland 33 the reference wetlands were not studied further in Phase IIB/III.

10.28.5 Wetland 32 Human Health Risk Assessment

10.28.5.1 Samples Included

Sediment

041M320101, 041M320201, 041M320301

Surface Water

041W320101, 041W320301

10.28.5.2 Current and Future Land Use

Wetland 32 is directly upstream of Wetland 33, and is in the undeveloped portion of NAS Pensacola. In 1995, a nature trail and boardwalk was built along the southern shore of Wetland 33, and the area was opened to the public. The land use is not anticipated to be changed, and fishing frequency is not known.

10.28.5.3 Fish Tissue COPCs

No fish tissue data were available for this wetland, and this exposure pathway would likely be incomplete; therefore, no COPCs were identified.

10.28.5.4 Sediment COPCs

As shown in Table 10-28-5, no sediment COPCs were identified.

10.28.5.5 Surface Water COPCs

As shown in Table 10-28-6, no surface water COPCs were identified.

TABLE 10-28-5 OCCURRENCE, DISTRIBUTION, AND SELECTION OF CHEMICALS OF POTENTIAL CONCERN NAS PENSACOLA SITE 41

Scenario Timeframe: Current and Future Medium: Sediment Exposure Medium: Sedimont Exposure Point: Wetland 32 Sediment

CAS Number Cumical Maintum Maintum Maximum Cumerity show Cumerit					_												
Cambried Concentration C	ii .		(1)	(1)	1]	(2)	(3)	(4)	(5)		(6)
72559 4.4-DDE			Concentration			Units	Maximum	Rappe of Detection Limits H		MEAN	Used for				ARAR/TBC		Contaminant Delection or
50233 4.5-DOT 13,000 13,000 10,000 1	H							2 / 3	-	13.65	24.00	N/A	92000	2700 C	N/A	NO	BSL
11097691 Ancelor 1254 210 0000 210 00000 UGMG 1 / 3 - 210 00 210 000 160 0 N NIA NO BSL 7208 Endirm 15 0000 15 0000 UGMG 1 / 3 - 13 00 15 00 NIA 5000 2300 C NIA NO BSL 7421934 Endirm alsehyde 4 2000 4 2000 UGMG 1 / 3 - 4 20 4 20 NIA 3500 150 0 N NIA NO BSL 7431934 Endirm alsehyde 4 2000 UGMG 1 / 3 - 4 20 4 20 NIA 3500 150 0 N NIA NO BSL 7431934 Endirm alsehyde 1 1 000 5 2000 UGMG 2 / 3 - 3 30 5 20 NIA 3500 150 0 N NIA NO BSL 7431934 Endirm alsehyde 1 1 000 1 2 0000 UGMG 1 / 3 - 1 2 00 12 000 NIA S500 150 0 N NIA NO BSL 7431934 Endirm alsehyde 1 1 000 1 2 0000 UGMG 1 / 3 - 1 2 00 12 00 NIA S500 150 0 NIA NO BSL 7431934 Endirm alsehyde 1 1 000 UGMG 1 / 3 - 1 2 00 1 2 00 NIA S500 150 0 NIA NO BSL 7431934 Endirm alsehyde 1 1 000 UGMG 1 / 3 - 1 1 0	D		1	37.0000		UG/KG		2 / 3	-	19.60	37.00	N/A	65000	1900 C	N/A	NO	BSL
60571 Dieldrin 13 0000 13 0000 13 0000 UGKG 1 / 3 - 13 00 15 000 N/A 1400 40 C N/A NO BSL NO NO NO NO NO NO NO N		4,4'-DDT	13.0000	13.0000		UG/KG		1 / 3	-	13.00	13.00	N/A	65000	1900 C	N/A	NO	BSL
60571 Dielafrin 13,0000 13,0000 13,0000 UGMG 1 / 3 - 13,000 N/A 1400 40 C N/A	11		210.0000	210.0000		UG/KG		1 / 3		210.00	210.00	N/A	6300	160 N	N/A		
T2298	50571	Dieldrin	13.0000	13.0000		UG/KG		1 / 3	-	13.00	13.00	N/A	1400		N/A		
T421934 Endrin alderbyde 4,200	72208	Endrin	15.0000	15,0000		UG/KG		1 / 3	-	15.00	15.00	N/A	95000	2300 C	N/A	NO	
31946 340ha-BHC 1,4000 5,2000 12,0000 12,0000 12,0000 12,0000 12,0000 16,0000	7421934	Endrin aldehyde	4.2000	4.2000		UG/KG		1 / 3		4.20	4.20	N/A	95000				
5103719 3lpha-Chlordane 12.000 12.000 12.000 18.00 18.00 C N/A NO BSL S8899 samma-BHC 1.4000 1.4000 UGMG 1 / 3 - 1.40 1.40 N/A 17000 490 C N/A NO BSL S899 samma-BHC 1.4000 1.4000 UGMG 1 / 3 - 5.90 5.90 N/A 17000 1800 C N/A NO BSL S899	319846	alpha-BHC	1.4000	5.2000		UG/KG	ļ	2 / 3		3.30	5.20	N/A	3500		N/A		
58899 gamma-BHC 1,4000	5103719	alpha-Chiordane	12.0000	12,0000		UG/KG	1	1 / 3		12.00	12.00	N/A					
5103742 garma-Chlordane 5.9000 5.9000 170.000	58899	gamma-BHC	1.4000	1 4000		UG/KG		1 / 3		1.40	1.40	N/A	1	l .		1	
Pyrene	5103742	gamma-Chlordane	5.9000	5.9000		UG/KG		1 / 3		5.90)						
78,933 2-Butanone 70,000 70,000 1900,000 UG/MG 2 / 3 - 70,00 70,00 N/A 1900,000 1900,000 N/A NO BSL 108,907 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000 N/A 32,00000 N/A NO BSL 14,000 14,000 14,000 N/A 14,000 N/A 16,000 N/A NO N/A N/A NO N/A N/A NO N/A N/	129000	Pyrene	170.0000	170,0000		UG/KG		1 / 3		170.00					1)	
F7641 Acetone	78933	2-Butanone	70.0000	70.0000		UG/KG		1 / 3	- 1							•	
14,000	67641	Acetone	930.0000	1900.0000		UG/KG		2 / 3	_								
7429905 Aluminum (A) 3670 0000 7780 0000 MG/KG 3 / 3 NAV 5123.33 7780.00 N/A 320000 7800 N N/A NO BSL 940000 97000 MG/KG 3 / 3 NAV 8.50 9.70 N/A 22000 550 N N/A NO BSL 940000 MG/KG 1 / 3 NAV 2966.67 4320.00 N/A N/A N/A NO BSL 0.5100 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	108907	Chlorobenzene	14.0000	14.0000		UG/KG		1 / 3									
7440393 Barium (Ba) 6.7000 9.7000 MG/KG 3 / 3 NAV 8.50 9.70 N/A 22000 550 N N/A NO BSL 7440417 Beryllium (Be) 0.5100 0.5100 MG/KG 1 / 3 - 0.51 0.51 N/A 630 16 N N/A NO BSL 7440702 Calcium (Ca) 2150.0000 4320.0000 MG/KG 3 / 3 NAV 2966.07 4320.0 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	7429905	Aluminum (AI)	3670.0000	7780.0000		MG/KG		3 / 3	NAV						1		- 5
7440417 Beryllium (Be) 0.5100 0.5100 MG/KG 1 / 3 - 0.51 0.51 N/A 630 15 N N/A NO BSL 7440702 Calcium (Ca) 2150.0000 4320.000 MG/KG 3 / 3 NAV 2966.67 4320.00 N/A N/	7440393	Barium (Ba)	6.7000	9.7000		MG/KG		3 / 3	NAV						1	1	
7440702 Calcium (Ca) 2150.0000 4320.0000 MG/KG 3 / 3 NAV 2966.67 4320.00 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	7440417	Beryllium (Be)	0.5100	0.5100		MG/KG		1 / 3	1	11	1			1	1		
7440473 Chromium (Cr) 5.7000 7.2000 MG/KG 3 / 3 NAV 6.30 7.20 N/A 1600 23 N N/A NO BSL 7440508 Copper (Cu) 5.7000 9.2000 MG/KG 3 / 3 NAV 6.80 9.20 N/A 13000 310 N N/A NO BSL 1000 (Fe) 471.0000 832.0000 MG/KG 3 / 3 NAV 651.67 832.00 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	7440702	Calcium (Ca)	2150.0000	4320.0000		MG/KG		3 / 3	NAV	1			•		1		
7440508 Copper (Cu) 5.7000 9.2000 MG/KG 3 / 3 NAV 6.80 9.20 N/A 13000 310 N N/A NO BSL 7439895 Iron (Fe) 471.0000 832.0000 MG/KG 3 / 3 NAV 651.67 832.00 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	7440473	Chromium (Cr)	5.7000	7.2000		MG/KG		3 / 3							1		
7439896 Iron (Fe) 471.0000 832.0000 MG/KG 3 / 3 NAV 651.67 832.00 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	7440508	Copper (Cu)	5.7000	9.2000		MG/KG		3 / 3		1					1	1	
7439921 Lead (Pb) 41.3000 52 3000 MG/KG 3 / 3 NAV 45.07 52.30 N/A 400 400 OSV/ER NO BSL 7439954 Magnesium (Mg) 2230.0000 4280.000 MG/KG 3 / 3 NAV 2990.00 4280.00 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	7439896	Iron (Fe)	471.0000	832.0000		MG/KG		3 / 3	1	1					1		
7439954 Magnesium (Mg) 2230.0000 4280.000 MG/KG 3 / 3 NAV 2990.00 4280.00 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	7439921	Lead (Pb)	41.3000	52 3000		MG/KG		3 / 3		1	1		1				
7439965 Manganese (Mn) 3.5000 5.6000 MG/KG 3 / 3 NAV 4.87 5.60 N/A 15000 1100 N N/A NO BSL 7439976 Mercury (Hg) 0.5100 0.5100 MG/KG 1 / 3 - 0.51 0.51 N/A 95 2.3 N N/A NO BSL 7440097 Potassium (K) 306.0000 485.0000 MG/KG 3 / 3 NAV 408.00 485.00 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	7439954	Magnesium (Mg)	2230.0000	4280,0000		MG/KG		3 / 3	1	u .				1			
7439976 Mercury (Hg) 0.5100 0.5100 MG/KG 1 / 3 - 0.51 0.51 N/A 95 2.3 N N/A NO BSL 7440097 Potassium (K) 306.0000 485.0000 MG/KG 3 / 3 NAV 408.00 485.00 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	7439965	Manganese (Mn)	3,5000	5.6000	1 1			3 / 3							1		
7440097 Potassium (K) 306.0000 485.0000 MG/KG 3 / 3 NAV 408.00 485.00 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	7439976	Mercury (Hg)	0.5100	1	1 1			1 / 3		1				4			
7782492 Selenium (Se) 2.4000 3.6000 MG/KG 2 / 3 - 3.00 3.60 N/A 1600 39 N N/A NO BSL 7440235 Sodium (Na) 2580.0000 3680.0000 MG/KG 3 / 3 NAV 3080.00 3680.00 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	7440097	Potassium (K)	306.0000	5			l	3 / 3	NAV	15	1				1		
7440235 Sodium (Na) 2580.0000 3680.0000 MG/KG 3 / 3 NAV 3080.00 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	7782492		ł		1 I		ļ			11					1		
7440622 Vanadium (V) 5.2000 7.6000 MG/KG 3 / 3 NAV 6.47 7.60 N/A 2200 55 N N/A NO BSL	7440235	, ,	1		1 1					y t			1		1	1	
7440555 75-77-1 000 10A 2200 00 N NA NO BSL	7440622	` '							1	8 -					1	1	
	7440666	Zinc (Zn)	6.8000	9.4000		MG/KG		3 / 3	NAV	8.03	9.40	N/A	95000	2300 N		NO	BSL BSL

(1) Minimum/maximum detected concentration

(2) Maximum concentration used as screening value.

(3) No background values were developed for this media.

(4) PRGse for trespasser scenario calculated using equations and parameters presented in Section 8 of this report.

(5) Residential soil RBC as presented in USEPA Region III RBC Tables, 1998.

(8) Rationale Codes Selection Reason: Above Screening Levels (ASL)

Deletion Reason: Below Screening Levels (BSL)

Background Levels (BKG)

No Toxicity Information (NTX)

Definitions: NAV = Not Available

N/A = Not Applicable

COPC = Chemical of Potential Concern

ARAR/TBC = Applicable or Releveant and Appropriate Requirement/ To Be Considered

OSWER = Office of Solid Waste and Emergency Response

J = Estimated Value

C = Carcinogenic

N Noncarcinogenic

TABLE 10-28-6 OCCURRENCE, DISTRIBUTION, AND SELECTION OF CHEMICALS OF POTENTIAL CONCERN NAS PENSACOLA SITE 41

Scenario Timeframe: Current and Future

Medium: Surface Water Exposure Medium: Surface Water Exposure Point: Wetland 32 Surface Water

CAS Number	Chemic a l	(1) Minimum Concentration	Minimum Qualifier	(1) Maximum Concentration	Maximum Qualifier	Units		tectio quenc		Mean	(2) Concentration Used for Screening	Background Value	(3) Adolescent Site Trespasser PRG	Tap Water RBC	(4)	Potentíal	COPC Flag	(5) Retionale for Contaminant Delection or Selection
7440702	Calcium (Ca)	1750		2260		UG/L	2	1	2	2005	2260	N/A	N/A	N/A		N/A	NO.	EN
7439896	Iron (Fe)	182		191		UG/L	2	1	2	186.5	191	N/A	N/A	N/A	i	N/A	NO NO	EN
7439954	Magnesium (Mg)	3050		4570		UG/L	2	1	2	38 10	4570	N/A	N/A	N/A		N/A	NO	EN
7439965	Manganese (Mn)	9.3		10		UG/L	2	I	2	9.65	10	N/A	2400	73	N	N/A	NO NO	BSL
7440097	Potassium (K)	1170		1780		UG/L	2	1	2	1475	1780	N/A	N/A	N/A		N/A	NO	EN
7440235	Sodium	30000		44400		UG/L	2	1	2	37200	44400	N/A	N/A	N/A		N/A	NO	EN
75092	Methylene chloride	14		14		UG/L	1	1	2	14	14	N/A	1000	4.1	С	N/A	NQ	BSL

(1) Minimum/maximum detected concentration

(2) Maximum concentration used as screening value.

(4) PRGs for site trespessor scenario calculated based on equations and parameters presented in Section 8 of this report.

(5) Tap water RBCs as presented in USEPA Region III RBC Tables (1998)

(6) Rationale Codes

Selection Reason: Above Screening Levels (ASL)

Deletion Reason: Below Screening Levels (BSL)

Background Levels (BKG) Essential Nutrient (EN) No Toxicity Information (NTX) Definitions: N/A = Not Applicable

NAV = Not Available

COPC = Chemical of Potential Concern

ARAR/TBC = Applicable or Releveant and Appropriate Requirement/ To Be Considered

J = Estimated Value

C = Carcinogenic

N = Noncarcinogenic

Final Remedial Investigation Report NAS Pensacola Site 41 Section 10: Site-Specific Evaluations August 31, 2000

10.28.5.6 Risk Summary

No COPCs were identified following the screening comparisons described in Section 8 and presented above. As a result, no formal human health risk assessment was conducted for Wetland 32.

10.28.6 Conclusions and Recommendations

Wetland 32 is identified as a reference wetland (E/A&H, 1995a), where contaminants were mostly isolated, generally below benchmark or reference values, and did not appear to be related to IR sites. Therefore, Wetland 32 was not studied further in Phase IIB/III. Since no COPCs were identified for Wetland 32, no formal HHRA was conducted. Because no ecological or human health risks are present at Wetland 32, this wetland is acceptable as a reference wetland.

10.29 WETLAND 33

10.29.1 Site Description

Wetland 33 is an estuarine lagoon on Navy property adjacent to NAS Pensacola to the southwest. The area is also known as Trout Point. Parsons and Pruitt (USEPA, 1991) described this system as an estuarine emergent wetland. Wetland 33 has an open water portion approximately 20 acres in size, with an outlet to Big Lagoon on its western end. Saw grass (*Cladium jamaicense*) and black needle rush (*Juncus roemerianus*) line the shoreline of this wetland.

In 1996, the Navy took steps to preserve the Trout Point area, which has been subject to minimal impact from surrounding development. The area around Wetland 33 was developed into a low impact recreational area, with a board walk and nature trail. The marsh within Wetland 33 was named Davis Marsh. No IR sites exist in the immediate vicinity of Wetland 33.

10.29.2 Nature and Extent

The methods for evaluating nature and extent are presented in Section 6. Figure 10-29-1 denotes the Phase IIA Wetland 33 sampling locations.

Sediment

Eighteen metals were detected in Wetland 33 sediment samples. No metals exceeded the appropriate sediment benchmark levels at Wetland 33. Five pesticides were detected in Wetland 33 sediment samples, to include 4,4'-DDE, aldrin, alpha-chlordane, and alpha/beta-BHC. 4,4'-DDE was detected below basewide levels at sample location 3301. All other pesticide detections were below screening criteria. The PCB Aroclor-1254 was detected in Wetland 58 sediment, at concentrations below the appropriate benchmark level. Sixteen SVOCs, mostly high and low molecular weight PAHs, were detected in Wetland 33 sediment samples. Ten SVOCs exceeded appropriate sediment criteria, including acenaphthene (180 ppb), anthracene (700 ppb), benzo(a)anthracene (1,800 ppb), benzo(a)pyrene (1,100 ppb), chrysene (1,500 ppb), fluoranthene

August 31, 2000

(2,700 ppb), fluorene (230 ppb), naphthalene (46 ppb), phenanthrene (1,900 ppb), and pyrene

(2,900 ppb). All SVOC exceedances occurred at sample location 3303. The VOCs acetone and

chlorobenzene were detected at Wetland 33. Acetone is a common laboratory contaminant.

Table 10-29-1 shows the Wetland 33 Phase IIA sediment sample results (frequency of detection,

range of detected concentrations, and average detected concentration). Table 10-29-2 compares

detected concentrations at each sample location to sediment benchmark levels, and lists calculated

HQs for each parameter. The HQs will be further discussed in the ecological risk section.

Surface Water

Seven metals were detected in Wetland 33 surface water samples. Mercury (0.16 ppb) exceeded

appropriate surface water quality criteria (0.025 ppb) at location 3303. No organics were detected

in Wetland 33 surface water samples.

Table 10-29-3 shows the Wetland 33 Phase IIA surface water sample results (frequency of

detection, range of detected concentrations, and average detected concentration). Table 10-29-4

compares detected concentrations at each sample location to surface water quality criteria and lists

calculated HQs for each parameter. The HQs will be further discussed in the ecological risk

section.

10-29-2

Table 10-29-1
Detected Concentrations in Wetland 33 Sediments
NAS Pensacola Site 41, Phase II

Parameter	Frequency of Detection	Range of Detected Concentrations	Average Detected Concentration
Inorganics (mg/kg)			
Aluminum (Al)	3/3	135 - 2460	1371.67
Arsenic (As)	2/3	1.4 - 1.8	1.6
Barium (Ba)	1 → 1 → 1 3/3 × 1	0.3 - 2.6	1.4
Calcium (Ca)	3/3	116 - 1470	915.33
Chromium (Cr)	2/3	3.5 - 5.5	4.5
Chromium (Cr)	2/3	3.5	4.5
Cobalt (Co)	1/3 % .	0.99	0.99
Copper (Cu)	3/3	0.49 - 8.1	4.49
Iron (Fe)	3/3	151 - 2120	1297
Lead (Pb)	3/3	0.69 - 13.3	8.63
Magnesium (Mg)	3/3	189 - 2420	1363
Manganese (Mn)	3/3	0.62 - 8.2	4.77
Nickel (Ni)	1/3	3	3
Potassium (K)	3/3	70.3 - 698	384.77
Selenium (Se)	1/3	0.66	0.66
Sodium (Na)	3/3	979 - 10100	5606.33
Vanadium (V)	3/3	0.38 - 4.7	3.13
Zinc (Zn)	2/3	8.3 - 14	11.15
Pesticides and PCBs (µg/kg)			
4,4'-DDE	1/3	3.1	3.1
Aldrin	2/3	0.18 - 0.44	0.31
Aroclor-1254	2/3	2.4 - 12	7.2
alpha-BHC	2/3	0.3 - 0.39	0.345
alpha-Chlordane	2/3	0.35 - 0.7	0.525
delta-BHC	2/3	0.13 - 0.57	0.35
Semivolatiles (μg/kg)			
Anthracene	1/3	700	700
Benzo(a)anthracene	1/3	1800	1800
Benzo(a)pyrene	1/3	1100	1100
Benzo(b)fluoranthene	1/3	1100	1100
Benzo(g,h,i)perylene	1/3	740	740
Benzo(k)fluoranthene	1/3	710	710
Carbazole		220	220
Chrysene	1/3	1500	1500
Di-n-butylphthalate	1/3	32	32

Table 10-29-1 Detected Concentrations in Wetland 33 Sediments NAS Pensacola Site 41, Phase II

Parameter	Frequency of Detection	Range of Detected Concentrations	Average Detected Concentration	
Semivolatiles (µg/kg)				
Dibenzofuran	1/3	70	70	
Fluoranthene	1/3	2700	2700	
Fluorene	1/3	230	230 - 24 - 24 - 24 - 24 - 24 - 24 - 24 - 2	
Indeno(1,2,3-cd)pyrene	1/3	740	740	
Naphthalene		46 -	46	
Phenanthrene	1/3	1900	1900	
Pyrene	1, 18 (1.18)	2900	2900	
Volatiles (μg/kg)				
Acetone	1/3	270	270	
Chlorobenzene	1/3	6	6	

Table 10-29-2 (1) Wetland 33 Phase IIA Sediment Concentrations Compared to Benchmark Levels

Sample Location	Parameter	Detected Concentration	Sediment Benchmark Value (SBV)	но	SBV - HQ Reference
041M33010	1				
4.4-DDE (L	IGIKG)	3.1	2.07	1.50	b:
Arsenic (M)	S/KG)	1.8	7.24	0.25	ati
Chromium	(MG/KG)	5.5	52.3	0.11	.ខ ២
Cupper (MC	3/KG)	8.1	19,7	0.43	ab
Lead (MG/	(G)	13 3	39.2	0.44	a b
Nickel (MG	(KG)	3	15,9	0 19	ab
Zinc (MG/K	G)	14	124	9.11	ab
041807000			STEEN STATE		
-	and bulleting	136	1.5	Links II	0.00
ALC: U	400	THE RESERVE	THE REAL PROPERTY.	4/8	251.00
200	4.139.7	100	2.4	200	- 10
-	WOOD .	100	944	100	100
Time W	(mg)		40	100	- 47
Timer (ret)		400	464	4.00	48
Jan Miles		46	WIDE D	100	100
041M330301					
Acepanhthe	me (UG/KG)	180	5.71	26.83	bt
The second secon	dane (UG/KG)	å.js	17	0.21	a
Anthracene		780	45.9	14.93	b
Aroclor-125		2.4	21.6	0.11	b
	thracene (UG/KG)	1800	74.8	24.06	b
	rene (UG/KG)	1100	88.8	12/39	lb.
Chrysene (1500	408	13,89	6.
Copper (Mt		0.49	15.7	0.03	аь
Fluoranthen		2700	113	23.89	ь
Fluorene (L	IG/KG)	230	21.2	10.85	b
Lead (MG/	S 2.07 5 T	0.69	33,2	0.02	ap
Naphthalen		45	31.6	. 33	b
Phenanthre	ne (UG/KG)	1900	86.7	21.91	ь
Pyrene (UC	SKG)	2900	153	18,95	b

Notes:
(a) USEPA Screening Concentration for Sediment - EPA SSVs
(b) FDFP Sediment Quality Assossment Guidelines - FDFP SOAGs

Some of the numbers in the table may vary because of rounding,

Remedial Investigation NAS Pensacola Site 4I Section 10: Site-Specific Evaluations August 31, 2000

Table 10-29-3
Detected Concentrations in Wetland 33 Surface Water
NAS Pensacola Site 41, Phase II

Parameter		Frequency of Range of Detected Detection Concentrations		Average Detected Concentration
Inorganics (µg/L)				
Calcium (Ca)		2/2	14100 - 21700	17900
Iron (Fe)		2/2	183 - 189	186
Magnesium (Mg)	Special Control	2/2	40100 - 64600	52350
Manganese (Mn)		2/2	6.3 - 8.2	7.25
Mercury (Hg)		1/2	0.16	0.16
Potassium (K)		2/2	12300 - 20900	16600
Sodium (Na)		2/2	315000 - 547000	431000

Table 10-29-4 (1) Wetland 33 Phase IIA Surface Water Concentrations Compared to Water Quality Criteria

Sample Location	Parameter	NOW	Datacted Concentration	Water Quality Criteria	HQ	Criteria Reference
MATERICATION	fabrica	4	14	Mar.	-	170
041W330301 Iron Mercury	Saltwater	UG/L UG/L	183 Q 10 16	300.0 8.025	# 61 6 4	b eb

Notes:

⁽b) FDEP Class III Water Quality Criteria (1995)
Some of the numbers in the table may vary because of rounding.

10.29.3 Fate and Transport

No pathways were evaluated for the wetland specific fate and transport for reference Wetland 33.

10.29.4 Ecological Risk Assessment

HQs for Wetland 33 sediment samples are presented in Table 10-29-2. Phase IIA sediment results revealed an HQ above 1 for 4,4'-DDE (1.50) at sample location 3301. However, as noted in the Nature and Extent discussion, this 4,4'-DDE concentration was below basewide levels. Ten SVOCs had HQs greater than 1, all at sample location 3303. These included acenaphthene (26.83), anthracene (14.93), benzo(a)anthracene (24.06), benzo(a)pyrene (12.39), chrysene (13.89), fluoranthene (23.89), fluorene (10.85), naphthalene (1.33), phenanthrene (21.91), and pyrene (18.95). Phase IIA results of the single Wetland 33 surface water sample revealed a HQ above 1 for mercury (6.40). HQs greater than one indicate the potential for excess risk.

Wetland 33 is identified as a reference wetland (E/A&H, 1995a). Contaminants detected in reference wetlands were isolated and were generally below screening values. In addition, contaminant exceedances did not appear to be related to IR sites. Wetland 33 was the only reference wetland included in the Phase IIB/III studies, as further discussed in this section.

Phase IIB/III

Reference Wetland 33 was sampled for chemical, toxicity, diversity, and bioaccumulation (fish tissue) analysis, with results compared to other wetlands where appropriate. Two sediment samples and two surface water samples were collected from Wetland 33 for chemical analysis.

Sampling Location Rationale

In August of 1997, two Phase IIB/III sediment samples were collected locations 33-01 and 33-02 for toxicity analysis, sediment chemistry, TOC, grain size, and benthic diversity. Three composite grab samples for benthic diversity were collected within 10 feet of each sample location to account for spatial variability. Sample locations were at the same locations as Phase IIA shown on

Figure 10-29-1. The number and lengths of the fish collected at reference Wetland 33 are presented in Table 10-29-5.

Table 10-29-5 Fish Species Collected from Wetland 33

Sample Location	Species	Number Collected	Length Range (millimeters)
33-01	Pinfish (Lagodon rhomboides)	7	55-71
33-02	Pinfish (Lagodon rhomboides)	25	54-85

Ecological Risk Evaluation

Risk in Wetland 18 was evaluated with respect to three assessment endpoints: 1) piscivorous bird health and reproduction, 2) survival, growth, and reproduction of macroinvertebrates associated with the benthic environment, and 3) protection of fish viability.

Piscivorous Bird Health and Reproduction:

The results of this model, as shown in Table 10-29-6, estimate no excess risk posed by total DDT and PCBs in fish tissue collected at 33-01 and 33-02. HQs estimated for heron exposure to total DDT in fish tissues from both sampling locations are below 1 using an SFF of 1. PCBs were not detected in the fish tissue. Therefore, the condition of Wetland 33 is acceptable for this assessment endpoint.

Table 10-29-6 Great Blue Heron HQ Calculations Wetland 33

SFF Value	Location	Parameter	Tissue Concentration ¹ (mg/kg)	Sediment Concentration ² (mg/kg)	PDE ³ (mg/kg-day)	NOAEL ⁴ (mg/kg-day)	LOAEL (mg/kg-day)	HQ ⁵
1	33-01	total DDT	7.0	0.06	0.001	0.003	0.028	0.33
1	33-02	total DDT	2.9	ND	0	0.003	0.028	0

Notes:

Whole body killifish or pinfish (wet weight).

Samples from top 5 cm of sediment (wet weight).

Potential Dietary Exposure: revised from model in SAP (E/A&H, 1997).

Effects Levels in Sample et al., 1996.

Hazard Quotient = (PDE) ÷ (NOAEL). ND Not detected

NOAEL =

No-observed-adverse-effects-level. LOAEL = Lowest-observed-adverse-effects-level.. Survival and Growth of Macroinvertebrates Associated with the Benthic Environment:

As discussed in Section 7, this assessment endpoint was evaluated using the sediment quality triad

approach. Based on the ecological risk evaluation performed at Wetland 33, sediment results can

be scored via the decision making triad, and the overall condition of the wetland for sediment can

be determined.

Sediment Chemistry

Table 10-29-7 compares detected Phase IIB/III sediment concentrations to benchmark levels, and

lists calculated HQs for each parameter. DDT and its metabolites are also compared to

basewide levels (see Section 6). Only the detected parameters with benchmark levels are presented

in Table 10-29-7. As shown, sediment HQ values are greater than one for 4,4'-DDD and

gamma-BHC. However, the DDD concentration is below the basewide level (see Section 6).

Cadmium is the only other detected parameter with an HQ above 1. Since gamma-BHC is the

only exceedance, a matrix score of "-" for sediment chemistry is applied.

Sediment Toxicity

Survival results for Wetland 33 sediments for the *Leptocheirus* test were 92% for location 33-01,

and 96% for location 33-02, as presented in Table 10-29-8. Survival results for the *Neanthes* test

were 92% for location 33-01, and 100% for location 33-02, as presented in the table. Application

of these results to the decision making triad discussed in Section 7.14 revealed a triad matrix score

of "—" for the amphipod and polychaete tests.

10-29-12

Table 10-29-7 (1) Wetland 33 Phase IIB/III Sediment Concentrations Compared to Benchmark Levels

Sample Location Parameter	Detected Concentration	Sediment Benchmark Value (SBV)	HO	SBV - HQ Reference
Mrodoong+			181	
Colonial Street, St.	110	4-	COM.	100
Time Born.	41.0	1400	200	10.0
Cont. MODIE	44.	1860	0.00	19.8
THE REST	-686	46.	1.00	-AA
THE MARKET	1885	164	1,000	1441
MARKE.	10 mm	24	100	-
041M330201				
4,4' DDD (UG/KG).	5.	1.55	1,64	- 60
Chromium (MG/KG)	1.7	52.3	0.03	ab
Copper (MG/KG)	2.6	18.7	0.14	a.6
gamma-BHC (Lindane) (UG/KG)	7.1	0.35	3 44	b
Lead (MG/KG)	5.5	30,2	0,22	a b
Nickel (MG/KG)	0.91	15.5	5.0€	а 6
Pyrene (UG/KG)	18	153	0.12	5
Zine (MG/KG)	3.7	124	0.03	a b

Notes.

(a) USEPA Screening Concentration for Sediment - EPA SSVs

(b) FIDEP Sediment Quality Assessment Guidelines - FDEP SQAG1

Some of the numbers in the table may vary because of rounding.

Table 10-29-8
Toxicity Test Results
Wetland 33 Sediment

	Leptocheirus	Neanthes	Neanthes		
Site	% Survival	% Survival	Weight (mg)	Triad Matrix Scoring	
Control (negative)	99	100	8.5		
Wetland 33 (33-01)	92	92	10.7		
Wetland 33 (33-02)	96	100 1	10.1	rijani ja 1986. Maria	

Benthic Diversity

Wetland 33 sediments were sampled, for species diversity classification in Phase IIB/III of this study. A total of 44 organisms were collected and sorted into four dominant species. Location 33-01 contained a large diversity of gastropods. *Littorina irrorata*, the marsh periwinkle, *Detracia floridana*, and *Melampus* species were well represented within this area. *Streblospio benedicti*, a polychaete commonly found in brackish water marshes was abundant at this site also. *Almyracuma* species, a type of cumacean was collected here and is viewed as an indicator of a healthy environment. Benthic diversity results and application to the triad matrix are presented in Table 10-29-9. Application of these results to the decision making triad discussed Section 7.14 revealed a triad matrix score of "—" for the benthic diversity test.

Table 10-29-9
Benthic Diversity Results and Application to the Triad Matrix
Wetland 33 Sediment

Site	Shannon-Weiner Diversity	Pielou's Evenness	Margalef's Richness	Triad Matrix Scoring
Wetland 33 (33-01)	5.46	2.63	7.74	_

Table 10-29-10 presents the interpretation of the triad analysis for the Wetland 33 Phase IIB/III sediment samples. Based on the results of the chemistry and toxicity data, condition number 2 exists. This can now be applied to the Simplified Decision Flow Chart for Sediments, as discussed in Figure 7-2.

Table 10-29-10 Triad Analysis Interpretation Wetland 33 Sediment

Location	Sediment Chemistry	Toxicity Test	Benthic Assessment	Interpretation
Wetland 33				Strong evidence for the absence
46 1944 <u>849, 4</u>			y Arakalan na manana kito.	of pollution induced degradation.

Condition number 2 denotes that Wetland 33 sediments are acceptable, and that the wetland is acceptable as a reference wetland.

Protection of Fish Viability:

Protection of fish viability was evaluated using three lines of evidence for Wetland 33. The first line of evidence, a direct comparison of tissue residue concentrations to toxic effects thresholds in Level 3 fish, shows that no one contaminant had an HQ above 1. The comparison is provided in Table 10-29-11.

For the second line of evidence, risk to Level 4 fish were also evaluated as presented in Table 10-29-12. An HQ greater than 1 was calculated for heptachlor, endrin ketone, and mercury using an SFF of 1. The calculated mercury concentration based on the mean detected concentration is used to more closely proximate the detected mercury concentrations in Wetland 33 sediment. It is important to note that the mean concentration (0.14 mg/kg) used in the calculation (Appendix G) is approximately twice the Wetland 33 sediment detected concentration (0.06 mg/kg), therefore, the risk estimate is approximately doubled. Wetland 33, approximately 20 acres in size, is open to Pensacola Bay, an approximately 97,280 acre water body. Assuming the Level 4 fish finds all of Pensacola Bay to be attractive, an SFF of 0.00021 is calculated. No one HQ is greater than 1.

For the third line of evidence, water quality parameters were compared to water quality criteria. Dieldrin (0.004 ppb) was the only parameter to exceed its water quality criteria (0.0019 ppb). This comparison is provided in Table 10-29-13.

Conclusion

With only one surface water quality criteria exceedance, no exceedances of screening values for maximum concentrations in Level 3 fish, and no exceedances of screening values for Level 4 fish using an SFF of 0.00002, the condition of this wetland appears to be acceptable for this assessment endpoint.

Table 10-29-11 Contaminant HQ Calculations from Fish Tissue Samples Wetland 33

Constituent	Maximum Level 3 Fish Tissue Conc (mg/kg)	Level 3 Fish Tissue Conc. (mg/kg)	Screening Ecotoxicity Values (mg/kg	но
4,4-DDT	5.2	0.0052	0.10 ¹	0.052
4,4-DDE	1.8	0.0018	0.101	0.018
Heptaclor	0.72	0.00072	0.01^{2}	0.072
Endrin Ketone	1.4	0.0014	0.019^{3}	0.07
gamma Chlordane	1.1	0.0011	0.014	0.11

Notes:

Available: http://www.wes.army.mil/el/t2dbase.html

- 1 0.10 mg/kg NOED for mortality in the spiny dogfish, from Guarino, A.M, and S.T. Arnold (1979).
- 2 0.01 mg/kg NOED for mortality in the spot, from Schimmel, S.C., Patrick, J.M., Forester, J. (1976).
- 3 0.019 mg/kg NOED for physiological effects in the rainbow trout, from Grant, B.F. and P.M. Mehrle (1973).
- 4 0.01 mg/kg NOED for mortality in the sheepshead minnow, from Schimmel, S.C., Patrick, J.M., Forester, J. (1976).

Table 10-29-12 Contaminant HQ Calculations from Fish Tissue Samples Wetland 33

Constituent	Level 3 Fish Tissue Conc (mg/kg)	TTC	Level 4 Tissue Conc (SFF=1) (mg/kg)	Level 4 Tissue Conc (SFF=0.00021) (mg/kg)	Screening Ecotoxicity Value (mg/kg)	HQ (Based on SFF =1)	HQ (Based on (SFF = 0.00021)
4,4'-DDT	0.0052	3.254	0.017	0.000004	3.0°	0.006	0
4,4'-DDE	0.0018	3.602	0.0065	0.000002	3.01	0.003	0
Heptaclor	0.0072	1.342	0.22	0.000047	0.01 ²	22	0.0047
Gamma-Chlordane	0.0011	1.999	0.0022	0.000001	0.013	0.22	0.0001
Endrin Ketone	0.0014	3.733	0.325	0.000069	0.0194	17.1	0
Mercury			0.363	0.008	0.146	2.6	0.06

Notes:

- 3 mg/kg NOED for morphological effects in the Atlantic Salmon, from Addison, R.F., M.E. Einck and J.R. Leahy (1976).
- 2 0.01 mg/kg NOED for mortality in the spot, from Schimmel, S.C., Patrick, J.M., Forester, J. (1976).
- 3 0.019 mg/kg NOED for physiological effects in the rainbow trout, from Grant, B.F. and P.M. Mehrle (1973).
- 4 0.01 mg/kg NOED for mortality in the sheepshead minnow, from Schimmel, S.C., Patrick, J.M., Forester, J. (1976).
- The mercury concentration was calculated using the model presented in Appendix G.
- 6 0.14 mg/kg NOED for mortality in the rainbow trout, Boudou, A. and F. Ribeyre (1985).

Table 10 29-13 (1) Wetland 33 Phase IIB/III Surface Water Concentrations Compared to Water Quality Criteria

Sample Location	Parameter	UOM	Detected Concentration	Water Quality Criteria	HQ	Criteria Reference
ENTROLIP IT	Satema			200 200 3	1 HIS. P.	
-				100		COMP
Telephone.		-	3,811	46.6	One	
100		-	100	134v	244	W.
The contract of			- 100	346	240	100
35		-	-44	-46	346	18
041W330201	Saltwater					
Alaminum		MEL	162.00	1500.00	011	Ir.
Iron		UG/L	182 00	300.00	0.34	B

(a) USEPA Water Quality Criteria (1995)
(b) FDFP Class III. Water Quality Criteria (1996)
Some of the numbers in the table may vary because of rounding

10.29.5 Human Health Risk Assessment

10.29.5.1 Site Description

Section 10.29.1 provides a detailed description of Wetland 33 and the area surrounding this wetland.

10.29.5.2 Samples Included

Wetland 33 Sediment Samples

041M3301, 041M3302

Wetland 33 Surface Water Samples

041W3301, 041W3302

Wetland 33 Fish Tissue Samples

041J3301, 041J3302

10.29.5.3 Current and Future Land Use

Wetland 33 is in the undeveloped portion of NAS Pensacola. In 1995, a nature trail and boardwalk was built along the southern shore of Wetland 33, and the area was opened to the public. The land use is not anticipated to change, and fishing frequency is not known.

10.29.5.4 Sediment COPCs

As shown in Table 10-29-14, no sediment COPCs were identified.

10.29.5.5 Fish Tissue COPCs

As shown in Table 10-29-15, the following tissue COPCs were identified.

- 4,4'-DDE
- 4,4'-DDT
- Heptachlor
- gamma-Chlordane

TABLE 10-29-14 OCCURRENCE, DISTRIBUTION, AND SELECTION OF CHEMICALS OF POTENTIAL CONCERN NAS PENSACOLA SITE 41

Scenario Timeframe: Current and Future

Medium: Sediment Evoosure Madium: Sediment

Exposure Point: Welland 33 Sediment

Rationale for Concentration Potential Location of Detection Residential Soil COPC Contaminant Minimum Minimun Maximum Maximur Background Adolescent Site Range of Detection Limits MEAN ARAR/TBC CAS Number Chemical Units Maximum Used for Concentration Qualifier Concentration Qualifier Frequency Value Trespasser PRG RBC Flag Delection or Source Concentration Screening Selection 4,4'-DDD 72548 2.00 2.00 UG/KG 041M330201 NAV 2.00 2 N/A 92000 2700 N/A NO BSL NO Aluminum (AI) MG/KG 041M330201 2 / 2 726.50 749 N/Δ 320000 7800 N/A BSL 7429905 705.00 748.00 NAV/ 041M330201 2 / 2 NO 7440393 Barium (Ba) 0.69 J 0.89 MG/KG NAV 0.79 0.89 N/A 22000 550 N N/A BSL 041M330201 1 / 2 0.0800 16 No BSL Beryllium (Be) UG/KG 80.0 N/A 630 N/A 7440417 0.08 J 0.08 0.05 0.05 N 041M330101 2 / 2 N/A N/A NO ΕN 236.00 MG/KG 544.50 853 N/Δ 7440702 Calcium (Ca) 853.00 NAV N/A 7440473 Chromium (Cr) 1.60 1.70 MG/KG 041M330101 2 / 2 NAV 1.65 1.7 N/A 1600 23 N/A NO BSL 7440508 Copper (Cu) 2.40 2.60 MG/KG 041M330101 2 / 2 NAV 2.50 2.6 N/A 13000 310 N/A NO BSL 7439896 Iron (Fe) 517.00 852.00 MG/KG D41M330101 2 / 2 NAV 689.50 862 N/A N/A N/A N/A NO ΕN OSWER NO BSL 7439921 Lead (Pb) 440 6.60 MG/KG 041M330101 2 / 2 NAV 5.50 6.6 N/A 400 **≜**∩∩ 7439954 Magnesium (Mg) 328.00 943.00 MG/KG 041M330101 2 / 2 NAV 635.50 943 N/A N/A N/A N/A NO ΕN 7439965 Manganese (Mn) 2.00 2.50 MG/KG 041M330101 2 / 2 NAV 2.25 2.5 N/A 15000 1100 N/A ΝO BSL 7439976 UG/KG 041M330101 1 / 2 0.02 0.0600 N/A 95 23 N/A NO BSL Mercury (Hg) 0.05 0.06 0.02 . 0.06 N 041M330201 2 / 2 NO BSL 7440020 Nickel (Ni) 0.91 0.93 MG/KG NAV 0.92 0.93 N/A 6300 160 N N/A 7440097 Potassium (K) 102.00 194.00 MG/KG 041M330201 2 / 2 148.00 194 N/A N/A N/A NO EN NAV N/A UG/KG 041M330201 1 / 2 570.00 - 570.00 18.0000 N/A 9500000 230000 N/A NO BSL 129000 Pyrene 18.00 18.00 18 N 7782492 Selenium (Se) 0.38 0.39 MG/KG 041M330201 2 / 2 NAV 0.39 0.39 N/A 1600 39 N/A NO BSL 7440235 Sodium (Na) 1060.00 2920.00 MG/KG 041M330201 2 / 2 NAV 1990.00 2920 N/A N/A N/A N/A NO ΕN 7440622 Vanadium (V) 1.50 2.20 MG/KG 041M330201 2 / NAV 1.85 2.2 M/Δ 2200 55 N/A NO BSL 041M330101 2 / 2 7440666 MG/KG NAV 5.10 N/A 95000 2300 N/A NO BSL Zinc (Zn) 3.70 6.50 6.5

(1) Minimum/maximum detected concentration

(2) Maximum concentration used as screening value.

(3) Background values not developed for this media.

(4) PRGs for site trespasser scenario calculated based on equations and parameters presented in USEPA Region IB Risk-Based Concentration Tables, 1998.

(5) RBCs for residential scenario as presented in USEPA Region III Risk-Based Concentration Tables, 1998.

(6) Rationale Codes Selection Reason: Above Screening Levels (ASL)

Deletion Reason: Below Screening Levels (BSL)

Background Levels (BKG) No Toxicity Information (NTX)

Essential Nutrient (EN)

Definitions

N/A = Not Applicable

NAV = Not Available

COPC = Chemical of Potential Concern

ARAR/TBC = Applicable or Releveant and Appropriate Requirement/ To Be Considered

OSWER = Office of Solid Waste and Emergency Response

J = Estimated Value

C = Carcinogenic

N Noncarcinogenic

TABL J-29-15 OCCURRENCE, DISTRIBUTION, AND SELECTION OF CHEMICALS OF POTENTIAL CONCERN NAS PENSACOLA SITE 41

Scenario Timeframe: Future Medium: Fish Exposure Medium: Fish Exposure Point: Wetland 33 Fish

CAS Number	Chemical	(1) Minimum Concentration	Minimum Qualifier	(1) Maximum Concentration	Maximum Qualifier	Units	Location of Maximum Concentration	Detection Frequency	Range of Detection Limits	MEAN	(2) Concentration Used for Screening	(3) Background Value		Potential	COPC Flag	(6) Rationale for Contaminant Delection or Selection
72559	4,4'-DDE	1.5	J	1.8	J	ŲG/KG	041J330101	2 / 2	NAV	1.65	18	N/A	9.3 C	N/A	YES	ASL
50293	4,4'-DDT	1.4	J	5.2		UG/KG	041J330101	2 / 2	NAV	3.3	52	N/A	9.3 C	N/A	YES	ASL
7421934	Endrin aldehyde	1.4	J	1.4	J	UG/KG	041J330201	1 / 2	1.4 - 1.4	1.4	14	N/A	406 N	N/A	NO	BSL
53494705	Endrin ketone	075	J	0,75	J	UG/KG	041J330101	1 / 2	3.3 - 3.3	0.75	7.5	N/A	406 N	N/A	NO	BSL
76448	Heptachlor	0.72	J	0.72	J	UG/KG	041J330101	1 / 2	1.7 - 1.7	0.72	7.2	N/A	0.7 C	N/A	YES	ASL
7439921	Lead (Pb)	0.43	J	0.47	J	MG/KG	041J330201	2 / 2	NAV	0.45	4.70	N/A	N/A	N/A	NO	NTX
5103742	gamma-Chlordane	1.1	J	1.1	J	UG/KG	041J330101	1 / 2	0.29 - 0.29	1,1	11	N/A	9 C	N/A	YES	ASL

(1) Minimum/maximum detected concentration

(2) Maximum concentration used as screening value.

(3) No background values were developed for this media.

(4) RBCS for fish tissue ingestion presented in USEPA Region III Risk-Based Concentration Tables, 1998.

(6) Rationale Codes

Selection Reason: Above Screening Levels (ASL)

Deletion Reason: Below Screening Levels (BSL)

Background Levels (BKG)

No Toxicity Information (NTX)

Definitions: N/A = Not Applicable

NAV = Not Available

COPC = Chemical of Potential Concern

ARAR/TBC = Applicable or Releveant and Appropriate Requirement/ To Be Considered

J = Estimated Value

C = Carcinogenic

N = Noncarcinogenic

10.29.5.6 Surface Water COPCs

As shown in Table 10-29-16, no surface water COPCs were identified.

10.29.5.7 Risk Characterization

Fish Tissue

Recreational Fishermen

For carcinogenic risks (Table 10-29-17), cumulative risk using the modified 95th percentile fish ingestion rates (4.3 g/day) is below the 1E-06 threshold level. As presented in Table 10-29-18, the calculated hazard index for noncarcinogenic effects for recreational fishermen is well below

1 (1 is the regulatory threshold level for noncarcinogens).

Hypothetical Subsistence Fishermen

For carcinogenic risks (Table 10.29.19), the cumulative risk for hypothetical subsistence fishermen based on the modified 95% percentile fish ingestion rate (19.5 g/day) is well below the 1E-06 threshold level. As presented in Table 10.29.20, the hazard index for non-carcinogenic effects

for hypothetical subsistence fishermen is below 1.

A summary of the risk estimates for both of the receptor populations evaluated is presented in

Table 10.29.21.

10.29.6 Conclusions and Recommendations

Wetland 33 is identified as a reference wetland (E/A&H, 1995a), where contaminants were mostly

isolated, generally below benchmark or reference values, and did not appear to be related to IR

sites. Wetland 33 was the only reference wetland included in the Phase IIB/III studies.

The ecological risk assessment for Wetland 33 measured the assessment endpoint for benthic

macroinvertebrate community diversity and toxicity, and for sediment chemistry, toxicity, and

10-29-22

TABLE 10-29-16 OCCURRENCE, DISTRIBUTION, AND SELECTION OF CHEMICALS OF POTENTIAL CONCERN NAS PENSACOLA SITE 41

Scenario Timeframe: Current and Future

Medium: Surface Water

Exposure Medium: Surface Water

Exposure Point: Wetland 33 Surface Water

		(1)		(4)	7			1	7		123	1	(2)	(N.I	1	(6)
CAS Number	Chemical .	Minimum Concentration	Minimum Qualifier	(1) Maximum Concentration	Maximum Qualifier	Units	Location of Maximum Concentration	Detection Frequency	Range of Detection Limits	Mean	Concentration Used for Screening	Background Value	(3) Adolescent Site Trespasser PRG	Tan Water RBC	Potential ARAR/TBC Source	COPC Flag	Rationale for Contaminant Detection or Selection
67641	Acetone	13.00	J	13.00		UG/L	041W330101	1 / 2	NAV	13.00	13	N/A	21000	370	N/A	NO	BSL
7429905	Aluminum (Al)	162.00		169.00	!!	UG/L	041W330101	2 / 2	NAV	165 50	169	N/A	120000	3700	N/A	NO	BSL
7440360	Antimony (Sb)	3.10	J	3.10) j	UG/L	041W330101	1 / 2	NAV	3.10	3.1	N/A	45	1.5	N/A	NO	BSL
7440393	Barium (Ba)	7.20	J	10.70		uG/L	041W330101	2 / 2	NAV	8.95	10.7	N/A	8300	260	N/A	NO	BSL
7440702	Calcium (Ca)	18800.00		100000.00	1	UG/L	041W330101	2 / 2	NAV	59400.00	100000	N/A	N/A	N/A	N/A	NO	EN
7440508	Copper (Cu)	2.40	J	2.40	J	UG/L	041W330101	1 / 2	NAV	2.40	2 4	N/A	4800	150	N/A	NO	BSL
60571	Dieldrin	0.0040	J	0.0040	」	UG/L	041W330101	1 / 2	NAV	0.00	0.004	N/A	0.14	0.0042	N/A	NO	BSL
7439896	fron (Fe)	89.70	J	102.00	J	UG/L	041W330201	2 / 2	NAV	95.85	102	N/A	N/A	N/A	N/A	NO	EN
7439954	Magnesium (Mg)	55800.00		322000.00	1 1	UG/L	041W330101	2 / 2	NAV	188800.00	322000	N/A	N/A	N/A	N/A	NO	EN
7439965	Manganese (Mn)	9.30	J	9.30	ا ر	uG/L	041W330201	1 / 2	NAV	9.30	9.3	N/A	2400	73	N/A	NO	BSL
7440097	Potassium (K)	23300.00		155000.00		ŲG/L	041W330101	2 / 2	NAV	89150.00	155000	N/A	N/A	N/A	N/A	NO	EN
7440235	Sodium (Na)	462000.00		2760000.00		ŲG/L	041W330101	2 / 2	NAV	1611000.00	2760000	N/A	N/A	N/A	N/A	NO	EN
7440622	Vanadium (V)	0.83	J	0.83		UG/L	041W330101	1 / 2	NAV	0.83	0.83	N/A	830	2 6	N/A	NO	BSL

(1) Minimum/maximum detected concentration

(2) Maximum concentration used as screening value.

(3) PRGs for adolescent site trespasser scenario calculated using equations and parameters presented in Section 8 of this report,

(4) Tap water RBCs presented in Region III Risk-Based Concentration Tables, (USEPA, 1998).

(5) Rationale Codes Selection Reason: Above Screening Levels (ASL)

Deletion Reason: Below Screening Levels (BSL)

Background Levels (BKG) Essential Nutrient (EN)

No Toxicity Information (NTX)

Definitions:

N/A = Not Applicable

NAV = Not Avaitable

COPC ≈ Chemical of Potential Concern

ARAR/TBC = Applicable or Releveant and Appropriate Requirement/ To Be Considered

J = Estimated Value

C = Carcinogenic

N = Noncarcinogenic

TABLE 10-29-17 CALCULATION OF CANCER RISKS RECREATIONAL FISH INGESTION NAS PENSACOLA SITE 41

Scenario: Timeframe: Current and Future

Medium: Fish tissue Exposure Route: Ingestion Exposure Point: Wetland 33

Receptor Population: Recreational Fishermen

Chemical of Potential Concern	Medium EPC Value ¹	Medium EPC Units	Intake (Cancer)	Intake (Cancer) Units	Oral Slope Factor	Slope Factor Units	Cancer Risk
4,4'-DDE	1.8E-03	mg/kg	2.6E-09	mg/kg-day	3.4E-01	(mg/kg-day) ⁻¹	9E-10
4,4'-DDT	5.2E-03	mg/kg	9.6E-09	mg/kg-day	3.4E-01	(mg/kg-day) ⁻¹	3E-09
Heptachlor	7.2E-04	mg/kg	1.2E-09	mg/kg-day	4.5E+00	(mg/kg-day) ⁻¹	5E-09
Chlordane	1.10E-03	mg/kg	1.1E-09	mg/kg-day	3.5E-01	(mg/kg-day) ⁻¹	5E-09
					Tota	l Pathway Risk	1E-08

¹ For fish tissue calculations, the maximum detected concentration was used as the EPC.

TABLE 10-29-18 CALCULATION OF HAZARD QUOTIENTS RECREATIONAL FISH INGESTION NAS PENSACOLA SITE 41

Scenario: Timeframe: Current and Future

Medium: Fish tissue
Exposure Route: Ingestion
Exposure Point: Wetland 33

Receptor Population: Recreational Fishermen

Chemical of Potential Concern	Medium EPC Value ¹	Medium EPC Units	Intake (Noncarcinogenic)	Intake Units	Oral RfD	RfD Units	Hazard Quotient
4,4'-DDE ²	1.8E-03	mg/kg	6.0E-09	mg/kg-day	NA	mg/kg-day	NA
4,4'-DDT	5.2E-03	mg/kg	2.2E-08	mg/kg-day	5.0E-04	mg/kg-day	4E-05
Heptachlor	7.2E-04	mg/kg	2.7E-09	mg/kg-day	5.0E-04	mg/kg-day	5E-06
Chlordane	1.10E-03	mg/kg	2.5E-09	mg/kg-day	5.0E-04	mg/kg-day	5E-06
		**************************************			T	otal Pathway HI	6E-05

¹ For fish tissue calculations, the maximum detected concentration was used as the EPC.

² Noncarcinogenic effects can not be determined due to the lack of an oral RfD.

TABLE 10-29-19 CALCULATION OF CANCER RISKS SUBSISTENCE FISH INGESTION NAS PENSACOLA SITE 41

Scenario: Timeframe: Current and Future

Medium: Fish tissue Exposure Route: Ingestion Exposure Point: Wetland 33

Receptor Poplation: Hypothetical Subsistence Fishermen

Chemical of Potential Concern	Medium EPC Value ¹	Medium EPC Units	Intake	Intake Units	Oral Slope Factor	Slope Factor Units	Cancer Risk
4,4'-DDE	1.8E-03	mg/kg	1.2E-08	mg/kg-day	3.4E-01	(mg/kg-day) ⁻¹	4E-09
4,4'-DDT	5.2E-03	mg/kg	4.4E-08	mg/kg-day	3.4E-01	(mg/kg-day) ⁻¹	2E-08
Heptachlor	7.2E-04	mg/kg	5.4E-09	mg/kg-day	4.5E+00	(mg/kg-day) ⁻¹	2E-08
Chlordane	1.10E-03	mg/kg	5.0E-09	mg/kg-day	3.5E-01	(mg/kg-day) ⁻¹	2E-09
					Tota	l Pathway Risk	5E-08

¹ For fish tissue calculations, the maximum detected concentration was used as the EPC.

TABLE 10-29-20 OCCURRENCE, CALCULATION OF HAZARD QUOTIENTS SUBSISTENCE FISH INGESTION NAS PENSACOLA SITE 41

Scenario: Timeframe: Current and Future

Medium: Fish tissue Exposure Route : Ingestion Exposure Point: Wetland 33

Receptor Population: Hypothetical Subsistence Fishermen

Chemical of Potential Concern	Medium EPC Value ¹	Medium EPC Units	Intake	Intake Units	Oral RfD	RfD Units	Hazard Quotient
4,4'-DDE ²	1.8E-03	mg/kg	2.8E-08	mg/kg-day	NA	mg/kg-day	NA
4,4'-DDT	5.2E-03	mg/kg	1.0E-07	mg/kg-day	5.0E-04	mg/kg-day	2E-04
Heptachlor	7.2E-04	mg/kg	1.3E-08	mg/kg-day	5.0E-04	mg/kg-day	3E-05
Chlordane	1.10E-03	mg/kg	1.2E-08	mg/kg-day	5.0E-04	mg/kg-day	2E-05
					T	otal Pathway HI	3E-04

¹ For fish tissue calculations, the maximum detected concentration was used as the EPC.

² Noncarcinogenic effects can not be determined due to the lack of an oral RfD.

TABLE 10-29-21 RISK SUMMARY FISH TISSUE INGESTION NAS PENSACOLA SITE 41

Timeframe: Current and Future

Medium: Fish tissue

Exposure Route : Ingestion Exposure Point: Wetland 33

			Recreational	Fishermen	Subsistence	Fishermen
Chemical of Potential Concern	Medium EPC Value ¹	Medium EPC Units	Hazard Quotient	Cancer Risk	Hazard Quotient	Cancer Risk
4,4'-DDE	1.8E-03	mg/kg	NA	9E-10	NA	4E-09
4,4'-DDT	5.2E-03	mg/kg	4E-05	3E-09	2E-04	2E-08
Heptachlor	7.2E-04	mg/kg	5E-06	5E-09	3E-05	2E-08
Chlordane	1.10E-03	mg/kg	5E-06	5E-09	2E-05	2E-09
Cum	ulative HI / C	ancer Risk	6E-05	1E-08	3E-04	5E-08

N/A - Not applicable (value cannot be determined due to lack of toxicological reference information)

¹ For fish tissue calculations, the maximum detected concentration was used as the EPC.

Remedial Investigation NAS Pensacola Site 41 Section 10: Site-Specific Evaluations June 19, 2000

biodiversity. Assessment for benthic toxicity showed no acute or chronic effects. A large diversity of gastropods and other organisms were found in this wetland, including species indicative of a healthy environment. Decision making triad results for Phase IIB/III sediment analytical results revealed an overall condition number 2 for sediment at Wetland 33, denoting that sediments are acceptable at this wetland.

The HHRA identified no sediment or surface water COPCs. Fish tissue COPCs included 4,4'-DDE, 4,4'-DDT, heptachlor, and gamma-chlordane. However, the calculated risk for both the recreational and trespasser scenarios were within the acceptable risk levels.

Wetland 33 is in the undeveloped portion of NAS Pensacola, contains a nature trail and boardwalk, and is open to the public. The land use is not anticipated to change, and fishing frequency is not known. Though open to base personnel and the public, the Trout Point area is not easily accessible. Foot traffic must traverse the boardwalk for approximately 0.25 miles to get to Wetland 33, and the shallow estuary is not readily accessible by boat.

Because of the limited overall ecological risk at Wetland 33 and the acceptable risk levels for human health, this wetland is considered acceptable as a reference wetland.

Remedial Investigation
NAS Pensacola Site 41
Section 10: Site-Specific Evaluations
August 31, 2000

This page intentionally left blank.

10.30 **WETLAND W1**

10.30.1 Site Description

Wetland W1 is on the southwest side of Forrest Sherman Field, paralleling the north/south runway of the airfield. It is a cleared, maintained area which functions as a buffer zone along the southwest side of Runway 19/01 at NAS Pensacola's Forrest Sherman Field. This site was not classified or described by Parsons and Pruitt (USEPA, 1991), but was later added to the list by E&E, Inc. It is maintained as a clear area (devoid of tall shrubs and trees) for flight safety reasons. The site functions as a drainage pathway for surface runoff which collects on the southwest portion of Sherman Field. Wetland W1 is contoured, which results in a low swale running length-wise, north-to-south, along the site's center. Surface water collects in this swale and flows offsite through a series of storm drains. Surface water from the southern end of Wetland W1 drains into Wetland 52 and surface water from the northern side of Wetland W1 drains to the north into Wetland 72 via a storm sewer. The water table along the swale is only a few inches below land surface, resulting in boggy, saturated areas containing wetland herbs and shrubs. Because the area is frequently mowed and purposely maintained clear of tall vegetation, the site has not developed into the palustrine scrub-shrub wetland that would likely exist there if left unaltered.

Vegetation on the site consists primarily of wild flowers, herbs, and grasses typical to meadows and pastures. Pockets of shrubs have developed along the centerline of the swale near drainage structures, and near obstacles avoided by mowing equipment. A number of plant species with facultative or obligate wetland status are found along the wet swale. Examples of herbs include umbrella grass (Fuirena scirpoidea), yellow eyed grass (Xyris fimbriata), common pipewort (Eriocaulon decangulare), meadow beauty (Rhexia mariana), blazing star (Liatris spicata), white bracted sedge (Dichromena latifolia), marsh fleabane (Pluchea rosea), redroot, (Lachnanthes caroliniana), yellow top, (Flaveria linearis), swamp pennywort (Hydrocotyle verticillata), sedge (Cyperus polystachyos) and rushes (Juncus, sp.) Shrubs include

Final Remedial Investigation Report NAS Pensacola Site 41 Section 10: Site-Specific Evaluations

August 31, 2000

wax myrtle (Myrica cerifera), ink berry (Ilex glabra), sea myrtle (Baccharis halimifolia), highbush blackberry (Rubus argutus), spoon-leaf sundew (Drosera intermedia), and St. John's wort (two species) (Hypericum brachyphyllum, and H. cistifolium).

Wetland W1 has been classified as nonjurisdictional by FDEP and the Corps of Engineers. However, the data collected are included in this RI report. IR site potentially affecting Wetland W1 includes UST 18 (Crash Crew Training Area), which is adjacent to Wetland W1 to the west.

10.30.2 Nature and Extent

The methods for evaluating nature and extent are presented in Section 6. Figure 10-30-1 denotes Phase IIA Wetland W1 sampling locations.

Sediment

Twenty metals were detected in Wetland W1 sediment samples. Eleven metals, including aluminum, cadmium, chromium, cobalt, copper, iron, lead, mercury, selenium, vanadium, and zinc exceeded terrestrial ecological screening values. Metals exceedances primarily occurred at sample locations 3M03, 3M04, and 3M05. Aluminum, chromium and iron exceeded the terrestrial screening values in all 13 samples. Three pesticides were detected in Wetland W1 sediment samples, including DDT and its metabolites. Sample location 3M08 contained DDD (170 ppb) and DDE (66 ppb) above basewide levels. Nine SVOCs were detected in Wetland W1 sediment samples, with all concentrations appearing above terrestrial ecological screening values. Benzo(a)anthracene (98 ppb), benzo(k)fluoranthene (93 ppb), chrysene (110 ppb), fluoranthene (210 ppb), phenanthrene (160 ppb), and pyrene (180 ppb) exceeded terrestrial screening values at sample location 3M01. Hexachlorobenzene (120 ppb), and naphthalene (300ppb) exceeded terrestrial screening values at sample location 3M04. 2-methylnaphthalene (240 ppb), and naphthalene (300ppb) exceeded terrestrial screening values at sample location 3M07.

One VOC, xylene, was detected above the terrestrial screening value (50 ppb) at sample location 3M07 (680 ppb).

Table 10-30-1 shows the Wetland W1 Phase IIA sediment sample results (frequency of detection, range of detected concentrations, and average detected concentration). Table 10-30-2 compares detected concentrations at each sample location to terrestrial screening levels, and lists calculated HQs for each parameter which will be further discussed in the ecological risk section.

Surface Water

Ten metals were detected in Wetland W1 surface water samples. Copper, iron and lead exceeded surface water quality criteria at Wetland W1 (iron and lead exceeded criteria in all three samples). Three SVOCs were detected in Wetland W1 surface water samples, including 2-methylnaphthalene, bis(2-ethylhexyl)phthalate (the only exceedance, 5 ppb at location 01), and napthalene. Six VOCs, distributed between samples 01 and 02, were detected in Wetland W1 surface water samples, including acetone (a common laboratory contaminant), benzene, cis 1,2-dichloroethene, ethylbenzene, toluene, and xylene. No VOC concentration exceeded any surface water quality criteria.

Table 10-30-3 shows the Wetland W1 Phase IIA surface water sample results (frequency of detection, range of detected concentrations, and average detected concentration). Table 10-30-4 compares detected concentrations at each sample location to surface water quality criteria and lists calculated HQs for each parameter. The HQs will be further discussed in the ecological risk section.

Table 10-30-1
Phase IIA Detected Concentrations in Wetland W1 Sediments

Parameter	Frequency of Detection	Range of Detected Concentrations	Average Detected Concentration
Inorganics (mg/kg)			
Aluminum (Al)	13/13	1450 - 9540	2930.77
Arsenic (As)	1/13	0.84	0.84
Barium (Ba)	13/13	2 - 30.9	9.91
Beryllium (Be)	4/13	0.06 - 0.26	0.17
Cadmium (Cd)	9/13	€0.86 - 6	2.52
Calcium (Ca)	13/13	78 - 9130	1672.46
Chromium (Cr)	13/13	2 - 68,7 ·	9.1
Cobalt (Co)	11/13	0.46 - 28.7	15.18
Copper (Cu)	12/13	0.57 86.3+	16.85
Iron (Fe)	13/13	215 - 5230	1274.08
Lead (Pb) i	13/13	5.71≥ 950≥	167,09
Magnesium (Mg)	13/13	31.2 - 231	89.32
Manganese (Mn)	13/13	0.52 42	11.43
Mercury (Hg)	1/13	0.11	0.11
Nickel (Ni)	9/13	2.3 + 10.2	4.99
Potassium (K)	1/13	117	117
Selenium (Se)	7/13	0.27 - 3.7	1,13
Sodium (Na)	13/13	6.6 - 57.5	16.96
Vanadium (V)	13/13	1.9 - 10.1	4.15
Zinc (Zn)	13/13	0.83 - 126	25.53
Pesticides and PCBs (μg/kg)			
4,4'-DDD	3/13 *	9.1-170	65.37
4,4'-DDE	1/13	66	66
4.DDT	1713	17	17
Semivolatiles (µg/kg)			
2-Methylnaphthalene	1/13	240	240
Benzo(a)anthracene	1/13	98	98
Benzo(k)fluoranthene	1/13	93	93
Chrysene	1/13	110	110
Fluoranthene	1/13	210	210
Hexachlorobenzene	1/13	120	120
Naphthalene	1/13	300	300
Phenanthrene	1/13	160	160
Pyrene	17.13	180	180
Volatiles (μg/kg)			
Xylene (Total)	1/13	680*	≛ 680

Note:

All results are in micrograms per kilogram ($\mu g/kg$) or parts per billion (ppb), except for metals which are in milligrams per kilogram (mg/kg) or parts per million (ppm).

Table 10-30-2 (1) Welland W1 Phase IIA Sediment Concentrations Compared to Benchmark Levels

Sample Location Parameter	Detected Concentration	Sedimont Benchmark Value (SBV)	но	SBV - HQ Reference
003M000101				
Benzo(a)anthracene (UG/KG)	98	74.8	1.31	ь
Chromium (MG/KG)	2.5	52.3	0.05	ab
Chrysene (UG/KG)	110	108	1.02	В
Copper (MG/KG)	4.5	18.7	0:24	ab
Flooranthena (UG/KG)	210	113	1.85	b
Lead (MG/KG)	14.2	30,2	0.47	a b
Nickel (MG/KG)	3.7	15,9	0.23	a b
Phenanthrene (UG/KG)	160	66.7	1 65	.6
Pyrens (UG/KG)	180	153	1.18	(b)
Zinc (MG/KG)	001	124	0.00	ab
September 1		marin o	mæ.	279
Owner word.		100-0		400
COMMUNICATION .	446	100		
-within 1	1900	44	0.00	100
THE REAL PROPERTY.	100	100	175	-
500	Part	5/10	(100)	500
003M000301				
Arsenio (MG/KG)	0.84	7.24	0.12	ab
Cadmium (MG/KG)	1,9	0.68	2.79	b
Chromium (MG/KG)	68.7	52.3	1,31	ab
Copper (MG/KG)	40.2	16.7	2.15	ab
Lead (MG/KG)	950	30.2	31.46	a b
Nickel (MG/KG)	4.7	15.9	0.30	ab
Zinc (MG/KG)	126	124	1.02	a.b
SCHOOLS!				
Committee (MCPRIS)	- D	100 (0)	100	
Threat Modellin	.0	393	180	110
Code (Electric)	364	200	1.01	100
Last SKCHIS 1		200	are an	APP
New Bridge	111	100	14	1881
Name of	40		24	i.e.
003M000501				
Cadmium (MG/KG)	6	0.68	8.82	b
Chromium (MG/KG)	11.6	52,3	0,22	ab
Copper (MG/KG)	86.7	18.7	4.81	ab
Lead (MG/KG)	833	30.2	27.58	аь

Notes:

⁽a) USEPA Screening Concentration for Sediment - EPA SSVs
(b) FDEP Sediment Quality Assessment Guidelines - FDEP SQAGs
Some of the numbers in the table may vary because of rounding.

Table 10-30-2 (2) Wetland W1 Phase IIA Sediment Concentrations Compared to Benchmark Levels

Sample Location Parameter	Detected Concentration	Sediment Benchmark Value (SBV)	но	SBV - HQ Reference
Marcury (MG/KG)	0.11	0.13	0.85	ab
Zino (MG/KG)	97.7	124	0.79	ab
-	ARIU 220		7.00	1300
		86.0	244	10450
Charles and the Control of the Contr		- 25	2.00	75
The state of the s	- 20		244	75
-	74		E05-	- 2
F-500			N. P.	- 75
(103M000781				
2-Methylnaphthslene (UG/KG)	240	20.2	11 88	h
4,4-DDD (UG/KG)	17	1.22	13.93	h
Cadmium (MG/KG)	0.86	0.63	1.28	b
Chromium (MG/KG)	6.3	52.3	0.12	a p
Copper (MG/KG)	6.6	18,7	0,35	de
Lead (MG/KG)	42 3	30.2	1.40	ם ה
Naphthalene (UG/KG)	300	34.6	8.67	h
Zinc (MG/MG)	15.2	124	0.12	#6
- BOOK -				
- +000-move		140	in.e	
(MOON AGREEM	- ×	785	L ROM)	
CARRY AND A	0.0	2.50	No.	
STATE OF THE PERSON NAMED IN		1400	0.00	**
Committee of the Commit	160	24000	PHO.	**
THE RESERVE STATE OF THE PERSON NAMED IN	BILL NO.	100	4.00	**
M. 400	100	-71	100	4.0
003M000901				
4.4-DDD (UG/KG)	91	1.22	7.46	la la
Chromium (MG/KG)	4	52.3	0.00	a b
Copper (MG/KG)	5.3	1.8 7	0.34	ab
Lead (MG/KG)	9.7	30.2	0.32	an
Nickel (MG/KG)	3.8	159	D.24	atz
ZIRG (MG/KG)	7.5	124	0.06	ab
Control of the Contro				
Contact Special	118		6 MG. 1	Local
STREET, ST. ST.		200	Alter-	1.00
Total Recipion	- N	200	019	_

 ⁽a) USEPA Screening Concentration for Sediment - EPA SSVs
 (b) FDEP Sediment Quality Assessment Guidelines - FDEP SQAGs
 Some of the numbers in the table may vary because of rounding.

Table 10-30-2 (3) Wetland W1 Phase IIA Sediment Concentrations Compared to Benchmark Levels

Sample Location Parameter		Detected Concentration	1 M M L M		SBV - HO Reference	
Nicke) (MG/K Zind (MG/KG		Z3 34	15.9 124	001 0.01	ab ab	
D03M001181	50 10 10 mm	1980 1980 1980 1980 1980 1980 1980 1980	,			
Chromium (MG/KG)		2.5	62.3	0:0E	a ti	
Lead (MG/KG	3)	57	30,2	0.19	ab	
Zinc: (MG/KG	A	14	124	001	эh	
A-10		100.000	0.609	100	100	
110000			THE REAL PROPERTY.	1000	10.0	
All Secret				1000	100	
THE PERSON						
1000		WI 212				
003M001301		_		100		
Chromium (M	(G/KG)	21	588	0.04	-246	
Copper (MG/I		3.6	18.7	0.19	a b	
Lead (MG/KG		(0.57	30.2	0.34	a to	
Nickel (MG/K	G)	ોલ	159	0.26	a to	
Zinc (MG/KG	V	4.6	ii 2a	0.04	2.0	

Pioles"

⁽a) USEPA Screening Concentration for Septiment - EPA SSVs
(b) FDEP Sediment Quality Assessment Guidolines - FDEP SQAGs
Some of the numbers in the table may vary because of rounding.

Table 10-30-3
Phase IIA Detected Concentrations in Wetland W1 Surface Water

Parameter	Frequency of Detection	Range of Detected Concentrations	Average Detected Concentration	
Inorganics (µg/L)				
Aluminum (Al)	2/3	1840 - 2270	2055	
Barium (Ba)	1/3	57.8	57.8	
Copper (Cu)	2/3	6.6 – 7.8	7.2	
Calcium (Ca)	3/3	3620 - 6790	4926.67	
Iron (Fe)	3/3	610 - 2790	1993.33	
Lead (Pb)	3/3	4.7 - 56.4	23.53	
Magnesium (Mg)	3/3	736 - 1020	863.33*	
Manganese(Mn)	3/3	5.7 - 27.4	13.5	
Potassium (K)	3/3	361 - 1410	837;33	
Vanadium (V)	3/3	2.9 - 10.8	5.67	
Pesticides and PCBs (µg/L)				
alpha-Chlordane	- 1/3 * k 3 * .	0.25	0.25	
SVOCs (µg/L)				
2-Methylnaphthalene	1/3	3.	3	
bis(2-Ethylhexyl)phthalate (BEHP)	1/3	5	5	
Naphthalene	1/3	6.	69	
VOCs (μg/L)				
Acetone		13	13	
Benzene	2/3	16 - 24	20	
cis-Î,2-Dichloroethene	1/ 3	3	3. (1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	
Ethylbenzene	2/3	7 - 11	9	
Toluene	2/3	.3 *		
Xylene (Total)	2/3	46 - 150	98	

Note:

The total number of samples has been reduced by the number of rejected samples. However, note that no positive results were rejected. All results are in micrograms per liter $(\mu g/L)$ or parts per billion (ppb).

10.30.3 Fate and Transport

The pathways evaluated for the wetland specific fate and transport correlate to those identified in the conceptual model presented in Section 9. These pathways include: surface water/sediment transport into the wetland; groundwater discharge into the wetland; sediment/surface water transport within the wetland; sediment leaching to surface water within the wetland; and surface water/sediment transport from the wetland. Sediment transport and storm water runoff data are lacking; thus many evaluations are qualitative in nature. The method of evaluation of the leaching from sediment to surface water was presented in Section 9. Table 10-30-5 presents those contaminants present in sediment above benchmark levels and their calculated SSLs.

Table 10-30-4 (1) Wetland W1 Phase IIA Surface Water Concentrations Compared to Water Quality Criteria

Sample Location	Párameter	UOM	Detected Concentration	Water Quality Criteria	HQ	Criteria Reference
041WW10101	Freshwater					
Aluminum		UG/L	1.840.0	87 0	21 14943	a
Benzene		UG/L	(8.0	53,0	0.30189	8
Copper		UG/L	7.8	7.8	1.0	a p
Ethylbenzene		UGAL	7.0	A63.0	0.01545	A
Iron		UGIL	2,580.0	0.000,0	2.58	ab
Lead		UG/L	55.4	171	32 98246	ab
Naphthalene		UG/L	6.0	62 0	0.09677	В
Toluana		UG/L	3.0	175.0	0.01714	a
27	20 94	22	144	100	915m	10
A CONTRACTOR OF THE PARTY OF TH		100	- 100	-		-153
200	(Section 4)	-	4.0025		10.720	10 M
		-201	100 St.	- 100	1000	55.00
-			1000		11/2/2015	- 84
_		1000		100	100	- **
		1000	100		100	market and the
mar.			-		-	
041 WW 10301	Freshwater					
THE RESERVE OF THE PARTY OF THE	2 02511111-131				8.00	
Iran		UG/L	6100	1,000.0	0.61	a b

Notes:

(a) USEPA Water Quality Criteria (1995)
 (b) FDEP Class III Water Quality Criteria (1996)
 Some of the numbers in the table may vary because of rounding.

Table 10-30-5
Calculated Sediment Screening Values for Wetland W1

Parameter	USEPA or FDEP Surface Water Standard	Kd	SSL DF = 100	Maximum Concentration Detected	Leaching Potential DF = 100
Inorganics	(ppm)		(ppm)	(ppm)	
Chromium	11.5	i.9E+ 01	21.04	68.7	YES
Copper	6.54 *	4.3E+02	335.5	86.3	NO
Lead	1.32	9E+02	153.92	950	YES
Zinc	70.2 a.b	6.2E+01	435.24	126	NO
Organics	(ppb)	3111.	(ppb)	(ppb)	
4,4 DDD	0.0064.	1.99E+04	.1.27E+04	170	NO. ***
Benzo(a)anthracene	0.031 b	6.2E+04	1.92E+05	98	NO
Chrysene	0.0316	6.2E+04	1.92E+05	110	NO .
Fluoranthene	39.8 *	2.13E+03	8.48E+06	210	NO
Naphthalene	62 *	39,98	2.47E+05	300	NO:
Phenanthrene	0.031 b	599.76	1.86E+03	160	NO
Pyrene	11,000 b	2099	2.31E+10	180	NO

Notes:

Kd for organics calculated using foc of 0.02 (conservative literature value).

Kds are from: USEPA, 1996b (first preference); Superfund Chemical Data Matrix (USEPA, 1996c) (second preference); Texas Risk Reduction Program Concept Document 2, Volume 1, Appendix VII, 1996 (third preference); TERRA Model, Oak Ridge National Laboratory, 1984 (fourth preference — primary reference for inorganics).

Kd = normalized partitioning coefficient.

SSL = sediment screening level.

DF = dilution factor.

a = USEPA Freshwater Surface Water Chronic Screening Value (1995a).

b = FDEP Class III Water Quality Criteria (1996).

Contaminants present in surface water above water quality criteria were presented on Table 10-30-4.

Transport into the Wetland

Surface Water/Sediment Pathway

Based on landlord and watershed analysis, the following sources can contribute contamination to Wetland W1 through this pathway:

• Potential storm water runoff and sediment entrainment from UST 18 and the southern end of the north-south runway at the Forrest Sherman airfield complex.

The presence of sediment contaminant above benchmark level (see Table 10-23-5) validates the sediment transport pathway and by inference the surface water pathway. Additionally, two organics were present in surface water above standards, further validating the pathway.

Groundwater Discharge Pathway

Based on potentiometric analysis, the following sources can contribute contamination to Wetland W1 through this pathway:

• Discharge from UST 18.

Transport within the Wetland

Surface Water/Sediment Migration Pathway

The configuration of the wetland, along with landlord analysis, indicates that surface water and sediment migrates to the north and into Bayou Grande, and to the south into Wetland 52 and Pensacola Bay. Transport occurs within a buried storm water culvert system that sources the wetland in the vicinity of UST 18. Therefore, both sediment and surface water contamination can be expected to remain mobile.

Sediment Leaching to Surface Water Pathway

Seven organics and four inorganics exceeded their respective SSVs, but only chromium and lead exceeded their SSLs. The presence of lead above the SSL and the associated presence of fuel-related organics in the corresponding surface water sample indicate the source for contamination to be UST 18. The fuel-related organics are likely to be associated with the groundwater or surface water pathways, while the lead in surface water is at least partly attributable to sediment leaching. This pathway is considered valid, with a high potential for lead to partition to surface water.

Transport from the Wetland

Surface water and sediment can be expected to enter the storm water culvert system and exit the immediate vicinity. Therefore contamination can be expected to be mobile and the pathway is considered valid.

10.30.4 Ecological Risk Assessment

HQs for Wetland W1 sediment samples are presented in Table 10-20-2. Phase IIA sediment sample results compared to the appropriate terrestrial soil benchmark levels revealed a HQ above 1 for aluminum (ranging from 29.0 to 190.8), chromium (ranging from 5.0 to 171.75), and iron (ranging from 1.08 to 26.15) at all thirteen locations sampled. Cadmium exceeded an HQ of 1 (3.75) at location 3M05. Cobalt exceeded an HQ of 1 at four locations, with values ranging from 1.02 to 1.44. Copper had HQs above 1 at locations 3M03 and 3M05, with values of 1.01 and 2.16, respectively. Lead and zinc had HQs above 1 at locations 3M03 (19.0/2.52), 3M04 (4.90/1.11), and 3M05 (16.66/1.95). Mercury at location 3M05 had an HQ of 1.10. Selenium had HQs of 1.09, 4.57, and 1.6, respectively, at locations 3M03, 3M05, and 3M06. 4, 4'DDD at locations 3M07 and 3M09 had HQs of 6,800 and 3,640, respectively. The SVOCs fluoranthene, phenanthrene, and pyrene had HQs of 2,100, 1,600, and 1,800, respectively, at location 3M01. HQs above 1 for 2-Methlynaphthalene (2,400) and naphthalene (3,000) were

found at location 3M 07. Hexachlorobenzene had a HQ above 1 (48,000) at location 3M04. Xylene at location 3M07 had a HQ of 13,600.

Phase IIA surface water results revealed HQs greater than 1 for four metals, one pesticide, and one SVOC. Locations 01 and 02 had HQs above 1 for aluminum (21.15/26.09), iron (2.58/2.79), and lead (32.98/5.56). Lead also had an HQ above 1 at location 03 (2.75). The pesticide, alpha-chlordane, and the SVOC bis(2-Ethylhexyl)phthalate had HQs above 1 at location 02 (58.14 and 16.67 respectively). HQs greater than 1 indicate a potential for excess risk.

Wetland W1 was classified in Group D and was not studied further in Phase IIB/III.

10.30.5 Human Health Risk Assessment

10.30.5.1 Samples Included

Sediment

003M000101, 003M000201, 003M000301, 003M000401, 003M000501, 003M000601, 003M000701, 003M000801, 003M000901, 003M001001, 003M001101, 003M001201, 003M001301

Surface Water

041WW10101, 041WW10201, 041WW10301

10.30.5.2 Current and Future Land Use

Wetland W1 is a part of a 0.25 mile wide cleared buffer on the west side of Runway 13/31 at Forrest Sherman Field. The buffer is present for use in aircraft emergencies. It is unlikely this use will change in the future. Public access is restricted, and the area is patrolled by airfield security personnel.

10.30.5.3 Fish COPCs Identified

No fish tissue data were available for this wetland, and this exposure pathway would likely be incomplete; therefore, no COPCs were identified.

10.30.5.4 Sediment COPCs Identified

As shown in Table 10-30-6, the following sediment COPC was identified.

Lead

10.30.5.5 Surface Water COPCs Identified

As shown in Table 10-30-7, the following chemical was identified as a COPC:

Lead

10.30.5.6 Risk Characterization

Lead Risk Characterization

A conservative exposure scenario was developed to assess the significance of surface water concentrations of lead at Wetland W1. This scenario involves a child (age 6 to 7) who accompanies an older sibling to the wetland one day a week for the year. Exposure to Wetland W1 surface water was addressed as an additional exposure relative to typical exposures encountered at the child's place of residence. This additional exposure was presented as an "alternate" source within the constructs of the Lead Model. The standard default assumptions in the lead model were kept to simulate background lead exposures. This was done to provide a conservative estimate of daily intake from sources unrelated to Wetland W1.

TABLE 10-30-6 OCCURRENCE, DISTRIBUTION, AND SELECTION OF CHEMICALS OF POTENTIAL CONCERN NAS PENSACOLA SITE 41

Scenario Tinieframe: Current and Future Medium: Sediment Exposure Medium: Sediment Exposure Point: Walland W1 Sediment

7		741		1 (1)	"	-					T-000000000000000000000000000000000000					·	
CAS Number	Chemical	Minimum Concentration	Minimum Qualifier	(1) Maximum Concentration	Maximum Quaiifler	Units	Location of Maximum Concentration	Detection Frequency	Range of Detection Limits	MEAN	(2) Concentration Used for Screening	(3) Background Value	(4) Adolescent Site Trespasser prg	Commercial Maintenance Worker Screening Toxicity Value	Potential ARAR/TBC Source	COPC Flag	(6) Rationale for Contaminant Delection or Selection
91576	2-Methylnaphthalene	240.0000	J	240.0000	J	UG/KG	003M000701	1 / 13	380.00 - 56000.00	240.00	240.00	N/A	13000000	20000000 1	N/A	NO	BSL
	4,4'-DDD	9.1000	J	170.0000	J	UG/KG	003M000701	3 / 13	3.80 - 9.10	65.37	170.00	N/A	92000	57000 (N/A	NO	BSL
	4,4'-DDE	66.0000		66.0000		UG/KG	003M000801	1 / 13	3.80 ~ 9,10	66,00	66.00	N/A	65000	41000 (N/A	NO	BSL
50293	4,4'-DDT	17.0000	J	17.0000	J	UG/KG	003M000801	1 / 13	3.80 - 9,10	17,00	17.00	N/A	65000	41000 (N/A	NO	BSL
7440382	Arsenic (As)	0.8400	J	0.8400	J	MG/KG	003M000301	1 / 13	0.42 ~ 1.40	0.84	0.84	N/A	15	9 (N/A	NO	9SL
56553	Benzo(a)anthracene	98,0000	J	98.0000	J	UG/KG	D03M000101	1 / 13	380.00 - 56000.00	98.00	98.00	N/A	30000	19000 (N/A	NO	BSL
207089	Benzo(k)fluoranthene	93.0000		93.0000		UG/KG	003M000101	1 / 13	380.00 - 56000.00	93.00	93.00	N/A	300000	190000 (NO	BSL
7440417	Beryllium (Be)	0.0600	J	0.2600	J	MG/KG	003M000501	4 / 13	0.06 - 0.11	0.17	0.26	N/A	630	980		NO	BSL
7440439	Cadmium (Cd)	0.8600		6.0000	J	MG/KG	003M000501	4 / 13	0:30 - 0.60	2.52	6.00	N/A	320	490 h		NO	BSL
218019	Chrysene	110.0000		110.0000		UG/KG	003M000101	1 / 13	380.00 - 56000.00	110.00	110.00	N/A	3000000	1900000 0	N/A	NO	BSL
7440484	Cobalt (Co)	0.4600	J	28.7000	j	MG/KG	003M001001	11 / 13	0.48 - 1.50	15.18	28.70	N/A	19000	29000		NO	BSL
7440508	Copper (Cu)	0.5700	J	86.3000	J	мсже	003M000601	12 / 13	0.39 - 0.39	16.85	86.30	N/A	13000	20000	1	NO	BSL
206440	Fluoranthene	210,0000	J	210.0000	J	UG/KG	003M000101	1 / 13	380.00 - 56000.00	210.00	210.00	N/A	N/A	N/A I		NO	BSL
118741	Hexachlorobergene	120.0000	J	120.0000	J	UG/KG	003M000401	1 / 13	380.00 - 56000.00	120.00	120.00	N/A	14000	8600		NO	BSL
7439976	Mercury (Hg)	0.1100	J	0.1100	J	MG/KG	003M000501	1 / 13	0.02 - 0.09	0.11	0.11	N/A	95	150 h		NO	BSL
91203	Naphthalene	300.0000	j	300.0000		UG/KG	003M000701	1 / 13	380.00 - 56000.00	300.00	300.00	N/A	13000000	20000000		NO	BSL
7440020	Nickel (Ni)	2,3000	j	10.2000		MG/KG	003M000201	9 / 13	1.50 - 4.90	4.99	10.20	N/A	6300	9800		NO	BSL
85018	Phenanthrene	160.0000	J	160,0000		UG/KG	003M000101	1 / 13	380.00 - 56000.00	160.00	160.00	N/A	9500000	15000000	•	NO	BSL
7440097	Potassium (K)	117.0000	J	117.0000	J	MG/KG	003M001201	1 / 13	94.20 - 307.00	117.00	117.00	N/A	N/A	N/A	N/A	NO	NTX
129000	Pyrene	180.0000	j	180,0000	J	UG/KG	003M000101	1 / 13	380.00 - 56000.00	180.00	180.00	N/A	9500000	15000000 1	1	NO	BSL
7782492	Selenium (Se)	0.2700	j	3.7000	j	MG/KG	003M000701	7 / 13	0.25 - 0.42	1.13	3.70	N/A	1600	2500		NO	BSL
91576	2-Methylnaphthalene	240.0000	J	240,0000	ر ا	UG/KG	003M000701	1 / 13	11.00 - 140.00	680.00	240.00	N/A	13000000	9800000		NO	BSL
7429905	Akıminum (Al)	1450.0000	j	9540,0000	ا ر	MG/KG	003M001201	13 / 13	NAV	2930.77	9540.00	N/A	320000	490000		NO	BSL
7440393	Barium (Ba)	2.0000	j	30,9000		MG/KG	003M000101	13 / 13	NAV	10.18	30.90	N/A	22000	34000 1		NO	BSL
7440702	Calcium (Ca)	78,0000	J	9130,0000	J	MG/KG	003M000401	13 / 13	NAV	1672.46	9130.00	N/A	N/A	N/A	N/A	NO	NTX
7440473	Chromium (Cr)	2.0000	J	68,7000	J	MG/KG	003M001201	13 / 13	NAV	9.05	68.70	N/A	1600	2500		NO	BSL
7439896	Iron (Fe)	215,0000	j	5230.0000	ازا	MG/KG	003M000201	13 / 13	NAV	1274.08	5230.00	N/A	N/A	N/A	N/A	NO	NTX
7439921	Lead (Pb)	5,7000	Ĵ	950,0000	ارا	MG/KG	003M000301	13 / 13	NAV	167.09	950.00	N/A	400	400	OSWER	YES	ASL
7439954	Magnesium (Mg)	31.2000	J	231,0000	ارا	MG/KG	003M001101	13 / 13	NAV	89.32	231.00	N/A	N/A	N/A	N/A	NO	NTX
7439965	Manganese (Mn)	0.5200	j	42.0000	Ĵ	MG/KG	003M000801	13 / 13	NAV	11.43	42.00	N/A	15000	23000		NO	BSL
7440235	Sodium (Na)	6.6000	Ĺ	57.5000	j	MG/KG	003M000401	13 / 13	NAV	16.96	57.50	N/A	N/A	N/A	N/A	NO	NTX
7440622	Vanadium (V)	1,9000	ı,	10.1000	ارًا	MG/KG	003M001101	13 / 13	NAV	4.15	10.10	N/A	2200	3400	1	NO	BSL
7440666	Zinc (Zn)	0.8300	J	125,0000	ارا	MG/KG	003M000301	13 / 13	NAV	25.53	126.00	N/A	95000	150000	1	NO	BSL
								10	INT	20.00	120.00	17/7	35000	100000 3	NIA NIA	I NO	I DOL

- (1) Minimum/maximum detected concentration
- (2) Maximum concentration used as screening value.
- (3) No background values were developed for this media.
- (4) PRGss for trespasser scenario culculated using equations and parameters presented in Section 8 of this report.
- (5) PRGs for commercial site worker calculated using equations and parameters presented in Section 8 of this report.

(6) Rationale Codes Selection Reason: Above Screening Levels (ASL)

Deletion Reason: Below Screening Levels (BSL)

Background Levels (BKG) No Toxicity Information (NTX) Definitions:

NAV = Not Available

N/A = Not Applicable

COPC = Chemical of Potential Concern

ARAR/TBC = Applicable or Releveant and Appropriate Requirement/ To Be Considered

OSWER = Office of Solid Waste and Emergency Response

J = Estimated Value

C = Carcinogenic

N Noncarcinogenic

TABLE 10-30-7 OCCURRENCE, DISTRIBUTION, AND SELECTION OF CHEMICALS OF POTENTIAL CONCERN NAS PENSACOLA SITE 41

Scenario Timetrame: Current and Future

Medium: Surface Water

Exposure Medium: Surface Water Exposure Point: Wetland W1 Surface Water

		(1)		(1)							(2)		(3)		(4)	T	(5)
CAS Number	Chemical	Minimum Concentration	Minimum Qualifier	Maximum Concentration	Maximum Qualifier	Units	Location of Maximum Concentration	Detection Frequency	Range of Detection Limits	Мезп	Concentration Used for Screening	Background Value	Adolescent Site Trespasser PRG	Commercial Maintenence Worker PRG	Potential ARAR/TBC Source	COPC Flag	Rationale for Contaminant Delection or Selection
91576	2-Methylnaphthalene	3		3		UG/L	041WW10101	1 / 3	NAV	3	3	N/A	330	1000	N N/A	NO	BSL
67641	Acetone	13	J	13	J	UG/L	041WW10101	1 / 3	NAV	13	13	N/A	21000	35000	N N/A	NO	BSL
7429905	Aluminum (AI)	1840	J	2270	J	UG/L	041WW10201	2 / 3	NAV	2055	2270	N/A	120000	250000	N N/A	NO	BSL
7440393	Barium (Ba)	57.8	J	57.8	J	UG/L	041WW10201	1 / 3	NAV	57.8	57.8	N/A	8300	18000	N N/A	NO	BŞL
71432	Benzene	16		24		UG/L	041WW10201	2 / 3	NAV	20	24	N/A	91	100	C N/A	NO	BSL
7440702	Calcium (Ca)	3260	J	67 9 0	J	UG/L	041WW10101	3 / 3	NAV	4927	6790	N/A	N/A	N/A	N/A	NO	EN
7440508	Copper (Cu)	6.6	J	7.8	J	UG/L	041WW10101	2 / 3	NAV	7.2	7.8	N/A	4800	10000	N N/A	МО	BSL
100414	Ethylbenzene	7		11		UG/L	041WW10201	2 / 3	NAV	9	11	N/A	1200	3700	N N/A	NO	BSL
7439896	iron (Fe)	610		2790		UG/L	041WW10201	3 / 3	NAV	1993	2790	N/A	N/A	N/A	N/A	NO	EN
7439921	Lead (Pb)	4.7		56.4		UG/L	041WW10101	3 / 3	NAV	23.5	56.4	N/A	15	15	TTAL	YES	ASL
7439954	Magnesium (Mg)	736	Ĵ	1020	J	UG/L	041WW10101	3 / 3	NAV	863	1020	N/A	N/A	N/A	N/A	NO	EN
7439965	Manganese (Mn)	5.7	ز	27.4		UG/L	041WW10101	3 / 3	NAV	13.5	27.4	N/A	2400	5000	N N/A	NO	BSL
91203	Naphthalene	5		6		UG/L	041WW10101	1 / 3	NAV	6	- 6	N/A	330	1000	N N/A	NO	BSL
7440097	Potassium (K)	361	J	1410	ı	UG/L	041WW10201	3 / 3	NAV	837	1410	N/A	N/A	N/A	N/A	NO	EN
108883	Toluene	3		3		UG/L	041WW10201	2 / 3	NAV	3	3	N/A	3800	11000	N N/A	NO	BSL
7440822	Vanadium (V)	2.9	J	10.8	J	UG/L	041WW10201	3 / 3	NAV	5.7	10.8	N/A	830	1800	N N/A	NO	BSL
1330207	Xylene (Total)	46		150	D	UG/L	041WW10201	2 / 3	NAV	98	150	N/A	19000	59000	N N/A	NO	BSL
5103719	aipha-Chiordane	0.25	J	0.25		UG/L	041WW10201	1 / 3	NAV	0.25	0.25	N/A	2.1	2.7	C N/A	NO	BSL
117817	bis(2-Ethylhexyl)phthalate (5		5		UG/L	041WW10201	1 / 3	NAV	5	5	N/A	110	130	C N/A	NO	BSL
156592	cis-1,2-Dichloroethene	3		3		UG/L	041WW10101	1 / 3	NAV	3	3	N/A	670	1700	N N/A	NO	BSL

(1) Minimum/maximum detected concentration

(2) Maximum concentration used as screening value.

(4) PRGs for site trespasser scenario calculated based on equations and parameters presented in Section 8 of this report.

(5) PRGs for commercial maintenance worker acenario calculated based on equations and parameters presented in Section 8 of this report.

(6) Rationale Codes

Selection Reason: Above Screening Levels (ASL)

Deletion Reason: Below Screening Levels (BSL) Background Levels (BKG) Essential Nutrient (EN)

No Toxicity Information (NTX)

Definitions: N/A = Not Applicable

NAV = Not Available

COPC = Chemical of Potential Concern

ARAR/TBC = Applicable or Releveant and Appropriate Requirement/ To Be Considered

TTAL = Treatment Technique Action Level

J = Estimated Value

C = Carcinogenic N = Noncarcinogenic The assumption was made that this child would incidentally ingest 100 mg of sediment and 0.05 liters of surface water during each visit. Within the Lead Model, an alternate source was entered to account for this exposure as previously discussed. The bioavailability of lead ingested from the alternate source (Wetland W1 surface water) was equal to that of drinking water lead ingested from the standard residential default source. Assuming incidental ingestion of 100 mg of sediment and 0.05 liters of surface water once per week with lead concentrations of 950 mg/kg and 56.4 μ g/L, the annual alternate source exposure was estimated to be 13.9 μ g lead/day. Table 10-30-8 presents the lead model output for a child 6 to 7 years old under these exposure conditions.

Figure 10-30-2 shows the probability percentage of blood lead levels for the hypothetical child receptor. Based on this model output, the geometric mean blood level is estimated to be $3.8 \ \mu g/dL$, and the probability of blood lead levels in excess of $10 \ \mu g/dL$ is 1.76%. USEPA generally considers media concentrations that result in probability percentage estimates of 5% or less sufficiently protective of potential child receptors. As a result, sediment and surface water lead concentrations at Wetland W1 would not require specific action under the hypothetical exposure scenario.

10.30.5.7 Remedial Goal Options

No COCs were identified for Wetland W1, and as a result, no RGOs were calculated.

10.30.6 Conclusions and Recommendations

Wetland W1 is a channelized drainage ditch without a viable aquatic community. In addition, this wetland is not considered a significant source of food or habitat. Therefore, as proposed in the approved RI/FS SAP Addendum, (EnSafe, 1997), this wetland was eliminated for further risk characterization. Since no COCs were identified for Wetland W1, no RGOs were calculated. Because no ecological or human health risks are present at Wetland W1, no further action is recommended for this wetland.

Table 10-30-8 Lead Model (Version 0.99d) Inputs and Results NAS Pensacola, Wetland W1 Pensacola, Florida

LEAD MODEL Version 0.99d

AIR CONCENTRATION: 0.100 µg Pb/m3 DEFAULT

Indoor AIR Pb Conc: 30.0 percent of outdoor.

Other AIR Parameters:

_	Age	Time Outdoors (hr)	Vent. Rate (m3/day)	Lung Abs. (%)
_	0-1	1.0	2.0	32.0
	1-2	2.0	3.0	32.0
	2-3	3.0	5.0	32.0
	3-4	4.0	5.0	32.0
	4-5	4.0	5.0	32.0
	5-6	4.0	7.0	32.0
	6-7	4.0	7.0	32.0

DIET: DEFAULT

DRINKING WATER Conc: 4.00 µg Pb/L DEFAULT

WATER Consumption: DEFAULT

SOIL & DUST: Soil: constant conc. Dust: constant conc.

Age	Soil (µg Pb/g)	House Dust (µg Pb/g)
0-1	200.0	200.0
1-2	200.0	200.0
2-3	200.0	200.0
3-4	200.0	200.0
4-5	200.0	200.0
5-6	200.0	200.0
6-7_	200.0	200.0

Additional Dust Sources: None DEFAULT

Alternative Source Intake: Wetland W1 sediment and surface water

6-7: 13.90 μg Pb/day

MATERNAL CONTRIBUTION: Infant Model Maternal Blood Conc: 2.50 $\,\mu g$ Pb/dL

CALCULATED BLOOD Pb and Pb UPTAKES:

YEAR	Blood Level $(\mu g/dL)$	Total Uptake (μg/day)	Soil + Dust Uptake (µg/day)	Diet Uptake (μg/day)	Water Uptake (µg/day)	Alt. Source Uptake (μg/day)	Air Uptake (μg/day)
0.5-1:	4.1	7.60	4.68	2.54	0.37	0.00	0.02
1-2:	4.5	10.93	7.36	2.63	0.91	0.00	0.03
2-3:	4.2	11.44	7.44	2.98	0.96	0.00	0.06
3-4:	4.0	11.48	7.53	2.90	0.99	0.00	0.07
4-5:	3.4	9.65	5.69	2.85	1.04	0.00	0.07
5-6:	3.0	9.39	5.16	3.03	1.11	0.00	0.09
6-7:	3.8	15.69	4.76	3.26	1.10	6.48	0.09

Figure 10-30-2 Probability Percentage of Blood Lead Levels for the Hypothetical Child Receptor

Final Remedial Investigation Report NAS Pensacola Site 41 Section 10: Site-Specific Evaluations August 31, 2000

This page intentionally left blank.

10.31 WETLAND 75

10.31.1 Site Description

Wetland 75 is located north of Radford Road, near the western entrance to NAS Pensacola. Parsons and Pruitt (USEPA, 1991) described this area as a palustrine emergent wetland. Emergent vegetation, such as cattails (*Typha latifolia*), and lizard's tail (*Saururus cernis*) are found in this wetland. No IR sites exist in the vicinity of Wetland 75.

10.31.2 Nature and Extent

The methods for evaluating nature and extent are presented in Section 6. Figure 10-31-1 denotes the Phase IIB/III Wetland 75 sampling locations. Wetland 75 was not sampled during the Phase IIA portion of the Site 41 field investigation.

Sediment

Sixteen metals were detected in the single Wetland 75 sediment sample. No metals exceeded sediment benchmark levels at Wetland 75. Four pesticides were detected at Wetland 75, including 4,4-DDD, 4,4-DDE, 4,4'-DDT, and gamma-BHC. Although 4,4'-DDD (8.3 ppb), 4,4-DDE (5.7 ppb), and 4,4-DDT (2 ppb) concentrations exceeded benchmark levels, they were below basewide levels. Basewide levels are described in Section 6. Gamma-BHC (2.5 ppb) exceeded its sediment benchmark level (0.32 ppb). No PCBs were detected in the Wetland 75 sediment sample. The SVOC 3/4-methylphenol was detected in the Wetland 75 sediment sample; no sediment benchmark value exists for 3/4-methylphenol. The VOC acetone was detected in the Wetland 75 sediment sample; no sediment benchmark value exists for acetone. Table 10-31-1 shows the Wetland 75 Phase IIB/III sediment sample results (frequency of detection, range of detected concentrations, and average detected concentration).

Table 10-31-1
Phase IIB/III Detected Concentrations in Wetland 75 Sediments

Parameter	Frequency of Detection	Range of Detected Concentrations	Average Detected Concentration
Inorganics (mg/kg)			
Aluminum	- 171 - 171	1350	1350
Barium	1/1	4	4
Calcium	1/1	1300	1300
Chromium	1/1	2.1	2.1
Copper	1/1	0.82	0.82
Iron	1/1	681	681
Lead	1/1	6.5	6.5
Magnesium	1/1	100	100
Manganese	1/1	4.4	4.4
Mercury	1/1	0.04	0.04
Nickel	1/1	0.49	0.49
Potassium	1/1	27.9	27.9
Selenium	1/1	1	1
Sodium	1/1	30.2	30.2
Vanadium	1/1	2	. 2
Zinc	1/1	17.5	17.5
Pesticides (μg/kg)			
4,4'-DDD	1/1	8.3	9.15
4,4'-DDE	1/1	5.7	6.05
4,4'-DDT	1/1	2	1.75
gamma-BHC (Lindane)	1/1	2.5	2.3
SVOCs (μg/kg)			
3/4-Methylphenol	1/1	22	22
VOCs (μg/kg)			
Acetone	1/1	16	16

Note:

All results for inorganics are given in milligrams per kilogram (mg/kg), pesticides, PCBs, SVOCs and VOCs are given in micrograms per kilograms (μ g/kg)

Table 10-31-2 compares detected concentrations at each sample location to sediment benchmark levels, and lists calculated HQs for each parameter. Only the detected parameters are presented on Table 10-31-2. The HQs will be further discussed in the ecological risk section.

- Sediment Sample Location
- O Surface Water Sample Collected
- Approximate Wetland Boundary

Scale in Feet

0 60 120 240 360 480

NAS Pensacola Site 41 - NAS Pensacola Wetlands Remedial Investigation

FIGURE 10-31-1 PHASE IIB WETLAND 75 SAMPLING LOCATIONS

Plot Date: April 22, 1999 AML: /homs4/pensecola-dir/mappino-dir/maps40-41/wetl-hip3.am

Table 10-31-2 (1) Wetland 75 Phase IIB/III Sediment Concentrations Compared to Benchmark Levels

Sample Location Parameter	Detected Concentration	Sediment Benchmark Value (SBV)	HQ	SBV - HQ Reference
041M750101				
4,4'-DDD (UG/KG)	8.3	1.22	6.80	b
4,4'-DDE (UG/KG)	5.7	2.07	2.75	b
4,4'-DDT (UG/KG)	2	1.19	1.68	b
Chromium (MG/KG)	2,1	52.3	0.04	аb
Copper (MG/KG)	0.82	18.7	0.04	a b
gamma-BHC (Lindane) (UG/KG)	2.5	0.32	7.81	ь
Lead (MG/KG)	6.5	30.2	0.22	аb
Mercury (MG/KG)	0.04	0.13	0.31	аb
Nickel (MG/KG)	0.49	15.9	0.03	аb
Zinc (MG/KG)	17.5	124	0.14	аb

Notes:

⁽a) USEPA Screening Concentration for Sediment - EPA SSVs
(b) FDEP Sediment Quality Assessment Guidelines - FDEP SQAGs
Some of the numbers in the table may vary because of rounding.

Surface Water

Ten metals were detected in the single Wetland 75 surface water sample. Aluminum (355 ppb), and iron (1,490 ppb) exceeded surface water quality criteria at Wetland 75. The pesticide dieldrin (0.0031 ppb) was detected above its surface water quality criteria of 0.0019 ppb.

Table 10-31-3 shows the Wetland 75 Phase IIB/III surface water sample results (frequency of detection, range of detected concentrations, and average detected concentration). Table 10-31-4 compares detected concentrations at each sample location to surface water quality criteria and lists calculated HQs for each parameter. Only the detected parameters with water quality criteria are presented in Table 10-31-4. The HQs will be further discussed in the ecological risk section.

Table 10-31-3
Phase IIB/III Detected Concentrations in Wetland 75 Surface Water

Parameter	Frequency of Detection	Range of Detected Concentrations	Average Detected Concentration
Inorganics (μg/L)			
Aluminum	1/1	355	355
Barium	1/1	5.2	5.2
Calcium	1/1	6960	6960
Iron	1/1	1490	1490
Magnesium	1/1	1560	1560
Manganese	1/1	34.9	34.9
Potassium	1/1	1790	1790
Sodium	1/1	12400	12400
Vanadium	1/1	1.8	1.8
Zinc	1/1	5.8	5.8
Pesticides (μg/L)			
Dieldrin	1/1	0.0031	0.0031

Note:

All results are given in micrograms per liter $(\mu g/L)$ or parts per billion (ppb).

Table 10-31-4 (1) Wetland 75 Phase IIB/III Surface Water Concentrations Compared to Water Quality Criteria

Sample Location	Parameter	UOM	Detected Concentration	Water Quality Criteria	HQ	Criteria Reference
041W750101	Freshwater	<u>-</u>		- 11 ··· 1		
Aluminum		UG/L	355.00	87.00	4.08	а
Dieldrin		UG/L	0.00	0.00	1.63	a b
Iron		UG/L	1490.00	1000.00	1.49	a b
Zinc		UG/L	5.80	70.20	0.08	a b

Some of the numbers in the table may vary because of rounding.

⁽a) USEPA Water Quality Criteria (1995)(b) FDEP Class III Water Quality Criteria (1996)

10.31.3 Fate and Transport

The pathways evaluated for the wetland specific fate and transport correlate to those identified in the conceptual model presented in Section 9. These pathways include: surface water/sediment transport into the wetland; groundwater discharge into the wetland; sediment/surface water transport within the wetland; sediment leaching to surface water within the wetland; and surface water/sediment transport from the wetland. Surface water, sediment transport and storm water runoff data are lacking; thus the evaluation is qualitative in nature. The method of evaluation of the leaching from sediment to surface water was presented in Section 9. Table 10-31-5 presents those contaminants present in sediment above benchmark levels (DDT and metabolites DDE and DDD, and gamma BHC) and their calculated SSLs. Table 10-31-4 previously presented those constituents detected in surface water above applicable surface water criteria (dieldrin, aluminum, and iron).

Table 10-31-5
Calculated Sediment Screening Values for Wetland 75
NAS Pensacola Site 41

Parameter	USEPA or FDEP Surface Water Standard	Kd	SSL DF = 100	Maximum Concentration Detected	Leaching Potential DF = 100
Organics (ppb)	(ppb)		(ppb)	(ppb)	
4,4'- DDD	0.0064 *	4.2E+04	2.7E+04	8.3	NO
4,4'- DDT	0.001 a, b	1.1E+05	1.10E+04	2	NO
4,4'- DDE	10.5 a, b	1.9E+05	2.0E+08	5.7	NO
gamma BHC	0.016 ^{a, b}	4.5E+E01	72	2.5	NO

Notes:

Kd for organics calculated using foc of 0.042 (numerical average of all sediment samples).

Kds/Kocs are from: USEPA, 1996 (first preference); Superfund Chemical Data Matrix, 1996 (second preference); Texas Risk Reduction Program Concept Document 2, Volume 1, Appendix VII, 1996 (third preference); TERRA Model, Oak Ridge National Laboratory, 1984 (fourth preference — primary reference for inorganics).

Kd = normalized partitioning coefficient

SSL = sediment screening level

DF = dilution factor

USEPA Freshwater Surface Water Chronic Screening Value (1995b).

= FDEP Class III Water Quality Criteria (1996).

August 31, 2000

Transport Into the Wetland

Surface Water/Sediment Pathway

Based on landform and watershed analysis, the following sources could have contributed

contamination to Wetland 75 through this pathway:

Potential storm water runoff and sediment entrainment from the barge reloading dock, and from

the highway surface bordering the southern boundary of the base with Pensacola Bay. Wetland 75

is significantly removed from known IR and UST sites at NASP, therefore it is unlikely that any

of these have impacted the wetland. Given its proximity to the bay, and to its potential connection

to Wetland 48, some backflushing to Wetland 75 can be expected during storm surge periods. At

these times, sources potentially affecting Wetland 48 may also impact Wetland 75 via this

pathway.

The presence of sediment contaminants above benchmark levels and surface water constituents

above applicable criteria would appear to validate the sediment transport pathway, except that

landform analysis indicates that the wetland is somewhat self-enclosed, particularly at its

presumably upper (western) reach. Given the lack of a clearly defined pathway for surface water

and sediment inflow to the wetland, and that the constituents above benchmark levels are all

pesticides, it is likely that impacts may be residual from airborne pesticide application. If this is

the case, then the pathway with respect to this wetland is considered invalid except during periods

of backflushing.

Groundwater Discharge Pathway

Based on potentiometric analysis (flow from the west) and the wetlands location at the

western perimeter of the base, there are no known sources that can contribute contamination to

this wetland.

10-31-9

Transport Within the Wetland

Surface Water/Sediment Migration Pathway

The configuration of wetland, along with landform analysis, indicates that the wetland is self-enclosed, and does not feed another drainage pathway under normal circumstances.

Therefore, sediment contamination can be expected to remain within the wetland, and impetus for

movement within the wetland influenced only by the direction(s) of storm water influx.

Sediment Leaching to Surface Water Pathway

None of the constituents above a benchmark level exceeded their calculated SSL. Therefore, this

pathway is considered invalid.

Transport From Wetland

Physiographic analysis suggests that the wetland is self-enclosed, and under normal circumstances

is not directly connected to another feature via direct surface water drainage. Therefore it is likely

that sediment contamination will remain within the wetland, and this pathway is considered

invalid.

10.31.4 Ecological Risk Assessment

HQs for Wetland 75 sediment samples are presented in Table 10-31-2. Phase IIB/III

sediment sample results compared to the appropriate sediment benchmark levels revealed HQs

above 1 for 4,4'-DDD (6.8), 4,4'-DDE (2.75), and 4,4'-DDT (1.68) at the single Wetland 75

sample location. However, as noted in the Nature and Extent discussion, these 4,4'-DDD,

4,4'-DDE and 4,4'-DDT concentrations were below basewide levels. Gamma-BHC also had an

HQ of 7.81. Phase IIB/III results of the single Wetland 75 surface water sample revealed HQs

above 1 for aluminum (87), and iron (1.49). HQs greater than one indicate the potential for

excess risk.

10-31-10

Ecological Risk Evaluation

Risk in Wetland 75 was evaluated with respect to three assessment endpoints :1)piscivorous bird health and reproduction, 2)survival, growth and reproduction of macroinvertebrates associated with the benthic environment, and 3) protection of fish viability.

Piscivorous Bird Health and Reproduction:

The results of this model, as shown in Table 10-31-6, estimate an excess risk posed by total DDT in fish tissue collected at 75-01. PCBs were not detected in the prey fish. The HQ estimated for heron exposure to total DDT in fish tissues from this sampling location is 15.59. Assuming that Wetland 75 is approximately 2 acres in size, an SFF of 0.06 was calculated based on the range of the heron described in Section 7. Using the SFF results in a PDE of 0.003 (mg/kg-day). An HQ of 1 is then calculated. Therefore, this wetland is considered acceptable for this assessment endpoint.

Table 10-31-6 Great Blue Heron HQ Calculations Wetland 75

SFF Value	Location	Parameter	Tissue Concentration ¹ (mg/kg)	Sediment Concentration ² (mg/kg)	PDE ³ (mg/kg-day)	NOAEL ⁴ (mg/kg-day)	LOAEL (mg/kg-day)	HQ⁵
. 1	75-01	total DDT	0.260	0.06	0.047	0.003	0.028	15.59
0.06	75-01	total DDT	0.260	0.06	0.003	0.003	0.028	11

Notes:

1 = Whole body killifish or pinfish (wet weight).

Samples from top 5 cm of sediment (wet weight).

3 = Potential Dietary Exposure: revised from model in SAP (E/A&H, 1997).

4 = Effects Levels in Sample et al., 1996.

 $= Hazard Quotient = (PDE) \div (NOAEL).$

ND = Not detected.

NOAEL = No-observed-adverse-effects-level.

LOAEL = Lowest-observed-adverse-effects-level.

Protection of Fish Viability:

Protection of fish viability was evaluated using three lines of evidence for Wetland 75 including 1) direct comparison of detected concentrations in fish tissue, 2) comparison of surface water detected concentrations to water quality criteria, and 3) toxicity analysis.

The first line of evidence, a direct comparison of tissue residue concentrations to toxic effects thresholds in Level 3 fish, shows that DDD, DDE and the calculated mercury concentration have HQs above 1. HQs above 1 indicate the potential for excess risk. The calculated mercury concentration is derived from the model contained in Appendix G. The concentration shown in Table 10-31-7 is from the mean sediment concentration of mercury in all the Site 41 Wetlands. The mercury concentration detected in Wetland 75 (0.04 mg/kg) is approximately one-third that value (0.14 mg/kg). Risk to Level 4 fish were not evaluated because as a small isolated freshwater wetland, Wetland 75 does not support Level 4 fish.

Table 10-31-7
Contaminant HQ Calculations from Fish Tissue Samples
Wetland 75

Constituent	Maximum Level 3 Fish Tissue Conc (µg/kg)	Level 3 Fish Tissue Conc. (mg/kg)	Screening Ecotoxicity Values (mg/kg	HQ
4,4-DDD	110	0.110	0.101	1.1
4,4-DDE	150	0.150	0.10^{i}	1.5
Mercury*	-	0.168*	0.0932	1.8

Notes:

Available: http://www.wes.army.mil/el/t2dbase.html

The mercury concentration for the Level 3 fish is calculated from the mean concentration of mercury in sediment for all the Site 41 Wetlands (Appendix G). The detected concentration of mercury in Wetland 75 sediment is 0.04 mg/kg, which is approximately one-third the mean concentration of 0.14 mg/kg).

Surface Water Chemistry

As stated in Section 10.31.2, surface water analytical results for Wetland 75 exceeded applicable water quality criteria for aluminum, iron, and the pesticide dieldrin. Application of surface water

^{1 0.10} mg/kg NOED for mortality in the spiny dogfish, from Guarino, A.M., and S.T. Arnold (1979),

^{2 0.093} mg/kg NOED for mortality in the spiny dogfish, from Guarino, A.M. and S.T. Arnold (1979).

chemistry results to the decision making matrix revealed a matrix score of "+" for surface water chemistry.

Toxicity in Surface Water

A chronic fathead minnow bioassay was also conducted at Wetland 75. The endpoints for this test were survival and growth, which is measured by weight. As with the sediment evaluation, the laboratory included a negative control by which to measure test performance, and to determine if the test meets acceptability criteria.

Survival results are presented in Table 10-31-8. As can be seen in the table, survival results for the fathead minnow tests were 90% for surface waters from Wetland 75.

Table 10-31-8
Fathead Minnow Chronic Bioassay Results
Wetland 75 Surface Waters

Site	% Survival	Weight (mg)	Matrix Scoring
Control (negative)	100	0.58	
Wetland 75	90	0.44*	

Notes:

Application of these results to the matrix revealed a matrix score of "—" for the fathead minnow test. Table 10-31-9 presents the interpretation of the matrix analysis for the Wetland 75 surface water sample. Based on the results of the chemistry and toxicity data, condition number 3 exists. This can now be applied to the Simplified Decision Flow Chart for Surface Water, as discussed in Figure 7-3.

^{* =} Statistically significant difference from control population.

Table 10-31-9 Matrix Analysis Interpretation Wetland 75 Surface Water

Site	Water Chemistry	Toxicity Test	Interpretation
Wetland 75			Contaminants are not bioavailable.

Condition number 3 denotes that Wetland 75 sediment is acceptable and no further action is recommended for surface water for this wetland.

Survival and Growth of Macroinvertebrates Associated with the Benthic Environment:

As discussed in Section 7, this assessment endpoint was evaluated using the sediment quality triad approach for chemistry, toxicity, and diversity analysis. Results are scored via the decision making triad, and the overall condition of the wetland for this assessment endpoint is determined.

Sediment Chemistry

Table 10-31-2 compares detected Phase IIB/III sediment concentrations to benchmark levels and lists calculated HQs for each parameter. As stated in Section 10.31.2, sediment analytical results for Wetland 75 exceeded sediment benchmark levels for gamma-BHC. Application of sediment chemistry results to the decision making triad discussed in Section 7.14 revealed a matrix score of "+" for sediment chemistry.

Sediment Toxicity

Sediment was collected at Wetland 75 for a chronic chironomid, *Chironomus tentans*, bioassay. The endpoints for this bioassay include survival, growth (which is measured by weight), and emergence. Chironomids are midges, small winged insects which spend the first portion of their lives developing in water as a larvae. A sub-lethal endpoint for this test is the emergence of adults from their larval state in water to becoming airborne and terrestrial.

The laboratory included a negative control by which to measure test performance. The negative control is expected to perform well and is one gauge in determining if a test can be deemed valid. The performance of the organisms in the negative control will determine if the test meets acceptability criteria. The negative control is also the only constant by which to gauge performance of the organisms, since solutions to be tested may have unknown characteristics.

Survival results in the *Chironomus tentans* test were 83% for sediments from Wetland 75, as presented in Table 10-31-10. Application of these results to the decision making triad discussed Section 7.14 revealed a triad matrix score of "—" for the chironomid test.

Table 10-31-10 Toxicity Test Results Wetland 75 Sediment

Site	% Survival	Weight (mg)	Emergence	Triad Matrix Scoring
Control (negative)	91	2.7	50%	
Wetland 75	83	1.3*	50%	

Note:

Statistically significant difference from control population.

Benthic Diversity in Sediment

Sediment samples were also sorted for benthic diversity. A species diversity of 2.50 was calculated for the Wetland 75 sediment sample. A total of eight organisms representing six species were collected at this location. Benthic diversity results and application to the triad matrix are presented in Table 10-31-11. Application of these results to the decision making triad discussed Section 7.14 revealed a triad matrix score of "—" for the benthic diversity test.

Table 10-31-11
Benthic Diversity Results and Application to the Triad Matrix
Wetland 75 Sediment

Site	Shannon-Weiner Diversity	Pielov's Evenness	Margalef's Richness	Triad Matrix Scoring
Wetland 75	12.5	* 1742	5.52	

Note:

* = Statistically significant difference from control population.

Evaluation

Table 10-31-12 presents the interpretation of the triad analysis for Wetland 75. Based on the results of the chemistry, toxicity, and benthic assessment data, condition number 3 exists. This can now be applied to the Simplified Decision Flow Chart for Sediments, as discussed in Figure 7-2.

Table 10-31-12 Triad Analysis Interpretation Wetland 75 Sediment

Site	Sediment Chemistry	Toxicity Test	Benthic Assessment	Interpretation
Wetland 75	. · · · · · · · · · · · · · · · · · · ·			Contaminants are not bioavailable.

Condition number 3 denotes that Wetland 75 sediments are acceptable and no further action is recommended for sediment for this wetland.

10.31.5 Wetland 75 Human Health Risk Assessment

10.31.5 Wetland 75

Section 10.31.1 provides a detailed description of Wetland 75 and the area surrounding this wetland.

10.31.5.1 Samples Included

Sediment

041M7501

Surface Water

041W7501

Fish Tissue

041J7501

10.31.5.2 Current and Future Land Use

Wetland 75 lies adjacent the easement along the north shoulder of Radford Road in an undeveloped portion of the base near the west gate entrance to NAS Pensacola. The wetland is fenced to the west and south, which restricts access to passersby. Though this area is accessible from the north by a dirt road, the wetland lies in a portion of the base where general access by the public is restricted. A lack of infrastructure near the site and its general proximity to Forrest Sherman Field may restrict the potential for future development of the area. The wetland does not support a recreational fishery.

10.31.5.3 Fish Tissue COPCs

Although prey fish samples were collected from this wetland, this pathway was not evaluated. As an isolated, freshwater wetland, this wetland does not support game fish.

10.31.5.4 Sediment COPCs

As shown in Table 10-31-13, no COPCs were identified.

10.31.5.5 Surface Water COPCs

As shown in Table 10-31-14, no COPCs were identified.

10.31.5.6 Risk Summary

No COPCs were identified following the screening comparisons described in Section 8 and presented above. As a result, no formal human health risk assessment was conducted for Wetland 75.

TABLE 10-31-13 OCCURRENCE, DISTRIBUTION, AND SELECTION OF CHEMICALS OF POTENTIAL CONCERN NAS PENSACOLA SITE 41

Scenario Timeframe: Current and Future

Medium: Sediment

Exposure Medium: Sediment

Exposure Point: Wetland 75 Sediment

		(1)		(1)							(2)	(3)	(4)		(5)			(6)
CAS Number	Chemical	Minimum Concentratio	Minimum Qualifier	Maximum Concentration	Maximu m Qualifier	Units	Location of Maximum Concentration	Detection Frequency	Range of Detection Limits	Mean	Concentratio n Used for Screening	Backgroun	Adalescent Site Trespasser PRG	Commercial Maintenance Worker PRG		Potential ARAR/TBC Source		Rationale for Contaminant Delection or Selection
72548	4,4'-DDD	0.008		0.008		MG/KG	041M750101	1 / 1	NAV	0.008	0.008	N/A	92	57	C	N/A	NO	BSL
72559	4,4'-DDE	0,006		0.006		MG/KG	041M750101	1 / 1	NAV	0.006	0.005	N/A	65	41	С	N/A	NO	BSL
50293	50293 4,4'-DDT		J	0.002	J	MG/KG	041M750101	1 / 1	NAV	0.002	0.002	N/A	65	41	¢	N/A	NO	BSL
105445	105445 4-Methylphenol		J	0.02	J	MG/KG	041M750101	1 / 1	NAV	0.02	0.02	N/A	1600	2500	N	N/A	NO	BSL
58899	gamma-BHC (Lindane)	0.003	J	0.003	J	MG/KG	041M750101	1 / 1	NAV	0.003	0.003	N/A	17	11	С	N/A	NO	BSL
57541	Acetone	0.016	J	0.016	J	MG/KG	041M750101	1 / 1	NAV	0.016	0.016	N/A	32000	49000	N	N/A	NO	BSL
7429905	Aluminum (AI)	1350		1350		MG/KG	041M750101	1 / 1	NAV	1350	1350	N/A	320000	490000	N	N/A	NO	BSL
7440393	Barium (Bá)	4		4		MG/KG	041M750101	1 / 1	NA∨	4	4	N/A	22000	34000	N	N/A	NO	BSL
7440702	Calcium (Cz)	1300		1300		MG/KG	041M750101	1 / 1	NAV	1300	1300	N/A	N/A	N/A	- 1	N/A	NO	EN
7440473	Chromium (Cr)	2.1		2,1		MG/KG	041M750101	1 / 1	NAV	2.1	2.1	N/A	1600	2500	Ν	N/A	NO	BSL
7440508	Copper (Cu)	0.8	J	0.8	J	MG/KG	041M750101	1 / 1	NAV	8.0	0.8	N/A	13000	20000	Ν	N/A	NO	BSL
7439896	Iron (Fe)	681		681		MG/KG	041M750101	1 / 1	NAV	681	681	N/A	N/A	N/A		N/A	NO.	EN
7439921	Lead (Pb)	7		7		MG/KG	041M750101	1 / 1	NAV	7	7	N/A	400	400	N	OSWER	NO :	BSL
7439954	Magnesium (Mg)	100		100		MG/KG	041M750101	1 / 1	NAV	100	100	N/A	N/A	N/A	- 1	N/A	NO.	EN
7439965	Manganese (Mn)	4.4		4.4		MG/KG	041M750101	1 / 1	NAV	4.4	4.4	N/A	15000	23000	N	N/A	NO.	BSL
7439975	Mercury (Hg)	0.04	J	0.04	J	MG/KG	041M750101	1 / 1	NAV	0.04	0.04	N/A	95	150	N	N/A	NO	BSL
7440020	Nickel (Ni)	0.5	1	0.5	J	MG/KG	041M750101	1 / 1	NAV	0.5	0.5	N/A	6300	9800	N	N/A	NO	BSL
7440097	Potassium (K)	27.9	J	27.9	J	MG/KG	041M750101	1 / 1	NAV	27.9	27.9	N/A	N/A	N/A	- 1	N/A	NO	EN
7782492	Selenium (Se)	1	1	1	J	MG/KG	041M750101	1 / 1	NAV	1	1	N/A	1600	2500	Ν	N/A	NO	EN
7440235	Sodium (Na)	30.2	J	30.2	J	MG/KG	041M750101	1 / 1	NAV	30.2	30.2	N/A	N/A	N/A		N/A	NO	EN
7440622	Vanadium (V)	2		2		MG/KG	041M750101	1 / 1	NAV	2	2	N/A	2200	3400	N	N/A	NO	BSL
7440666	Zinc (Zn)	17.5		17.5		MG/KG	041M750101	1 / 1	NAV	17.5	17.5	N/A	95000	150000	N	N/A	NO	BSL

(1) Minimum/maximum detected concentration

(2) Maximum concentration used as screening value.

(3) Background values were not developed for this media.

(4) PRGs for site trespasser scenario calculated based on equations and parameters presented in Section 8 of this report.

(5) Residential wall RBCs presented in Region III Risk-Based Concentration Tables, (USEPA, 1998).

(6) Rationale Codes Selection Reason

Deletion Reason:

Above Screening Levels (ASL)

Below Screening Levels (BSL) Background Levels (BKG) No Texicity Information (NTX) Essential Nutrient (EN)

Definitions Definitions:

N/A ≃ Not Applicable

NAV = Not Available

COPC = Chemical of Potential Concern

ARAR/TBC = Applicable or Releveant and Appropriate Requirement/ To Se Considered

OSWER = Office of Solid Waste and Emergency Response

J = Estimated Value

C * Carcinogenic

N Noncarcinogenic

TABLL 10-31-14 OCCURRENCE, DISTRIBUTION, AND SELECTION OF CHEMICALS OF POTENTIAL CONCERN NAS PENSACOLA SITE 41

Scenario Timeframe: Current and Future

Medium: Surface Water

Exposure Medium: Surface Water Exposure Point: Wetland 75 Surface Water

		(1)		(1)							(2)		(3)		(4)			(5)
CAS Number	Chemical	Minimum Concentratio n	Minimum Qualifier	Maximum Concentration	Maximum Qualifier	Units	Location of Maximum Concentration	Detection Frequency	Range of Detection Limits	Mean	Concentration Used for Screening	Backgroun	Adolescent Site Trespasser PRG	Commercial Maintenance Worker PRG	AR	tential AR/TB Source	COPC Flag	Rationale for Contaminant Delection or Selection
7429905	Aluminum (Al)	355		355		UG/L	041W750101	1 / 1	NAV	355	355	N/A	120000	250000	N 1	N/A	NO	BSL
7440393	Barium (Ba)	5.2	J	5.2	J	UG/L	041W750101	1 / 1	NAV	5.2	5.2	N/A	8300	18000	N I	N/A	NO	BSL
7440702	Calcium (Ca)	6960		6960		UG/L	041W750101	1 / 1	NAV	6960	6960	N/A	N/A	N/A	1	N/A	NO	EN
7439896	Iron (Fe)	1490		1490		UG/L	041W750101	1 / 1	NAV	1490	1490	N/A	N/A	N/A	1	N/A	NO	EN
7439954	Magnesium (Mg)	1560		1560	1 1	UG/L	041W750101	1 / 1	NAV	1560	1560	N/A	N/A	N/A	1	N/A	NO	EN
7439965	Manganese (Mn)	35		35		UG/L	041W750101	1 / 1	NAV	35	35	N/A	2400	5000	N	N/A	NO	BSL
7440097	Potassium (K)	1790		1790		UG/L	041W750101	1 / 1	NAV	1790	1790	N/A	N/A	N/A	1	N/A	NO	EN
7440235	Sodium (Na)	12400		12400		UG/L	041W750101	1 / 1	NAV	12400	12400	N/A	N/A	N/A	1	N/A	NO	EN
7440622	Vanadium (V)	1.8	J	1.8	J	UG/L	041W750101	1 / 1	NAV	1.8	1.8	N/A	830	1800	N I	N/A	NO	BSL
7440666	Zinc (Zn)	5.8	J	5.8	J	UG/L	041W750101	1 / 1	NAV	5.8	5.8	N/A	36000	76000	N r	N/A	NO	BSL
60571	Dieldrin	0.0031	J	0.0031	J	UG/L	041W750101	1 / 1	NAV	0.0031	0.0031	N/A	0.14	0.16	0 1	N/A	NO	BSL

(1) Minimum/maximum detected concentration

(2) Maximum concentration used as screening value,

(4) PRGs for site trespasser scenario calculated based on equations and parameters presented in Section 8 of this report.

(5) PRGs for commercial maintenance worker scenario calculated based on equations and parameters presented in Section 8 of this report.

(6) Rationale Codes

Selection Reason: Above Screening Levels (ASL)

Deletion Reason:

Below Screening Levels (BSL)

Background Levels (BKG)

No Toxicity Information (NTX)

Essential Nutrient (EN)

Definitions: N/A = Not Applicable

NAV = Not Available

COPC = Chemical of Potential Concern

ARAR/TBC = Applicable or Releveant and Appropriate Requirement/ To Be Considered

J = Estimated Value

C = Carcinogenic

N = Noncarcinogenic

Final Remedial Investigation Report NAS Pensacola Site 41 Section 10: Site-Specific Evaluations August 31, 2000

10.31.6 Conclusions

Decision making triad evaluations conducted during the ecological risk assessment for sediment and surface water revealed that sediment and surface water are acceptable for Wetland 75. The HHRA found no COPCs for sediment or surface water. Fish consumption was not evaluated because this wetland, an isolated freshwater, does not support game fish. No further action is recommended for this wetland, although it was determined not be acceptable as a reference wetland.

11.0 CONCLUSIONS AND RECOMMENDATIONS

The objectives of the Site 41 RI were to identify the nature and extent of contamination in sediment and surface water for all wetlands listed in Groups A-E. The following section summarizes the findings of the RI and makes appropriate recommendations.

Table 11-1 summarizes the results of the sediment/surface water sampling, ecological risk assessments, and human health risk assessments for each wetland. The table: (1) lists each wetland by group; (2) denotes their color code; (3) lists the applicable Phase IIB/III ecological risk assessment endpoints studied at each wetland; (4) lists the HHRA findings based on Phase IIA sediment and surface water results; and (5) lists the recommendation for each wetland. A brief rundown of the findings are as follows:

- Group A. Wetland 64 is recommended for NFA under the IRP. Contaminants in this wetland are related to storm water runoff and spills of petroleum products, and should be addressed under the base storm water program and the State of Florida petroleum program.
- Group B. Wetlands 3 and 5A are recommended for NFA under the IRP. The ecological risks at these wetlands were found to be limited. Human health risks at these wetlands are considered to be low due to the restricted access to these areas by human trespassers.
- Group C. Wetlands 4D, 15, 16, 18, and 63A are recommended for NFA under the IRP. The ecological risks at these wetlands were found to be limited. The HHRAs at these wetlands found no COCs at Wetlands 16 and 63A. Arsenic was found to be a sediment and/or surface water COC at Wetlands 4D, 15, and 18. However, these wetlands are located in restricted areas of the base and are not used for recreational swimming. The human health risks associated with these wetlands are therefore considered to be low.

Remedial Investigation Report NAS Pensacola Site 41 Section 11: Conclusions and Recommendations August 31, 2000

Table 11-1 Conclusions and Recommendations NAS Pensacola Site 41

Toxicity Results

Group	Wetland	Amphipod Survival (%)	Neanthes Survival/Growth (%)	Minnow Survival/Growth (%)		nironomid rowth/Emergence (%)	Shannon- Weiner Diversity Index	HHRA COCs	HHRA Risk Estimates	Recommendation
A	64	64-04 78* 64-05 96 64-06 74*	64-04 100/94 64-05 96/85 64-06 88/100	NM		NM	64-04 = 2.424 64-05 = 3.300 64-06 = 2.635	Arsenic ^a	1.5E -6 ^{ad}	NFA ¹
В	5A	NM	NM	5A-04 5A-05 5A- 06 100/74* 97.5/ 79*	5A-04 5A-05 5A-06	100/100/75 100/61.5*/50 83/108 [‡] /75	5A-04 = 2.560 5A-05 = 3.164 5A-06 = 2.425	Vinyl Chloride ^b	1.94E -6 ^{ad}	NFA
В	3	NM	NM 1	03-01 97.5/85	03-02 03-07	83/107¢/60 91/74*/70	3-02 = 2.243 3-07 = 1.921	Arsenic ^{ab}	2.9E -6 ^{ad} 8.8E-6 ^{bd}	NFA
\mathbf{c}	4D		Wetlands 16/18 sample	ed to represent the Group C W	etlands/		Represented by Wetlands 16/18	Arsenic ^a	1.7E -6 ^{ad} 2.7E-6 ^{ac}	NFA
c	15		Wetlands 16/18 sample	ed to represent the Group C W	[/] etlands		Represented by Wetlands 16/18	Arsenic ^{ab}	1.15E -5 ^{ad} 1.24E-5 ^{bd} 1.85E-5 ^{ac} 1.46E-5 ^{bc}	NFA
C	16	16-03 93	16-03 100/94	NM	16-03	93/94/NM	16-03 = 1.692	No COCs	No RGOs calculated	NFA
\mathbf{C}^{-1}	18 A/B	18-B1 100	18-B1 100/99	NM		NM	18-B1 = 2.362	Arsenic ^{ab}	6.9E -6 ^{ad}	NFA
			Wetlands 16/18 sample	ed to represent the Group C W	letiands		Represented by Wetlands 16/18	No COCs	No RGOs calculated	NFA
D	10A		Man-made	drainage ditch with limited eco	ological recep	tors		No COPCs—no	formal HHRA	NFA
			Man-made	drainage ditch with limited eco	ological recep	tors		No COPCs—no	formal HHRA	NFA
D	5 B		Man-made	drainage ditch with limited ec	ological recep	tors		Same a	ıs 5A	NFA
D	Wı			Non-jurisdictional by FDE	EP			No COCs	No RGOs calculated	NFA

Remedial Investigation Report NAS Pensacola Site 41 Section 11: Conclusions and Recommendations August 31, 2000

Table 11-1 Conclusions and Recommendations NAS Pensacola Site 41

Toxicity Results

Group_	Wetland	Amphipod Survival (%)	Neanthes Survival/Growth (%)	Minnow Survival/Growth (%)	Chironomid Survival/Growth/Emergence (%)	Shannon- Weiner Diversity Index	HHRA COCs	HHRA Risk Estimates	Recommendation
			Man-made	drainage ditch with limited ed	cological receptors		BEQs ^a	2.1E-6 ^{ad}	NFA
			Not a	significant source of food, wa	ter, or habitat		No COPCs—no	formai HHRA	NFA
			Not a	significant source of food, wa	ter, or habitat		No COPCs—no	formal HHRA	NFA
NA	12		Limited ed	cological receptors—not studie	d in Phase IIB/III		No COCs	No RGOs calculated	NFA ²
NA	1. 1. 18 17		Man-made	drainage ditch with limited ed	cological receptors		No COPCs—no	formal HHRA	NFA
NA	0.7		Detected para	meters generally below bench	mark/reference levels		Arsenic ^b	2.4E-6 ^{bd}	NFA
NA			Detected para	meters generally below bench	mark/reference levels		No COCs	No RGOs calculated	NFA
ÑΑ	10		Contaminan	ts not IR site related—not stud	lied in Phase IIB/III		Arsenic ^{ab}	1.3E-6 ^{ad} 2.45E-5 ^{bd} 2E-6 ^{ac} 5.6E-5 ^{bc}	NFA
NA	5.		Contaminan	ts not IR site related—not stud	lied in Phase IIB/III		No COPCs-no	formal HHRA	NFA ³
NA	50		Contaminan	ts not IR site related-not stud	lied in Phase IIB/III		No COPCs—no	formal HHRA	NFA ³
NA	5 7		Contaminan	ts not IR site related—not stud	lied in Phase IIB/III		No COCs	No RGOs calculated	NFA ³
NA	58		Contaminan	ts not IR site related—not stud	lied in Phase IIB/III		No COPCs-no	o formal HHRA	NFA ³
NA	6311		Contaminan	ts not IR site related—not stud	lied in Phase IIB/III		No COPCs-n	o formal HHRA	NFA ³
8A	72		Contaminan	ts not IR site related—not stud	lied in Phase IIB/III		No COPCs—no	o formal HHRA	NFA ³
$\vec{S}\mathbf{A}$	79		in the second of the v	Vetland 79 was filled under a	Corps of Engineers permit and no lo	nger exists			NFA
$\aleph_{\mathbf{A}}$	W2		Contaminan	ts not IR site related—not stud	lied in Phase IIB/III		No COPCs—no	formal HHRA	NFA ³
[[*]	5			Not studied in Phase IIB/	TII .		Meth. Chloride ^a	1.6E-6 ^{ad}	Suitable reference wetland

Remedial Investigation Report NAS Pensacola Site 41 Section 11: Conclusions and Recommendations August 31, 2000

Table 11-1 Conclusions and Recommendations NAS Pensacola Site 41

Toxicity Results

Group	Wetland	Amphipod Survival (%)	Neanthes Survival/Growth (%)	Minnow Survival/Growth (%)	Chironomid Survival/Growth/Emergence (%)	Shannon- Weiner Diversity Index	HHRA COCs	HHRA Risk Estimates	Recommendation
Ref	17			Not studied in Phase [IB/]]	r .		No COCs	No RGOs calculated	Suitable reference wetland
Ket.	3.3			Not studied in Phase IIB/II	п		No COPCs—no	formal HHRA	Suitable reference wetland
Refere	33	33-01 92 33-02 96	92/ 33-01 126© 33-02 100/ 119©	NM	NM.	5.46	Pest ^e	5E-8 ^{c, f}	Suitable reference wetland
NA	75	NM	NM	90/76*	83/48*/50	2,5	Pest ^c	No COPCs	NFA

Notes:

Color of text under Group/Wetland denotes whether the wetland is coded Red, Orange, or Blue. Reference wetlands are colored green.

Toxicity results are shown as actual survival rates (%).

Growth (%) is calculated by comparing to the bloassay exposed organism to the control organism performance.

- * = Indicates a statistically significant difference from the control organism.

 Didicates the organisms being tested out-performed the control organisms for this category.
- BEQs = Benzo(a)pyrene Equivalents.
 COC = Contaminant of Concern.

HHRA = Human Health Risk Assessment.

HHRA = Human Health Risk Assessment.

NA = Not Applicable.

NFA = No further action.
NM = Not measured.

- a = Sediment pathway COC/risk estimate.
- b = Surface water pathway COC/risk estimate.
 c = Fish tissue COC/risk estimate.
- d = Adolescent trespasser scenario.
- Maintenance worker scenario.

 Subsistence fishermen
- Wetland 64 is recommended for NFA under the IRP. Remedial activities at this wetland should be associated with the base storm water management program or the State of Florida petroleum program.

 Wetland 12 is referred to the FDEP's petroleum program, as documented in the September 19-20, 1996 Partnering Meeting Minutes.
- 3 = Wetlands are referred to the PDEF's performinants cannot be field to an IR site.

- Group D. Wetlands 10A, 6, 5B, W1, and 1 are recommended for NFA under the IRP. These wetlands are man-made drainage ditches with limited ecological receptors. Also, Wetland W1 was declared non-jurisdictional by FDEP. Additionally, except for Wetland 1, the HHRAs for these wetlands found no COPCs/COCs. Risk estimates were calculated for BEQs in sediment at Wetland 1. However, due to the restricted access to human trespassers, the human health risks are considered to be low at Wetland 1.
- Group E. Wetlands 48 and 49 are recommended for NFA under the IRP. Ecological risk
 assessment at these wetlands found no significant source of food, water or habitat for
 potential receptors. The HHRAs for these wetlands found no COPCs.
- Wetland 12. Wetland 12 is a red-coded wetland that was not studied in Phase IIB/III because it has limited ecological receptors. The HHRA also found no COCs. However, potential impacts from the 1992 spill of petroleum contaminated bilge water into this wetland may still need to be addressed. As documented in the September 19-20, 1996 Partnering Meeting Minutes, Wetland 12 is referred to the State of Florida's petroleum program.
- Wetlands 13 and 17 are recommended for NFA under the IRP. Detected parameters were generally below benchmark/reference levels.
- Wetlands 19, 52, 56, 57, 58, 63B, 72, and W2 are recommended for NFA under the IRP.
 These wetlands are referred to the base because their contaminants cannot be tied to an IR site.
- Wetland 79. This wetland was an isolated, man-induced wetland at the south end of Site 6; an area used as construction debris landfill at the base. Under a Corps of Engineers

permit issued to the Navy, this landfill was expanded over Wetland 79 during the 1995 BRAC demolition at Chevalier Field. Although Wetland 79 has been filled, data from the former wetland is included in the Site 41 RI for completeness.

Blue-coded wetlands were evaluated during the September 25 and 26, 1996 Partnering Meeting. As presented in Table 11-1 the wetlands were either approved for no further action or were referred to the base because the contaminants could not be tied to an IR site.

12.0 REFERENCES

- Adamson, R.H., and S.M. Sieber. (1979). The Use of Nonhuman Primates for Chemical Carcinogenesis Studies. Ecotoxicol. Environ. Qual. 2: 275-296.
- Adamson, R.H., and S.M. Sieber. (1983). Chemical Carcinogenesis Studies in Nonhuman Primates. Basic Life Sci. 24: 129-156.
- Addison, R.F., Zinck, M.E., and J.R. Leahy. (1976). Metabolism of Single and Combined Doses of 14C-Aldrin and 3H-P, P'-DDT by Atlantic Salmon (Salmo salar) Fry. J. Fish. Res. Bd. Can. 33(9): 2073-2076.
- Agency for Toxic Substance and Disease Registry. (1992). *Toxicological Profiles*.

 U.S. Department of Health and Human Services, Public Health Service, Agency for Toxic Substances and Disease Registry. Atlanta, GA.
- Agthe, C., Garcia, H., Shubik, P., et al. (1970). Study of the Potential Carcinogenicity of DDT in the Syrian Golden Hamster. Proc Soc Exp Biol Med 134:113-116.
- Albertson, T.E., Joy, R.M., and L.G.Stark. (1985). Facilitation of Kindling in Adult Rats Following Neonatal Exposure to Lindane. Dev Brain Res 17:263-266.
- Aleksandrowicz, D.R. (1979). Endosulfan Poisoning and Chronic Brain Syndrome.

 Arch Toxicol 43:65-68.
- ATSDR. (1991). Toxicological Profile for Heptachlor. U.S. Department of Health and Human Services, Public Health Service, Agency for Toxic Substances and Disease Registry: Atlanta, GA.

- ATSDR. (1992). *Toxicological Profile for DDT, DDE, AND DDD*. U.S. Department of Health and Human Services, Public Health Service, Agency for Toxic Substances and Disease Registry: Atlanta, GA.
- Banerjee, B.D., and Q.Z.Hussain. (1986). Effects of Sub-Chronic Endosulfan Exposure on Humoral and Cell-Mediated Immune Responses in Albino Rats. Arch Toxicol 59:279-284.
- Banerjee, B.D., and Q.Z.Hussain. (1987). Effects of Sub-Chronic Endosulfan Exposure on Humoral and Cell-Mediated Immune Responses in Rats Bull Environ Contam Toxicol 38:435-441.
- Bathe, R., Ullmann, L., Sachsse, K., et al. (1976). Relationship Between Toxicity to Fish and to Mammals: A Comparative Study Under Defined Laboratory Conditions. Proc Eur Soc Toxicol 17:351-355.
- Beyer, W.N. (1990). *Evaluating Soil Contamination*. United States Fish and Wildlife Service. Biological Report 90(2).
- Boyd, E.M., Dobos, I., and C.J. Drijnen. (1970). Endosulfan Toxicity and Dietary Protein.

 Arch Environ Health 21:15-19.
- Braman, R.S., and C.C Foreback. (1973). *Methylated Forms of Arsenic in the Environment*. Science, 182, 1247-1249.
- Brassow, H.L., Baumann, K., and G. Lehnert. (1981). Occupational Exposure to Hexachlorocyclohexane: II. Health Conditions of Chronically Exposed Workers. Int Arch Occup Environ Health 48:81-87.

- Burek, J.D., K.D. Nitschke, T.J. Bell, et al., (1984). Methylene Chloride: A Two Year Inhalation Toxicity and Oncogenicity Study in Rats and Hamsters. Fund. Appl. Toxicol. 4: 30-47.
- Cabral, J.R.P., R.K. Hall, L. Rossi, S.A. Bronczyk, and P. Shubik. (1982a). Effects of Long-Term Intake of DDT on Rats. Tumorigenesis. 68: 11-17.
- Cabral, J., Hall, R., Rossi, L., et al. (1982b). Lack of Carcinogenicity of DDT in Hamsters.
- Canadian Council of Ministers of the Environment. (March, 1997). Recommended Canadian Soil Quality Guidelines. CCME, Winnipeg, Manitoba.
- Cameron, G., and K. Cheng. (1951). Failure of Oral DDT to Induce Toxic Changes in Rats.

 Br Med J 819-821.
- Canadian Council of Resource and Environment Ministers (CCREM). (1987). Canadian Water Quality Guidelines. Task Force on Water Quality Guidelines. Ottawa, Canada.
- Carlberg, G.E., et al. (1986). Influence of Aquatic Humus on the Bioavailability of Chlorinated Micropollutants in Atlantic Salmon (Salmo salar). Archives of Environmental Contamination and Toxicology, 15, 543-548.
- Coble, Y., Hildebrandt, P., Davis, J., et al. (1967). Acute Endrin Poisoning. JAMA 202:489-493.
- Cooper, K. (1991). Effects of Pesticides on Wildlife. Pages 463-491. *Handbook of Pesticide Toxicology*. New York, NY: Academic Press, Inc.

- Crommenttuijn, T., D.F. Kalf, M.D. Polder, R. Posthumus, and E.J. van de Plassche. (1997).

 Maximum Permissible Concentrations and Negligible Concentrations for Pesticides.

 RIVM Report No. 601501002.
- Czegledi-Janko, G., and P. Avar. (1970). Occupational Exposure to Lindane: Clinical and Laboratory Findings. Br J Indust Med 27:283-286.
- Davies, J.E., Dedhia, H., Morgade, C., et al. (1983). Lindane Poisonings.

 Arch Dermatol 119:142-144.
- Delfino, J.J., et al. (1991). Toxic Pollutants in Discharges, Ambient Waters, and Bottom Sediments. Volumes I and II. Submitted to Florida Department of Environmental Regulation. Tallahassee, Florida.
- Demayo, A., et al. (1979). Arsenic. Guidelines for Surface Water Quality. Volume I, Inorganic Substances. Environment Canada. Ottawa, Canada.
- Desi, I. (1974). Neurotoxicological Effect of Small Quantities of Lindane. Int Arch Arbeitsmed 33:153-162.
- Dreisbach, R.H., and W.O. Robertson, eds. (1987). *Handbook of Poisoning*, 12th Ed., Appleton and Lange: East Norwalk, Connecticut.
- Duke, T.W., Lowe, J.I., and A.J. Wilson, Jr. (1970). A Polychlorinated Biphenyl (Aroclor-1254) in the Water, Sediment, and Biota of Escambia Bay, Florida. Bull. Environ. Contam. Toxicol. 5(2): 171-80.

- Eadie, B.J., et al. (1983). Bioaccumulation of PAH by some Benthic Organisms of the Great Lakes. M.Cooke and A.J. Dennis (eds.). Polynuclear Aromatic Hydrocarbons: Formation, Metabolisms and Measurement. Battelle Press, Columbus, Ohio.
- Ecology & Environment, Inc. (1992). Contamination Assessment/Remedial Activities
 Investigation, Naval Air Station, Pensacola, Florida. Data Summary and
 Preliminary Scoping Report for Ecological Risk Assessment Work Plans. Pensacola, FL.
- Eisler, R. (1985). Cadmium Hazards to Fish, Wildlife, and Invertebrates: A Synoptic Review.

 U.S. Fish Wildlife Service Biological Report 85 (1.2).
- Eisler, R. (1986). Polychlorinated Biphenyl Hazards to Fish, Wildlife, and Invertebrates: A Synoptic Review. U.S. Fish Wildlife Service Biological Report 85 (1.7).
- Eisler, R., (1987a). Mercury Hazards to Fish, Wildlife, and Invertebrates: A Synoptic Review; U.S. Fish and Wildlife Service Biological Report 85(1.10).
- Eisler, R. (1987b). Polycyclic Aromatic Hydrocarbon Hazards to Fish, Wildlife, and Invertebrates: A Synoptic Review. U.S. Fish Wildlife Service Biological Report 85(1.11).
- Eisler, R. (1988a). Arsenic Hazards to Fish, Wildlife, and Invertebrates: A Synoptic Review.

 U.S. Fish. Wildlife Service Biological Report 85(1.12).
- Eisler, R. (1988b). Lead Hazards to Fish, Wildlife, and Invertebrates: A Synoptic Review.

 U.S. Fish Wildlife Service Biological Report 85 (1.14).

- Eisler, R. (1993). Zinc Hazards to Fish, Wildlife, and Invertebrates: A Synoptic Review. U.S. Fish Wildlife Service Biolgical Report 10.
- Efroymson, R.A., M.E. Will, and G.W. Suter. (1997a). Toxicological Benchmarks for Screening Contaminants of Potential Concern for Effects on Soil and Litter Invertebrates and Heterotrophic Process: 1997 Revision. Oak Ridge National Laboratory, Oak Ridge, TN ES/ER/TM-126/R2.
- Efroymson, R.A., M.E. Will, and G.W. Suter. (1997b). Toxicological Benchmarks for Screening Contaminants of Potential Concern for Effects on Terrestrial Plants: 1997 Revision. Oak Ridge National Laboratory, Oak Ridge, TN ES/ER/TM-85/R3
- Ely, T.S., Macfarlane, J.W., Galen, W.P., et al. (1967). Convulsions in Thiodan Workers.

 J Occup Med 9:35-37.
- EnSafe Inc. (1998). Final Record of Decision, Operable Unit One, Naval Air Station Pensacola, Pensacola, Florida. Memphis, Tennessee.
- EnSafe Inc. (1999). Final Remedial Investigation Report, Site 40, Naval Air Station Pensacola. Memphis, Tennessee.
- EnSafe/Allen & Hoshall. (July 1994). Final Comprehensive Sampling and Analysis Plan for Naval Air Station, Pensacola, Florida. Memphis, Tennessee
- EnSafe/Allen & Hoshall. (1995a). RI/FS Work Plan, NAS Pensacola Wetlands For Naval Air Station Pensacola, Pensacola, Florida. Memphis, TN.

- EnSafe/Allen & Hoshall. (1995b). RI/FS SAP, NAS Pensacola Wetlands For Naval Air Station Pensacola, Pensacola, Florida. Memphis, TN.
- EnSafe/Allen & Hoshall. (1996). Final Remedial Investigation Report Site 1, NAS Pensacola, Florida. Memphis, TN, January 5.
- EnSafe/Allen & Hoshall. (October 1996). Phase IIA Investigation Summary Technical Memorandum, Site 41, NAS Pensacola, Florida. Hampton, VA.
- EnSafe/Allen & Hoshall. (1997). RI/FS Sampling and Analysis Plan Addendum, Site 41, NAS Pensacola, Florida. Pensacola, FL.
- Evans, D.W., and D.W. Engel. (1994). Mercury Bioaccumulation in Finfish and Shellfish from Lavaca Bay, Texas: Descriptive Models and Annotated Bibliography. NOAA Tech. Mem. NMFS-SEFSC-348, 89p.
- Florida Department of Environmental Protection. (1995). Statistical Analysis of Florida Per Capita Fish and Shellfish Consumption Data. In Florida Agriculture Marketing Research Center Industry Report 95-1, December 1995.
- Florida Department of Environmental Protection. (1996). Criteria Class III Waters Recreation, Propagation and Maintenance of a Healthy, Well-Balanced Population of Fish and Wildlife.
- Florida Natural Areas Inventory. (1995). Special Plants and Animals List, Escambia County, Florida. Tallahassee, Florida.

- Fodor, G.G., and G. Winneke. (1971). Nervous System Disturbances in Men and Animals Experimentally Exposed to Industrial Solvent Vapors in England. Proceedings of the 2nd International Clean Air Congress. New York: Academic Press.
- Gallagher, K., Van Veld, P.A., Hale, R.C., and J.J. Stegeman. (1995). Induction of Cytochrome P4501a in the Mummichog (Fundulus heteroclitus) by the Polychlorinated Terphenyl Formulation Aroclor 5432. Environmental Toxicology and Chemistry; 14 (3). 405-409.
- Gillam, A. (1991). Development of Canadian Marine Sediment Quality Guidelines for Polycyclic Aromatic Hydrocarbons. Report prepared by CBR International Biotechnologies Corp. for Water Quality Branch, Environment Canada. Ottawa, Canada.
- Gradient Corporation. (1991). Risk Assessment and Development of Health-based Soil Clean-up Goals for the Charleston Navy Shipyard.
- Graillot, C., Gak, J., Lancret, C., et al. (1975). Research on the Toxic Mechanism of Action of Organochlorine Insecticides. II.- Study of the Long-Term Toxic Effects of DDT on House Hamsters. Eur J Toxicol 8:653-659.
- Grieb, T.M., et al. (1990). Factors Affecting Mercury Accumulation in Fish in the Upper Michigan Peninsula. Environmental Toxicology and Chemistry, 9:919-930.
- Guarino, A.M., and S.T. Arnold. (1979). Xenobiotic Transport Mechanisms and Pharmacokinetics in the Dogfish Shark. ACS Symp. Ser. 99(Ch. 15): 233-258.
- Hanig, J.P., Yoder, P.D., and S. Drop. (1976). Convulsions in Weanling Rabbits after a Single Topical Application of 1% Lindane. Toxicol Appl Pharmacol 38:463-469.

- Harris, C.J., Williford E.A., Kemberling S.R., et al. (1969). *Pesticide Intoxications in Arizona*. Ariz Med 26:872-876.
- Hayes, W. J. (1982). *Chlorinated Hydrocarbon Insecticides*. In: Pesticides Studied in Man. Williams & Wilkins, Baltimore, pp. 233-234.
- HEAST. (1995). Health Effects Assessment Summary Tables. USEPA. Prepared for the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH.
- Heiberg, O.M., and H.N. Wright. (1955). Benzene Hexachloride Poisoning. Arch Ind Health 11:457-458.
- Herr, D.W. and H.A. Tilson. (1987). Modulation of P P' DDT-induced Tremor by Catecholaminergic Agents. Toxicol. Appl. Pharmacol.; 91 (2)149-158.
- Innes, J.R.M., B.M. Ulland, M.G. Valerio, et al. (1969). Bioassay of Pesticides and Industrial Chemicals for Tumorgenicity in Mice: A Preliminary Note. J. Natl. Cancer Inst. 42(6): 1101-1114.
- IRIS. (1993 through 1998). Integrated Risk Information System. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH.
- Jaagumagi, R. (1990). Development of the Ontario Provincial Sediment Quality Guidelines for Arsenic, Cadmium, Chromium, Copper, Iron, Lead, Manganese, Mercury, Nickel, and Zinc. Water Resources Branch. Environment Ontario. Toronto, Ontario.

- James, B.R., and R.J. Bartlett. (1983). Behavior of Chromium in Soils: V. Fate of Organically Complexed Cr (III) Added to Soil. Journal of Environmental Quality.12,169-172.
- Jarvinen, A.W. et al. (1977). Long-Term Toxic Effects of DDT Food and Water Exposure on Fahead Minnows (Pimephales promelas). J. Fish. Res. Board Can., 34:2089-2103.
- Jensen, E.G., Skaare, J.U., Egaas, E., Goksoyr, A. (1991). Response of Xenobiotic Metabolizing Enzymes in Rainbow Trout (Oncorhynchus mykiss) to Endosulfan, Detected by Enzyme Activities and Immunochemical Methods. Aquat. Toxicol. (AMST); 21 (1-2). 81-92.
- Kashyap, S.K., S.K. Nigam, A.B. Karnik, R.C. Gupta, and S.K. Chatterjee. (1977). Carcinogenicity of DDT (Dichlorodiphenyl Trichloroethane) in Pure Inbred Swiss Mice. Int. J. Cancer. 19: 725-729.
- Kashyap, S.K. (1986). Health Surveillance and Biological Monitoring of Pesticide Formulators in India. Toxicol Lett 33:107-114.
- Kirschman, J.C., N.M. Brown, R.H. Coots, and K. Morgareigde. (1986). Review of Investigations of Dichloromethane Metabolism and Subchronic Oral Toxicity as the Basis for the Design of Chronic Oral Studies in Rats and Mice. Food Chem. Toxicol. 24: 943-949.
- Klaassen, C.D., Amdur, M.O., and Doull, J. (1986). Casarett and Doull's Toxicology, The Basic Science of Poisons, (3rd Ed). New York, NY: MacMillan Publishing Company.

- Krabbenhoft, D.P., and D.R. Rickert. (1996). *Mercury Contamination of Aquatic Ecosystems*. USGS Fact Sheet FS-216-95
- Landrum, P.F., and D. Scavia. (1983). Influence of Sediment on Anthracene Uptake, Depuration, and Biotransformation by the Amphipod Hyallela Azteca. Canadian Journal of Fisheries and Aquatic Science, 40, 298-305.
- Lee, B., and P. Groth. (1977). Scabies: Transcutaneous Poisoning During Treatment.

 Pediatrics 59:643.
- Legator, M., Palmer K., and I. Adler. (1973). A Collaborative Study of In Vitro Cytogenetic Analysis. I. Interpretation of Slide Preparations. Toxicol Appl Pharmacol 24:337.
- Long, E.R. et al. (1997). Magnitude and Extent of Sediment Toxicity in Four Bays of the Florida Panhandle: Pensacola, Choctawhatchee, St. Andrew, and Apalachicola. Silver Spring, MD. (NOAA Technical Memorandum NOS ORCA 117).
- Long, E.R., MacDonald, D.D., Smith, S.L., and F.D. Calder. (1995). Incidence of Adverse Biological Effects Within Ranges of Chemical Concentrations in Marine and Estuarine Sediments. Environmental Management. 19, 81-97
- MacDonald, D.D. (1994). Approach to the Assessment of Sediment Quality in Florida Coastal Waters; Volume 1 Development and Evaluation of Sediment Quality Assessment Guidelines. Florida Department of Environmental Protection, Office of Water Policy. Tallahassee, FL.

- Macek, K.J., Buxton, K.S., Derr, S.K., Dean, J.W., and S. Sauter. (1976). *Chronic Toxicity of Lindane to Selected Aquatic Invertebrates and Fishes*. U.S. EPA 600/3-76-046, ORD, Duluth, MN. 50 pp.
- Matsuoka, L.Y. (1981). Convulsions Following Application of Gamma-Benzene Hexachloride.

 J Am Acad Dermatol 5(1):98-99.
- Metcalf, R.L. (1974). A Laboratory Model Ecosystem to Evaluate Compounds Producing Biological Magnification. In: Essays in Toxicology, Vol. 5, Hayes, Wayland J., Jr. (Ed.). XII+189p. Illus. Academic Press: New York, NY, USA; London, England. 17-38.
- Ministry of Housing, Spatial Planning and Environment. (May 1994). Intervention Values and Target Values Soil Quality Standards. Directorate-General for Environmental Protection, Department of Soil Protection, The Hague, The Netherlands.
- Moore, D.R.J. and S.L. Walker. (1991). Canadian Water Quality Guidelines for Polychlorinated Biphenyls in Coastal and Estuarine Water. Scientific Series Number 186. Environment Canada. Ottawa, Canada.
- Muller, D., H. Klepel, R.M. Macholz, H.J. Lewerenz, and R. Engst. (1981).
 Electroneurophysiological Studies on Neurotoxic Effects of Hexachlorocyclo-hexane
 Isomers and Gamma-Pentachlorocyclohexene. Bull. Environ. Contam.
 Toxicol. 27(5): 704-706.
- Munk, Z.M., and A. Nantel. (1977). Acute Lindane Poisoning with Development of Muscle Necrosis. Can Med Assoc J 117:1050-1054.

- Nantel, A., Ayotte L., Benedatti J., et al. (1977). A Group of Adults Acutely Poisoned by Food Contaminated with Lindane. Acta Pharmacol Toxicol 41 (Suppl. 2):250.
- National Cancer Institute. (1978). Bioassays of DDT, TDE and P,P'-DDE for Possible Carcinogenicity (CAS No. 50-29-3, 72-54-8, 72-55-9). NCI Report No. 131. DHEW Publ. No. (NIH) 78-1386.
- National Oceanic and Atmospheric Administration. (1992). Distribution and Abundance of Fishes and Invertebrates in Gulf of Mexico Estuaries: Data Summaries. (September 1992). U.S. Department of Commerce, National Oceanic and Atmospheric Administration.
- National Research Council of Canada. (1983). Polycyclic Aromatic Hydrocarbons in the Aquatic Environment: Formation, Sources, Fate and Effects on Aquatic Biota.

 NRC Associate Committee on Scientific Criteria for Environmental Quality, NRCC Report Number 18981. Ottawa, Canada.
- NEESA. (1988). Sampling and Chemical Analysis Quality Assurance Requirements for the Navy Installation Restoration Program, Port Hueneme, CA. (NEESA 20.0-047B)
- National Academy of Science. (1979). *Polychlorinated Biphenyls*. PCBs in the Environment, Environmental Studies Board, Committee of Natural Resources, Natural Resource Council, National Academy of Science, Washington, D.C.
- Neff, J.M., Foster, R.S., and J.F Slowey. (1978). Availability of Sediment-Absorbed Heavy Metals to Benthos with Particular Emphasis on Deposit-Feeding Infauna. Technical Report D-78-42, U.S. Army Waterways Experiment Station, Vicksburg, MS.

- Neff, J.M. (1979). Polycyclic Aromatic Hydrocarbons in the Aquatic Environment Sources, Fates and Biological Effects (p. 262). Essex, England: Applied Science Publishers Ltd.
- Nitschke, K.D., J.D. Bured, T.J. Bell, et al. (1988a). Methylene Chloride: A 2-Year Inhalation Toxicity and Oncogenicity Study in Rats. Fund. Appl. Toxicol. 11: 48-59.
- NTP (National Toxicology Program). (1986). Toxicology and Carcinogenesis Studies of Dichloromethane (Methylene Chloride) (CAS No. 75-09-2) in F344/N Rats and B6C3F1.
- Oak Ridge National Laboratory. (1984). TERRA Model.
- Palmer, K., Green S., and M. Legator. (1973). Dominant Lethal Study of p,p'-DDT in Rats. Food Cosmet Toxicol 11:53-62.
- Parrish, P.P., Couch, J.A., Forester J., Patrick, J.M., and G.H. Cook. (1974). *Dieldrin:*Effects on Several Estuarine Organisms. Contribution No. 178, Gulf Breeze

 Environmental Research Laboratory, Sabine Island, Gulf Breeze, FL.
- Parrish, P.P, Schimmel, S.C., Hansen, D.J., Patrick, J.M., Jr, and J. Forester. (1976).

 Chlordane: Effects on Several Estuarine Organisms. J. Toxicol. Environ.

 Health 1:485-494.
- Parsons, M., and B.A. Pruitt. (1991). Pensacola Naval Air Station Advanced Wetlands Identification. U.S. Environmental Protection Agency, Environmental Services Division, Athens, GA.

- Pasha, S. (1981). Changes in Hepatic Microsomal Enzymes due to DDT, DDE and DDD Feeding in CF-1 Mice. Indian J Med Res 74:926-930.
- Powell, G.M. (1980). Toxicity of Lindane. Central Afr J Med 26:170.
- Rebert, C.S., Matteucci, M.J., and G.T. Pryor. (1989). Acute Effects of Inhaled Dichloromethane on the EEG and Sensory-Evoked Potentials of Fischer-344 Rats. Pharmacology, Biochemistry and Behavior, Vol. 34, No. 3, pages 619-629.
- Rossi, L., M. Ravera, G. Repetti and L. Santi. (1977). Long-term Administration of DDT or Phenobarbital-Na in Wistar Rats. Int. J. Cancer. 19: 179-185.
- Rossi, L., Barbieri O., Sanguineti M., et al. (1983). Carcinogenicity Study With Technical-Grade Dichlorodiphenyltrichloroethane and 1,1-Dichloro-2,2-bis(p-in Hamsters. Cancer Res 43:776-781.
- Rowley, D.L., Rab M.A., Hardjotanojo W, et al. (1987). Convulsions Caused By Endrin Poisoning in Pakistan. Pediatrics 79:928-934.
- Sample, B.E, D.M. Opresko, and G.W. Suter, II. (1996). *Toxicological Benchmarks for Wildlife: 1996 Revision*. Risk Assessment Program. United States Department of Energy.
- Savolainen, H., Kurppa, K., Pfaffli, P., and H. Kivisto. (1981). Dose-related Effects of Dichloromethane on Rat Brain in Short-term Inhalation Exposure. Chem-biol Interact; 34 (3)315-322.

- Serota, D.G., A.K. Thakur, B.M. Ulland, et al. (1986a). A Two-Year Drinking Water Study of Dichloromethane in Rodents. I. Rats. Food Chem. Toxicol. 24: 951-958.
- Serota, D.G., A.K. Thakur, B.M. Ulland, et al. (1986b). A Two-Year Drinking Water Study of Dichloromethane in Rodents. I. Rats. Food Chem. Toxicol. 24:959.
- Schimmel, S.C., Patrick, J.M., Jr., and J. Forester. (1976). *Heptachlor: Toxicity to and Uptake by Several Estuarine Organisms*. J. Toxicol. Environ. Health; VOL 1, ISS 6, P955-65.
- Schimmel S.C., Patrick, J. M., JR., and A.J. Wilson, Jr. (1977). Acute Toxicity to and Bio Concentration of Endosulfan by Estuarine Animals. In: Aquatic Toxicology and Hazard Evaluation. Proceedings of the First Annual Symposium. Memphis, TN., USA, Oct. 25-26, 1976. Mayer, F. L. and J. L. Hamelink, Eds. ASTM Special Technical Publication, No. 634. 307p. Illus. Maps. ASTM: Philadelphia, PA., USA. ISBN 04-634000-16.; 241-252.
- Schmitt, C.J., Ribick, M.A., Ludke, J.L., and T.W. May. (1983). *National Pesticide Monitoring Program: Organochlorine Residues in Freshwater Fish, 1976-79*. U.S. Fish and Wildlife Service Resource Publication 152.
- Schmitt, C.J., Zajicek, J.L., and M.A. Ribick. (1985). *National Pesticide Monitoring Program:*Organochlorine Residues in Freshwater Fish, 1980-81. Archives of Environmental Contamination and Toxicology. 14,225-260.

- Shabad, L.M., T.S. Kolesnichenko, and T.V. Nikonova. (1973). Transplacental and Combined Long-Term Effect of DDT in Five Generations of A-Strain Mice. Int. J. Cancer. 11: 688-693.
- Shivapurkar, N., Hoover K., and L. Poirier. (1986). Effect of Methionine and Choline on Liver Tumor Promotion by Phenobarbital and DDT in Diethylnitrosamine-Initiated Rats. Carcinogenesis 7:547-550.
- Siddiqui, M.K.J., Rahman M.F., Anjum F., et al. (1987). Effect of Oral Administration of Endosulfan on Some Hematological Parameters and Serum Enzymes in Rats. Pesticides 21:25-27.
- Smith, Roy L. (March, 1994). Technical Memorandum- Risk Based Concentration Table, Fourth Quarter, 1994. Technical Support Section (3HW13). U.S. Environmental Protection Agency, Philadelphia, PA.
- Stanley, J.S. (1986). Broad Scan Analysis of the FY82 National Human Adipose Tissue Survey Specimens: Volume I Executive Summary. Washington, DC: U.S. Environmental Protection Agency, Office of Toxic Substances.
- Starr, H.J., and N.J. Clifford. (1972). *Acute Lindane Intoxication*. A case study. Arch Environ Health 25:374-375.
- Telch, J., and D.A. Jarvis. (1982). Acute Intoxication With Lindane. Can Med Assoc J 126:662-663.
- Texas Risk Reduction Program Concept Document 2, Volume 1, Appendix VII, 1996.

- Tiberin, P., Kristal N., and R. Israeli. (1970). *EEG Findings in Poisoning by Endosulfan* (C9H603C16S). Electroencephalogr Clin Neurophysiol 28:642.
- Terziev, G., Dimitrova N, Rusev F. (1974). Forensic Medical and Forensic Chemical Study of Acute Lethal Poisonings with Thiodan. Folia Med 16:325-329.
- Thorpe, E. and A.I.T. Walker. (1973). The Toxicology of Dieldrin (HEOD). II. Comparative Long-Term Oral Toxicity Studies in Mice with Dieldrin, DDT, Phenobarbitone, beta-BHC and gamma-BHC. Food Cosmet. Toxicol. 11: 433-442.
- Tomatis, L., Turusov V., Day N., et al. (1972). The Effect of Long-Term Exposure to DDT on CF-1Mice. Int J Cancer 10:489-506.
- Tomatis, L., V. Turusov, R.T. Charles and M. Boicchi. (1974). Effect of Long-Term Exposure to 1, 1-Dichloro-2, 2-Bis (P-Chlorophenyl) Ethylene, to 1,1-Dichloro-2,2-Bis (P-Chlorophenyl)-Ethane, and to the Two Chemicals Combined on CF-1 Mice. J. Natl. Cancer Inst. 52(3): 883-891.
- Tusell, J.M., Sunol C., Gelpi E., et al. (1987). Relationship Between Lindane Concentration in Blood and Brain and Convulsant Response in Rats After Oral or Intraperitoneal Administration. Arch Toxicol 60:432-437.
- U.S. Army Corps of Engineers. (1999). Environmental Residue Effects Database. Online.

 Available: http://www.wes.army.mil/el/t2dbase.html.
- U.S. Environmental Protection Agency. (1980a). Ambient Water Quality Criteria for Lead. Washington, D.C. (EPA/440/5-80-057).

- U.S. Environmental Protection Agency. (1980b). Ambient Water Quality Criteria for Polychlorinated Biphenyls. Washington, D.C. (EPA 440/5-80-068).
- U.S. Environmental Protection Agency. (1980c). Ambient Water Quality Criteria for Polynuclear Aromatic Hydrocarbons. Washington, D.C. (EPA 440/5-80-069).
- U.S. Environmental Protection Agency. (1980d). Ambient Water Quality Criteria for Halomethanes. Washington, D.C. (EPA 440/5-80-051).
- U.S. Environmental Protection Agency. (March 1983). *Methods for Chemical Analysis of Water and Wastes*. Environmental Monitoring and Support Laboratory. (EPA 600/4-79-020).
- U.S. Environmental Protection Agency. (1985a). Drinking Water Criteria Document for Methylene Chloride. Office of Drinking Water, Washington, DC.
- U.S. Environmental Protection Agency. (1985b). Addendum to the Health Assessment Document for Dichloromethane (Methylene Chloride). Updated Carcinogenicity Assessment.
 Prepared by the Carcinogen Assessment Group, OHEA, Washington, DC. EPA/600/8-82/004FF.
- U.S. Environmental Protection Agency. (1987). Ambient Water Quality Criteria for Zinc--1987. Washington, D.C. (EPA 440/5-87-003).
- U.S. Environmental Protection Agency. (1989). Risk Assessment Guidance for Superfund (RAGS), Volume I Human Health Evaluation Manual, Part A,

- U.S. Environmental Protection Agency/Office of Emergency and Remedial Response (OERR), (EPA/540/1-89/002), December 1989 (Interim) (RAGS Part A).
- U.S. Environmental Protection Agency. (1991a). RAGS, Volume I Human Health Evaluation Manual (Part B, Development of Risk-Based Preliminary Remediation Goals), (RAGS Part B). Washington, D.C. USEPA/OERR (USEPA/540/R92/003).
- U.S. Environmental Protection Agency. (1991b). RAGS, Volume I Human Health Evaluation Manual, Supplemental Guidance Standard Default Exposure Factors Interim Final, EPA/OERR, OSWER Directive: 9285.6-03, March 25, 1991. (RAGS Supplement).
- U.S. Environmental Protection Agency. (1992a). Test Methods for Evaluating Solid Waste, Physical/Chemical Methods (SW-846), Third Edition, USEPA OSWER, revised July 1992.
- U.S. Environmental Protection Agency. (1992b). Framework for Ecological Risk Assessment.

 Risk Assessment Forum. Washington, D.C. (EPA/630/R-92/001).
- U.S. Environmental Protection Agency. (1992c). RAGS, Volume I Human Health Evaluation Manual, Supplemental Guidance-Dermal Risk Assessment Interim Guidance, EPA/OERR, August 18, 1992. (Supplemental Dermal Guidance).
- U.S. Environmental Protection Agency. (1992d). Supplemental Guidance to RAGS: Calculating the Concentration Term, (USEPA Region IV, May 1992).
- U.S. Environmental Protection Agency. (1993a). SOW for Inorganic Analysis, Multi-Media, Multi-Concentration (CLP Inorganic SOW), USEPA OSWER, ILM03.0, 1993.

- U.S. Environmental Protection Agency. (1993b). Wildlife Exposure Factors Handbook, Office of Health and Environmental Assessment, Office of Research and Development, USEPA. Washington, D.C. (EPA/600/R-93/187a).
- U.S. Environmental Protection Agency. (1993c). Provisional Guidance for Quantitative Risk Assessment of PAHs, ECAO-CIN-842 (EPA/600/BP92/001C), July.
- U.S. Environmental Protection Agency. (1994a). Statement of Work (SOW) for Organic Analysis, Multi-Media, Multi-Concentration, USEPA OSWER (CLP Organic SOW), OLM02.1, 1994.
- U.S. Environmental Protection Agency. (1994b). Contract Laboratory Program National Functional Guidelines for Organic Data Review. Contract Laboratory Program. Washington, D.C. (EPA/540/R-94/012).
- U.S. Environmental Protection Agency. (1994c). Contract Laboratory Program National Functional Guidelines for Inorganic Data Review. Contract Laboratory Program. Washington, D.C. (EPA-540/R-94/013).
- U.S. Environmental Protection Agency. (1994d). *Draft Revised Soil Interim Lead Guidance*. USEPA OSWER. Washington, D.C.
- U.S. Environmental Protection Agency. (March 18, 1994e). Determination of COCs by Risk-Based Screening. USEPA Region III. Philadelphia, PA.

- U.S. Environmental Protection Agency. (1995a). Supplemental Guidance to RAGS: Region IV
 Bulletins Ecological Screening Values, Ecological Risk Assessment Bulletin No. 2.
 USEPA Region IV. Atlanta, GA.
- U.S. Environmental Protection Agency. (1995b). Supplemental Guidance to RAGS: Region IV
 Bulletins Exposure Assessment and Toxicity Assessment, Bulletin Nos. 2 and 3.
 USEPA Region IV. Atlanta, GA.
- U.S. Environmental Protection Agency. (1996a). Supplemental Guidance to RAGS: Region 4

 Human Health Risk Assessment Bulletins Interim.
- U.S. Environmental Protection Agency. (1996b). Soil Screening Guidance: Technical Background Document. OSWER-9355, 4-1A, EPA/5401R-95/128.
- U.S. Environmental Protection Agency. (1996c). Superfund Chemical Data Matrix.
- U.S. Environmental Protection Agency. (1997a). Ecological Risk Assessment Guidance for Superfund: Process for Designing and Conducting Ecological Risk Assessments — Interim Final. OSWER, EPA/540/R-97/006.
- U.S. Environmental Protection Agency. (1997b). *Exposure Factors Handbook*, Office of Research and Development, EPA/600/P-95/002Fa, August.
- U.S. Environmental Protection Agency. (1998a). Draft Water Quality Criteria Methodology Revisions: Human Health. Published in the Federal Register, August 14, 1998.

- U.S. Environmental Protection Agency. (1998b). Risk-Based Concentration (RBC) Table. USEPA Region III April 15, 1998.
- U.S. Environmental Protection Agency. (1998c). RAGS, Volume I Human Health Evaluation Manual, Part D, Standardized Planning, Reporting, and Review of Superfund Risk Assessments, USEPA/OERR, 9285.7-01D, January, 1998 (Interim) (RAGS Part D).
- U.S. Fish and Wildlife Service. (1987). Comprehensive Natural Resources Management Plan for NAS Pensacola and OLF Bronson, Pensacola, Florida. Division of Ecological Services. Panama City, Florida.
- U.S. Geological Survey. (1970a). 7½ Minute Topographic Map, Fort Barrancas, Florida Quadrangle.
- U.S. Geological Survey. (1970b). 7½ Minute Topographic Map, West Pensacola, Florida Quadrangle, Photorevised 1987.
- U.S. Navy. (1997). Revised 1997 Site Management Plan (SMP) of the Installation Restoration Program for the Naval Air Station Pensacola, Pensacola, FL.. Charleston, SC.
- Van Velsen, F.L., Danse L.H.J.C., Van Leeuwen F.X.R., et al. (1986). *The Subchronic Oral Toxicity of the Beta-Isomer of Hexachlorocyclohexane in Rats*. Fund Appl Toxicol 6:697-712.
- Walter, C.W., June, F.C., and H.G. Brown. (1973). Mercury in Fish, Sediments, and Water in Lake Oahe, South Dakota. Journal WPCF, 45:2203-2210.

- Wilson, H.A., Shaw S., and R.L. McLamb. (1987). The Effects of Lindane, DDT, and Chlordecone on Avoidance Responding and Seizure Activity. Toxicol Appl Pharmacol 88(1):57-65.
- Windom, H.L., and D.R.. Kendall. (1979). Accumulation and Biotransformation of Mercury in Coastal and Marine Biota. In Nriagu, J.O. (Ed). The Biogeochemistry of Mercury in the Environment. Amsterdam: Elsevier/North Holland Biomedical Press.
- Winneke, G. (1974). Behavioral Effects of Methylene Chloride and Carbon Monoxide as Assessed by Sensory and Psychomotor Performance. In: Behavioral Toxicology,
 C. Xintaras, B.L. Johnson and I. de Groot, Eds. U.S. Printing Office, Washington, DC,
 pp. 130-144.
- Williams, D.T., LeBel G.L., and E. Junkins. (1984). A Comparison of Organochlorine Residues in Human Adipose Tissue Autopsy Samples from Two Ontario Municipalities. J Toxicol Environ Health 13:19-29.
- Wolfe, S.H., Reidenauer, J.A., and D.B Means. (1988). An Ecological Characterization of the Florida Panhandle. U.S. Fish and Wildlife Service, Biological Report 88(12); Minerals Management Service OCS Study/MMs 88-0063.2.
- Wong, P.T.S., Chau, Y.K., Hodson, P.V., and B.A. Silverberg. (1978). Lead and the Aquatic Biota. In Nriagu, J.O. (Ed). The Biogeochemistry of Lead in the Environment. Part B. Biological Effects. Amsterdam: Elsevier/North Holland Biomedical Press.

Final Remedial Investigation Report NAS Pensacola Site 41 Section 13: Florida Professional Geologist Seal August 31, 2000

13.0 FLORIDA PROFESSIONAL GEOLOGIST SEAL

I have read and approve of this Remedial Investigation Report, NAS Pensacola Site 41, and seal it in accordance with Chapter 492 of the Florida Statutes. In sealing this document, I certify the geological information contained in it is true to the best of my knowledge and the geological methods and procedures included herein are consistent with currently accepted geological practices.

Name:

Brian Caldwell

License Number:

#1330

State:

Florida

Expiration Date:

July 31, 2002

Brian Caldwell

Date